Bootlin toolchains updated, edition 2020.02

Bootlin provides a large number of ready-to-use pre-built cross-compilation toolchains at toolchains.bootlin.com. We announced the service in June 2017, and released multiple versions of the toolchains up to 2018.11.

After a long pause, we are happy to announce that we have released a new set of toolchains, built using Buildroot 2020.02, and therefore labelled as 2020.02, even though they have been published in April. They are available for 38 CPU architectures or architecture variants, supporting the glibc, uclibc-ng and musl C libraries when possible.

For each toolchain, we offer two variants: one called stable which uses “proven” versions of gcc, binutils and gdb, and one called bleeding edge which uses the latest version of gcc, binutils and gdb.

Overall, these 2020.02 toolchains use:

  • gcc 8.4.0 for stable, 9.3.0 for bleeding edge
  • binutils 2.32 for stable, 2.33.1 for bleeding edge
  • gdb 8.2.1 for stable, 8.3 for bleeding edge
  • linux headers 4.4.215 for stable, 4.19.107 for bleeding edge
  • glibc 2.30
  • uclibc-ng 1.0.32
  • musl 1.1.24

2020.02 toolchains

In total, that’s 154 different toolchains that we are providing! If you are using these toolchains and face any issue, or want to request some additional change of feature, do not hesitate to contact us through the corresponding Github project. Also, I’d like to thank Romain Naour, from Smile for his contributions to this project.

SFP modules on a board running Linux

We recently worked on Linux support for a custom hardware platform based on the Texas Instruments AM335x system-on-chip, with a somewhat special networking setup: each of the two ports of the AM335x Ethernet MAC was connected to a Microchip VSC8572 Ethernet PHY, which itself allowed to access an SFP cage. In addition, the I2C buses connected to the SFP cages, which are used at runtime to communicate with the inserted SFP modules, instead of being connected to an I2C controller of the system-on-chip as they usually are, where connected to the I2C controller embedded in the VSC8572 PHYs.

The below diagram depicts the overall hardware layout:

Our goal was to use Linux and to offer runtime dynamic reconfiguration of the networking links based the SFP module plugged in. To achieve this we used, and extended, a combination of Linux kernel internal frameworks such as Phylink or the SFP bus support; and of networking device drivers. In this blog post, we’ll share some background information about these technologies, the challenges we faced and our current status.

Introduction to the SFP interface

SFP moduleThe small form-factor pluggable (SFP) is a hot-pluggable network interface module. Its electrical interface and its form-factor are well specified, which allows industry players to build platforms that can host SFP modules, and be sure that they will be able to use any available SFP module on the market. It is commonly used in the networking industry as it allows connecting various types of transceivers to a fixed interface.

A SFP cage provides in addition to data signals a number of control signals:

  • a Tx_Fault pin, for transmitter fault indication
  • a Tx_Disable pin, for disabling optical output
  • a MOD_Abs pin, to detect the absence of a module
  • an Rx_LOS pin, to denote a receiver loss of signal
  • a 2-wire data and clock lines, used to communicate with the modules

Modules plugged into SFP cages can be direct attached cables, in which case they do not have any built-in transceiver, or they can include a transceiver (i.e an embedded PHY), which transforms the signal into another format. This means that in our setup, there can be two PHYs between the Ethernet MAC and the physical medium: the Microchip VSC8572 PHY and the PHY embedded into the SFP module that is plugged in.

All SFP modules embed an EEPROM, accessible at a standardized I2C address and with a standardized format, which allows the host system to discover which SFP modules are connected what are their capabilities. In addition, if the SFP modules contains an embedded PHY, it is also accessible through the same I2C bus.

Challenges

We had to overcome a few challenges to get this setup working, using a mainline Linux kernel.

As we discussed earlier, having SFP modules meant the whole MAC-PHY-SFP link has to be reconfigured at runtime, as the PHY in the SFP module is hot-pluggable. To solve this issue a framework called Phylink, was introduced in mid-2017 to represent networking links and allowing their component to share states and to be reconfigured at runtime. For us, this meant we had to first convert the CPSW MAC driver to use this phylink framework. For a detailed explanation of what composes Ethernet links and why Phylink is needed, we gave a talk at the Embedded Linux Conference Europe in 2018. While we were working on this and after we first moved the CPSW MAC driver to use Phylink, this driver was rewritten and a new CPSW MAC driver was sent upstream (CONFIG_TI_CPSW vs CONFIG_TI_CPSW_SWITCHDEV). We are still using the old driver for now, and this is why we did not send our patches upstream as we think it does not make sense to convert a driver which is now deprecated.

A second challenge was to integrate the 2-wire capability of the VSC8572 PHY into the networking PHY and SFP common code, as our SFP modules I2C bus is connected to the PHY and not an I2C controller from the system-on-chip. We decided to expose this PHY 2-wire capability as an SMBus controller, as the functionality offered by the PHY does not make it a fully I2C compliant controller.

Outcome

The challenges described above made the project quite complex overall, but we were able to get SFP modules working, and to dynamically switch modes depending on the capabilities of the one currently plugged-in. We tested with both direct attached cables and a wide variety of SFP modules of different speeds and functionality. At the moment only a few patches were sent upstream, but we’ll contribute more over time.

For an overview of some of the patches we made and used, we pushed a branch on Github (be aware those patches aren’t upstream yet and they will need some further work to be acceptable upstream). Here is the details of the patches:

In terms of Device Tree representation, we first have a description of the two SFP cages. They describe the different GPIOs used for the control signals, as well as the I2C bus that goes to each SFP cage. Note that the gpio_sfp is a GPIO expander, itself on I2C, rather than directly GPIOs of the system-on-chip.

/ {
       sfp_eth0: sfp-eth0 {
               compatible = "sff,sfp";
               i2c-bus = <&phy0>;
               los-gpios = <&gpio_sfp 3 GPIO_ACTIVE_HIGH>;
               mod-def0-gpios = <&gpio_sfp 4 GPIO_ACTIVE_LOW>;
               tx-disable-gpios = <&gpio_sfp 5 GPIO_ACTIVE_HIGH>;
               tx-fault-gpios = <&gpio_sfp 6 GPIO_ACTIVE_HIGH>;
       };

       sfp_eth1: sfp-eth1 {
               compatible = "sff,sfp";
               i2c-bus = <&phy1>;
               los-gpios = <&gpio_sfp 10 GPIO_ACTIVE_HIGH>;
               mod-def0-gpios = <&gpio_sfp 11 GPIO_ACTIVE_LOW>;
               tx-disable-gpios = <&gpio_sfp 13 GPIO_ACTIVE_HIGH>;
               tx-fault-gpios  = <&gpio_sfp 12 GPIO_ACTIVE_HIGH>;
       };
};

Then the MAC is described as follows:

&mac {
      pinctrl-names = "default";
       pinctrl-0 = <&cpsw_default>;
       status = "okay";
       dual_emac;
};

&cpsw_emac0 {
       status = "okay";
       phy = <&phy0>;
       phy-mode = "rgmii-id";
       dual_emac_res_vlan = <1>;
};

&cpsw_emac1 {
       status = "okay";
       phy = <&phy1>;
       phy-mode = "rgmii-id";
       dual_emac_res_vlan = <2>;
};

So we have both ports of the MAC enabled with a RGMII interface to the PHY. And finally the MDIO bus of the system-on-chip is described as follows. We have two sub-nodes, one for each VSC8572 PHY, respectively at address 0x0 and 0x1 on the CPSW MDIO bus. Each PHY is connected to its respective SFP cage node (sfp_eth0 and sfp_eth1) and provides access to the SFP EEPROM as regular EEPROMs.

&davinci_mdio {
       pinctrl-names = "default";
       pinctrl-0 = <&davinci_mdio_default>;
       status = "okay";

       phy0: ethernet-phy@0 {
               #address-cells = <1>;
               #size-cells = <0>;

               reg = <0>;
               fiber-mode;
               vsc8584,los-active-low;
               sfp = <&sfp_eth0>;

               sfp0_eeprom: eeprom@50 {
                       compatible = "atmel,24c02";
                       reg = <0x50>;
                       read-only;
               };

               sfp0_eeprom_ext: eeprom@51 {
                       compatible = "atmel,24c02";
                       reg = <0x51>;
                       read-only;
               };
       };

       phy1: ethernet-phy@1 {
               #address-cells = <1>;
               #size-cells = <0>;

               reg = <1>;
               fiber-mode;
               vsc8584,los-active-low;
               sfp = <&sfp_eth1>;

               sfp1_eeprom: eeprom@50 {
                       compatible = "atmel,24c02";
                       reg = <0x50>;
                       read-only;
               };

               sfp1_eeprom_ext: eeprom@51 {
                       compatible = "atmel,24c02";
                       reg = <0x51>;
                       read-only;
               };
       };
};

Conclusion

While we are still working on pushing all of this work upstream, we’re happy to have been able to work on these topics. Do not hesitate to reach out of to us if you have projects that involve Linux and SFP modules!

Linux 5.6, Bootlin contributions inside

Linux 5.6 was released last Sunday. As usual, LWN has the best coverage of the new features merged in this release: part 1 and part 2. Sadly, the corresponding KernelNewbies page has not yet been updated with the usual very interesting summary of the important changes.

Bootlin contributed a total of 95 patches to this release, which makes us the 27th contributing company by number of commits, according to the statistics. The main highlights of our contributions are:

  • Our work on supporting hardware-offloading of MACsec encryption/decryption in the networking subsystem and support for this offloading for some Microchip/Vitesse PHYs has been merged. See our previous blog post for more details about this work done by Bootlin engineer Antoine Ténart
  • As part of our work on the Rockchip PX30 system-on-chip, we contributed support for LVDS display on Rockchip PX30, and support for the Satoz SAT050AT40H12R2 panel. This work was done by Miquèl Raynal
  • Alexandre Belloni as the RTC maintainer did his usual number of cleanup and improvements to existing RTC drivers
  • We did a number of small contributions to the Microchip AT91/SAMA5 platform: support for the Smartkiz platform from Overkiz, phylink improvements in the macb driver, etc.
  • Paul Kocialkowski improved the Intel GMA 500 DRM driver to support page flip.
  • Paul Kocialkowski contributed support for the Xylon LogiCVC GPIO controller, which is a preliminary step to contributing the Xylon LogiCVC display controller support. See our blog post on this topic.

In addition to being contributors, a number of Bootlin engineers are also maintainers of various parts of the Linux kernel, and as such:

  • Alexandre Belloni, as the RTC subsystem maintainer and Microchip platforms co-maintainer, has reviewed and merged 55 patches from other contributors
  • Miquèl Raynal, as the MTD co-maintainer, has reviewed and merged 21 patches from other contributors
  • Grégory Clement, as the Marvell EBU platform co-maintainer, has reviewed and merged 12 patches from other contributors

Here is the detail of all our contributions:

Covid-19: Bootlin proposes online sessions for all its courses

Tux working on embedded Linux on a couchLike most of us, due to the Covid-19 epidemic, you may be forced to work from home. To take advantage from this time confined at home, we are now proposing all our training courses as online seminars. You can then benefit from the contents and quality of Bootlin training sessions, without leaving the comfort and safety of your home. During our online seminars, our instructors will alternate between presentations and practical demonstrations, executing the instructions of our practical labs.

At any time, participants will be able to ask questions.

We can propose such remote training both through public online sessions, open to individual registration, as well as dedicated online sessions, for participants from the same company.

Public online sessions

We’re trying to propose time slots that should be manageable from Europe, Middle East, Africa and at least for the East Coast of North America. All such sessions will be taught in English. As usual with all our sessions, all our training materials (lectures and lab instructions) are freely available from the pages describing our courses.

Our Embedded Linux and Linux kernel courses are delivered over 7 half days of 4 hours each, while our Yocto Project, Buildroot and Linux Graphics courses are delivered over 4 half days. For our embedded Linux and Yocto Project courses, we propose an additional date in case some extra time is needed to complete the agenda.

Here are all the available sessions. If the situation lasts longer, we will create new sessions as needed:

Type Dates Time Duration Expected trainer Cost and registration
Embedded Linux (agenda) Sep. 28, 29, 30, Oct. 1, 2, 5, 6 2020. 17:00 – 21:00 (Paris), 8:00 – 12:00 (San Francisco) 28 h Michael Opdenacker 829 EUR + VAT* (register)
Embedded Linux (agenda) Nov. 2, 3, 4, 5, 6, 9, 10, 12, 2020. 14:00 – 18:00 (Paris), 8:00 – 12:00 (New York) 28 h Michael Opdenacker 829 EUR + VAT* (register)
Linux kernel (agenda) Nov. 16, 17, 18, 19, 23, 24, 25, 26 14:00 – 18:00 (Paris time) 28 h Alexandre Belloni 829 EUR + VAT* (register)
Yocto Project (agenda) Nov. 30, Dec. 1, 2, 3, 4, 2020 14:00 – 18:00 (Paris time) 16 h Maxime Chevallier 519 EUR + VAT* (register)
Buildroot (agenda) Dec. 7, 8, 9, 10, and 11, 2020 14:00 – 18:00 (Paris time) 16 h Thomas Petazzoni 519 EUR + VAT* (register)
Linux Graphics (agenda) Dec. 1, 2, 3, 4, 2020 14:00 – 18:00 (Paris time) 16 h Paul Kocialkowski 519 EUR + VAT* (register

* VAT: applies to businesses in France and to individuals from all countries. Businesses in the European Union won’t be charged VAT only if they provide valid company information and VAT number to Evenbrite at registration time. For businesses in other countries, we should be able to grant them a VAT refund, provided they send us a proof of company incorporation before the end of the session.

Each public session will be confirmed once there are at least 6 participants. If the minimum number of participants is not reached, Bootlin will propose new dates or a full refund (including Eventbrite fees) if no new date works for the participant.

We guarantee that the maximum number of participants will be 12.

Dedicated online sessions

If you have enough people to train, such dedicated sessions can be a worthy alternative to public ones:

  • Flexible dates and daily durations, corresponding to the availability of your teams.
  • Confidentiality: freedom to ask questions that are related to your company’s projects and plans.
  • If time left, possibility to have knowledge sharing time with the instructor, that could go beyond the scope of the training course.
  • Language: possibility to have a session in French instead of in English.

Online seminar details

Each session will be given through Jitsi Meet, a Free Software solution that we are trying to promote. As a backup solution, we will also be able to Google Hangouts Meet. Each participant should have her or his own connection and computer (with webcam and microphone) and if possible headsets, to avoid echo issues between audio input and output. This is probably the best solution to allow each participant to ask questions and write comments in the chat window. We also support people connecting from the same conference room with suitable equipment.

Each participant is asked to connect 15 minutes before the session starts, to make sure her or his setup works (instructions will be sent before the event).

How to register

For online public sessions, use the EventBrite links in the above list of sessions to register one or several individuals.

To register an entire group (for dedicated sessions), please contact training@bootlin.com and tell us the type of session you are interested in. We will then send you a registration form to collect all the details we need to send you a quote.

You can also ask all your questions by calling +33 484 258 097.

Questions and answers

Q : Should I order hardware in advance, our hardware included in the training cost?
R : No, practical labs are replaced by technical demonstrations, so you will be able to follow the course without any hardware. However, you can still order the hardware by checking the “Shopping list” pages of presentation materials for each session. This way, between each session, you will be able to replay by yourself the labs demonstrated by your trainer, ask all your questions, and get help between sessions through our dedicated Matrix channel to reach your goals.

Q: Why just demos instead of practicing with real hardware?
A: We are not ready to support a sufficient number of participants doing practical labs remotely with real hardware. This is more complicated and time consuming than in real life. Hence, what we we’re proposing is to replace practical labs with practical demonstrations shown by the instructor. The instructor will go through the normal practical labs with the standard hardware that we’re using.

Q: Would it be possible to run practical labs on the QEMU emulator?
R: Yes, it’s coming. In the embedded Linux course, we are already offering instructions to run most practical labs on QEMU between the sessions, before the practical demos performed by the trainer. We should also be able to propose such instructions for our Yocto Project and Buildroot training courses in the next months. Such work is likely to take more time for our Linux kernel course, practical labs being closer to the hardware that we use.

Q: Why proposing half days instead of full days?
A: From our experience, it’s very difficult to stay focused on a new technical topic for an entire day without having periodic moments when you are active (which happens in our public and on-site sessions, in which we interleave lectures and practical labs). Hence, we believe that daily slots of 4 hours (with a small break in the middle) is a good solution, also leaving extra time for following up your normal work.

Building a Linux system for the STM32MP1: remote firmware updates

After another long break, here is our new article in the series of blog posts about building a Linux system for the STM32MP1 platform. After showing how to build a minimal Linux system for the STM32MP157 platform, how to connect and use an I2C based pressure/temperature/humidity sensor and how to integrate Qt5 in our system, how to set up a development environment to write our own Qt5 application, how to develop a Qt5 application, and how to setup factory flashing, we are now going to discuss the topic of in-field firmware update.

List of articles in this series:

  1. Building a Linux system for the STM32MP1: basic system
  2. Building a Linux system for the STM32MP1: connecting an I2C sensor
  3. Building a Linux system for the STM32MP1: enabling Qt5 for graphical applications
  4. Building a Linux system for the STM32MP1: setting up a Qt5 application development environment
  5. Building a Linux system for the STM32MP1: developing a Qt5 graphical application
  6. Building a Linux system for the STM32MP1: implementing factory flashing
  7. Building a Linux system for the STM32MP1: remote firmware updates

Why remote firmware updates?

The days and age when it was possible to build and flash an embedded system firmware, ship the device and forget it, are long behind us. Systems have gotten more complicated, and we therefore have to fix bugs and security issues after the device has been shipped, and we often want to deploy new features in the field into existing devices. For all those reasons, the ability to remotely update the firmware of embedded devices is now a must-have.

Open-source firmware update tools

There are different possibilities to update your system:

  • If you’re using a binary distribution, use the package manager of this distribution to update individual components
  • Do complete system image updates, at the block-level, replacing the entire system image with an updated one. Three main open-source solutions are available: swupdate, Mender.io and RAUC.
  • Do file-based updates, with solutions such as OSTree.

In this blog post, we are going to show how to set up the swupdate solution.

swupdate is a tool installed on the target that can receive an update image (.swu file), either from a local media or from a remote server, and use it to update various parts of the system. Typically, it will be used to update the Linux kernel and the root filesystem, but it can also be used to update additional partitions, FPGA bitstreams, etc.

swupdate implements two possible update strategies:

  • A dual copy strategy, where the storage has enough space to store two copies of the entire filesystem. This allows to run the system from copy A, update copy B, and reboot it into copy B. The next update will of course update copy A.
  • A single copy strategy, where the upgrade process consists in rebooting into a minimal system that runs entirely from RAM, and that will be responsible for updating the system on storage.

For this blog post, we will implement the dual copy strategy, but the single copy strategy is also supported for systems with tighter storage restrictions.

We are going to setup swupdate step by step: first by triggering updates locally, and then seeing how to trigger updates remotely.

Local usage of swupdate

Add USB storage support

As a first step, in order to transfer the update image to the target, we will use a USB stick. This requires having USB mass storage support in the Linux kernel. So let’s adjust our Linux kernel configuration by running make linux-menuconfig. Within the Linux kernel configuration:

  • Enable the CONFIG_SCSI option. This is a requirement for USB mass storage support
  • Enable the CONFIG_BLK_DEV_SD option, needed for SCSI disk support, which is another requirement for USB mass storage.
  • Enable the CONFIG_USB_STORAGE option.
  • The CONFIG_VFAT_FS option, to support the FAT filesystem, is already enabled.
  • Enable the CONFIG_NLS_CODEPAGE_437 and CONFIG_NLS_ISO8859_1 options, to have the necessary support to decode filenames in the FAT filesystem.

Then, run make linux-update-defconfig to preserve these kernel configurations changes in your kernel configuration file at board/stmicroelectronics/stm32mp157-dk/linux.config.

swupdate setup

In Target packages, System tools, enable swupdate. You can disable the install default website setting since we are not going to use the internal swupdate web server.

Take this opportunity to also enable the gptfdisk tool and its sgdisk sub-option in the Hardware handling submenu. We will need this tool later to update the partition table at the end of the update process.

Now that we have both both USB storage support and the swupdate package enabled, let’s build a new version of our system by running make. Flash the resulting image on your SD card, and boot your target. You should have swupdate available:

# swupdate -h
Swupdate v2018.11.0

Licensed under GPLv2. See source distribution for detailed copyright notices.

swupdate (compiled Mar  4 2020)
Usage swupdate [OPTION]
 -f, --file           : configuration file to use
 -p, --postupdate               : execute post-update command
 -e, --select , : Select software images set and source
                                  Ex.: stable,main
 -i, --image          : Software to be installed
 -l, --loglevel          : logging level
 -L, --syslog                   : enable syslog logger
 -n, --dry-run                  : run SWUpdate without installing the software
 -N, --no-downgrading  : not install a release older as 
 -o, --output      : saves the incoming stream
 -v, --verbose                  : be verbose, set maximum loglevel
     --version                  : print SWUpdate version and exit
 -c, --check                    : check image and exit, use with -i 
 -h, --help                     : print this help and exit
 -w, --webserver [OPTIONS]      : Parameters to be passed to webserver
	mongoose arguments:
	  -l, --listing                  : enable directory listing
	  -p, --port               : server port number  (default: 8080)
	  -r, --document-root      : path to document root directory (default: .)
	  -a, --api-version [1|2]        : set Web protocol API to v1 (legacy) or v2 (default v2)
	  --auth-domain                  : set authentication domain if any (default: none)
	  --global-auth-file             : set authentication file if any (default: none)

Take a USB stick with a FAT filesystem on it, which you can mount:

# mount /dev/sda1 /mnt

If that works, we’re now ready to move on to the next step of actually getting a firmware update image.

Generate the swupdate image

swupdate has its own update image format, and you need to generate an image that complies with this format so that swupdate can use it to upgrade your system. The format is simple: it’s a CPIO archive, which contains one file named sw-description describing the contents of the update image, and one or several additional files that are the images to update.

First, let’s create our sw-description file in board/stmicroelectronics/stm32mp157-dk/sw-description. The tags and properties available are described in the swupdate documentation.

software = {
	version = "0.1.0";
	rootfs = {
		rootfs-1: {
			images: (
			{
				filename = "rootfs.ext4.gz";
				compressed = true;
				device = "/dev/mmcblk0p4";
			});
		}
		rootfs-2: {
			images: (
			{
				filename = "rootfs.ext4.gz";
				compressed = true;
				device = "/dev/mmcblk0p5";
			});
		}
	}
}

This describes a single software component rootfs, which is available as two software collections, to implement the dual copy mechanism. The root filesystem will have one copy in /dev/mmcblk0p4 and another copy in /dev/mmcblk0p5. They will be updated from a compressed image called rootfs.ext4.gz.

Once this sw-description file is written, we can write a small script that generates the swupdate image. We’ll put this script in board/stmicroelectronics/stm32mp157-dk/gen-swupdate-image.sh:

#!/bin/sh

BOARD_DIR=$(dirname $0)

cp ${BOARD_DIR}/sw-description ${BINARIES_DIR}

IMG_FILES="sw-description rootfs.ext4.gz"

pushd ${BINARIES_DIR}
for f in ${IMG_FILES} ; do
	echo ${f}
done | cpio -ovL -H crc > buildroot.swu
popd

It simply copies the sw-description file to BINARIES_DIR (which is output/images), and then creates a buildroot.swu CPIO archive that contains the sw-description and rootfs.ext4.gz files.

Of course, make sure this script has executable permissions.

Then, we need to slightly adjust our Buildroot configuration, so run make menuconfig, and:

  • In System configuration, in the option Custom scripts to run after creating filesystem images, add board/stmicroelectronics/stm32mp157-dk/gen-swupdate-image.sh after the existing value support/scripts/genimage.sh. This will make sure our new script generating the swupdate image is executed as a post-image script, at the end of the build.
  • In Filesystem images, enable the gzip compression method for the ext2/3/4 root filesystem, so that a rootfs.ext4.gz image is generated.

With that in place, we are now able to generate our firmware image, by simply running make in Buildroot. At the end of the build, the output/images/ folder should contain the sw-description and rootfs.ext4.gz files. You can look at the contents of buildroot.swu:

$ cat output/images/buildroot.swu | cpio -it
sw-description
rootfs.ext4.gz
58225 blocks

Partioning scheme and booting logic

We now need to adjust the partitioning scheme of our SD card so that it has two partitions for the root filesystem, one for each copy. This partitioning scheme is defined in board/stmicroelectronics/stm32mp157-dk/genimage.cfg, which we change to:

image sdcard.img {
        hdimage {
                gpt = "true"
        }

        partition fsbl1 {
                image = "tf-a-stm32mp157c-dk2.stm32"
        }

        partition fsbl2 {
                image = "tf-a-stm32mp157c-dk2.stm32"
        }

        partition ssbl {
                image = "u-boot.stm32"
        }

        partition rootfs1 {
                image = "rootfs.ext4"
                partition-type = 0x83
                bootable = "yes"
                size = 256M
        }

        partition rootfs2 {
                partition-type = 0x83
                size = 256M
        }
}

As explained in the first blog post of this series, the /boot/extlinux/extlinux.conf file is read by the bootloader to know how to boot the system. Among other things, this file defines the Linux kernel command line, which contains root=/dev/mmcblk0p4 to tell the kernel where the root filesystem is. But with our dual copy upgrade scheme, the root filesystem will sometimes be on /dev/mmcblk0p4, sometimes on /dev/mmcblk0p5. To achieve that without constantly updating the extlinux.conf file, we will use /dev/mmcblk0p${devplist} instead. devplist is a U-Boot variable that indicates from which partition the extlinux.conf file was read, which turns out to be the partition of our root filesystem. So, your board/stmicroelectronics/stm32mp157-dk/overlay/boot/extlinux/extlinux.conf file should look like this:

label stm32mp15-buildroot
  kernel /boot/zImage
  devicetree /boot/stm32mp157c-dk2.dtb
  append root=/dev/mmcblk0p${devplist} rootwait console=ttySTM0,115200 vt.global_cursor_default=0

For the dual copy strategy to work, we need to tell the bootloader to boot either from the root filesystem in the rootfs1 partition or the rootfs2 partition. This will be done using the bootable flag of each GPT partition, and this is what this script does: it toggles the bootable flag of 4th and 5th partition of the SD card. This way, the partition with the bootable flag will lose it, and the other partition will gain it. Thanks to this, at the next reboot, U-Boot will consider the system located in the other SD card partition. This work will be done by a /etc/swupdate/postupdate.sh script, that you will store in board/stmicroelectronics/stm32mp157-dk/overlay/etc/swupdate/postupdate.sh, which contains:

#!/bin/sh
sgdisk -A 4:toggle:2 -A 5:toggle:2 /dev/mmcblk0
reboot

Make sure this script is executable.

With all these changes in place, let’s restart the Buildroot build by running make. The sdcard.img should contain the new partioning scheme:

$ sgdisk -p output/images/sdcard.img
[...]
Number  Start (sector)    End (sector)  Size       Code  Name
   1              34             497   232.0 KiB   8300  fsbl1
   2             498             961   232.0 KiB   8300  fsbl2
   3             962            2423   731.0 KiB   8300  ssbl
   4            2424          526711   256.0 MiB   8300  rootfs1
   5          526712         1050999   256.0 MiB   8300  rootfs2

Reflash your SD card with the new sdcard.img, and boot this new system. Transfer the buildroot.swu update image to your USB stick.

Testing the firmware update locally

After booting the system, mount the USB stick, which contains the buildroot.swu file:

# mount /dev/sda1 /mnt/
# ls /mnt/
buildroot.swu

Let’s trigger the system upgrade with swupdate:

# swupdate -i /mnt/buildroot.swu -e rootfs,rootfs-2 -p /etc/swupdate/postupdate.sh

Swupdate v2018.11.0

Licensed under GPLv2. See source distribution for detailed copyright notices.

Registered handlers:
	dummy
	raw
	rawfile
software set: rootfs mode: rootfs-2
Software updated successfully
Please reboot the device to start the new software
[INFO ] : SWUPDATE successful ! 
Warning: The kernel is still using the old partition table.
The new table will be used at the next reboot or after you
run partprobe(8) or kpartx(8)
The operation has completed successfully.
# Stopping qt-sensor-demo: OK
Stopping dropbear sshd: OK
Stopping network: OK
Saving random seed... done.
Stopping klogd: OK
Stopping syslogd: OK
umount: devtmpfs busy - remounted read-only
[  761.949576] EXT4-fs (mmcblk0p4): re-mounted. Opts: (null)
The system is going down NOW!
Sent SIGTERM to all processes
Sent SIGKILL to all processes
Requesting system reboot
[  763.965243] reboot: ResNOTICE:  CPU: STM32MP157CAC Rev.B
NOTICE:  Model: STMicroelectronics STM32MP157C-DK2 Discovery Board

The -i option indicates the firmware update file, while the -e option indicates which software component should be updated. Here we update the rootfs in its slot 2, rootfs-2, which is in /dev/mmcblk0p5. The -p option tells to run our post-update script when the update is successful. In the above log, we see that the system is being rebooted right after the update.

At the next boot, you should see:

U-Boot 2018.11-stm32mp-r2.1 (Mar 04 2020 - 15:28:34 +0100)
[...]
mmc0 is current device
Scanning mmc 0:5...
Found /boot/extlinux/extlinux.conf
[...]
append: root=/dev/mmcblk0p5 rootwait console=ttySTM0,115200 vt.global_cursor_default=0

during the U-Boot part. So we see it is loading extlinux.conf from the MMC partition 5, and has properly set root=/dev/mmcblk0p5. So the kernel and Device Tree will be loaded from MMC partition 5, and this partition will also be used by Linux as the root filesystem.

With all this logic, we could now potentially have some script that gets triggered when a USB stick is inserted, mount it, check if an update image is available on the USB stick, and if so, launch swupdate and reboot. This would be perfectly fine for local updates, for example with an operator in charge of doing the update of the device.

However, we can do better, and support over-the-air updates, a topic that we will discuss in the next section.

Over-the-air updates

To support over-the-air updates with swupdate, we will have to:

  1. Install on a server a Web interface that allows the swupdate program to retrieve firmware update files, and the user to trigger the updates.
  2. Run swupdate in daemon mode on the target.

Set up the web server: hawkBit

swupdate is capable of interfacing with a management interface provided by the Eclipse hawkBit project. Using this web interface, one can manage its fleet of embedded devices, and rollout updates to these devices remotely.

hawkBit has plenty of capabilities, and we are here going to set it up in a very minimal way, with no authentication and a very simple configuration.

As suggested in the project getting started page, we’ll use a pre-existing Docker container image to run hawkBit:

sudo docker run -p 8080:8080 hawkbit/hawkbit-update-server:latest \
     --hawkbit.dmf.rabbitmq.enabled=false \
     --hawkbit.server.ddi.security.authentication.anonymous.enabled=true

After a short while, it should show:

2020-03-06 09:15:46.492  ... Started ServerConnector@3728a578{HTTP/1.1,[http/1.1]}{0.0.0.0:8080}
2020-03-06 09:15:46.507  ... Jetty started on port(s) 8080 (http/1.1) with context path '/'
2020-03-06 09:15:46.514  ... Started Start in 21.312 seconds (JVM running for 22.108)

From this point, you can connect with your web browser to http://localhost:8080 to access the hawkBit interface. Login with the admin login and admin password.

hawkBit login

Once in the main hawkBit interface, go to the System Config tab, and enable the option Allow targets to download artifacts without security credentials. Of course, for a real deployment, you will want to set up proper credentials and authentification.

hawkBit System Config

In the Distribution tab, create a new Distribution by clicking on the plus sign in the Distributions panel:

hawkBit New Distribution

Then in the same tab, but in the Software Modules panel, create a new software module:

hawkBit New Software Module

Once done, assign the newly added software module to the Buildroot distribution by dragging-drop it into the Buildroot distribution. Things should then look like this:

hawkBit Distribution

Things are now pretty much ready on the hawkBit side now. Let’s move on with the embedded device side.

Configure swupdate

We need to adjust the configuration of swupdate to enable its Suricatta functionality which is what allows to connect to an hawkBit server.

In Buildroot’s menuconfig, enable the libcurl (BR2_PACKAGE_LIBCURL) and json-c (BR2_PACKAGE_JSON_C) packages, both of which are needed for swupdate’s Suricatta. While at it, since we will adjust the swupdate configuration and we’ll want to preserve our custom configuration, change the BR2_PACKAGE_SWUPDATE_CONFIG option to point to board/stmicroelectronics/stm32mp157-dk/swupdate.config.

Then, run:

$ make swupdate-menuconfig

to enter the swupdate configuration interface. Enable the Suricatta option, and inside this menu, in the Server submenu, verify that the Server Type is hawkBit support. You can now exit the swupdate menuconfig.

Save our custom swupdate configuration permanently:

$ make swupdate-update-defconfig

With this proper swupdate configuration in place, we now need to create a runtime configuration file for swupdate, and an init script to start swupdate at boot time. Let’s start with the runtime configuration file, which we’ll store in board/stmicroelectronics/stm32mp157-dk/overlay/etc/swupdate/swupdate.cfg, containing:

globals :
{
	postupdatecmd = "/etc/swupdate/postupdate.sh";
};

suricatta :
{
	tenant = "default";
	id = "DEV001";
	url = "http://192.168.42.1:8080";
};

We specify the path to our post-update script so that it doesn’t have to be specified on the command line, and then we specify the Suricatta configuration details: id is the unique identifier of our board, the URL is the URL to connect to the hawkBit instance (make sure to replace that with the IP address of where you’re running hawkBit). tenant should be default, unless you’re using your hawkBit instance in complex setups to for example serve multiple customers.

Our post-update script also needs to be slightly adjusted. Indeed, we will need a marker that tells us upon reboot that an update has been done, in order to confirm to the server that the update has been successfully applied. So we change board/stmicroelectronics/stm32mp157-dk/overlay/etc/swupdate/postupdate.sh to:

#!/bin/sh

PART_STATUS=$(sgdisk -A 4:get:2 /dev/mmcblk0)
if test "${PART_STATUS}" = "4:2:1" ; then
        NEXT_ROOTFS=/dev/mmcblk0p5
else
        NEXT_ROOTFS=/dev/mmcblk0p4
fi

# Add update marker
mount ${NEXT_ROOTFS} /mnt
touch /mnt/update-ok
umount /mnt

sgdisk -A 4:toggle:2 -A 5:toggle:2 /dev/mmcblk0
reboot

What we do is that we simply mount the next root filesystem, and create a file /update-ok. This file will be checked by our swupdate init script, see below.

Then, our init script will be in board/stmicroelectronics/stm32mp157-dk/overlay/etc/init.d/S98swupdate, with executable permissions, and contain:

#!/bin/sh

DAEMON="swupdate"
PIDFILE="/var/run/$DAEMON.pid"

PART_STATUS=$(sgdisk -A 4:get:2 /dev/mmcblk0)
if test "${PART_STATUS}" = "4:2:1" ; then
	ROOTFS=rootfs-2
else
	ROOTFS=rootfs-1
fi

if test -f /update-ok ; then
	SURICATTA_ARGS="-c 2"
	rm -f /update-ok
fi

start() {
	printf 'Starting %s: ' "$DAEMON"
	# shellcheck disable=SC2086 # we need the word splitting
	start-stop-daemon -b -q -m -S -p "$PIDFILE" -x "/usr/bin/$DAEMON" \
		-- -f /etc/swupdate/swupdate.cfg -L -e rootfs,${ROOTFS} -u "${SURICATTA_ARGS}"
	status=$?
	if [ "$status" -eq 0 ]; then
		echo "OK"
	else
		echo "FAIL"
	fi
	return "$status"
}

stop() {
	printf 'Stopping %s: ' "$DAEMON"
	start-stop-daemon -K -q -p "$PIDFILE"
	status=$?
	if [ "$status" -eq 0 ]; then
		rm -f "$PIDFILE"
		echo "OK"
	else
		echo "FAIL"
	fi
	return "$status"
}

restart() {
	stop
	sleep 1
	start
}

case "$1" in
        start|stop|restart)
		"$1";;
	reload)
		# Restart, since there is no true "reload" feature.
		restart;;
        *)
                echo "Usage: $0 {start|stop|restart|reload}"
                exit 1
esac

This is modeled after typical Buildroot init scripts. A few points worth mentioning:

  • At the beginning of the script, we determine which copy of the root filesystem needs to be updated by looking at which partition currently is marked “bootable”. This is used to fill in the ROOTFS variable.
  • We also determine if we are just finishing an update, by looking at the presence of a /update-ok file.
  • When starting swupdate, we pass a few options: -f with the path to the swupdate configuration file, -L to enable syslog logging, -e to indicate which copy of the root filesystem should be updated, and -u '${SURICATTA_ARGS}' to run in Suricatta mode, with SURICATTA_ARGS containing -c 2 to confirm the completion of an update.

Generate a new image with the updated swupdate, its configuration file and init script, and reboot your system.

Deploying an update

When booting, your system starts swupdate automatically:

Starting swupdate: OK
[...]
# ps aux | grep swupdate
  125 root     /usr/bin/swupdate -f /etc/swupdate/swupdate.cfg -L -e rootfs,rootfs-1 -u
  132 root     /usr/bin/swupdate -f /etc/swupdate/swupdate.cfg -L -e rootfs,rootfs-1 -u

Back to the hawkBit administration interface, the Deployment tab should show one notification:

hawkBit new device notification

and when clicking on it, you should see our DEV001 device:

hawkBit new device

Now, go to the Upload tab, select the Buildroot software module, and click on Upload File. Upload the buildroot.swu file here:

hawkBit Upload

Back into the Deployment tab, drag and drop the Buildroot distribution into the DEV001 device. A pending update should appear in the Action history for DEV001:

hawkBit upgrade pending

The swupdate on your target will poll regularly the server (by default every 300 seconds, can be customized in the System config tab of the hawkBit interface) to know if an update is available. When that happens, the update will be downloaded and applied, the system will reboot, and at the next boot the update will be confirmed as successful, showing this status in the hawkBit interface:

hawkBit upgrade confirmed

If you’ve reached this step, your system has been successfully updated, congratulations! Of course, there are many more things to do to get a proper swupdate/hawkBit deployment: assign unique device IDs (for example based on MAC addresses or SoC serial number), implement proper authentication between the swupdate client and the server, implement image encryption if necessary, improve the upgrade validation mechanism to make sure it detects if the new image doesn’t boot properly, etc.

Conclusion

In this blog post, we have learned about firmware upgrade solutions, and specifically about swupdate. We’ve seen how to set up swupdate in the context of Buildroot, first for local updates, and then for remote updates using the hawkBit management interface. Hopefully this will be useful for your future embedded projects!

As usual, the complete Buildroot code to reproduce the same setup is available in our branch 2019.02/stm32mp157-dk-blog-7, in two commits: one for the first step implementing support just for local updates, and another one for remote update support.

Bootlin at Embedded World 2020

STMicro at Embedded World 2020Bootlin will be preent at Embedded World 2020, in Nuremberg on February 25-27. We will be present on STMicroelectronics booth in hall 4A, stand 138. We will have two demos of the STM32MP1 platform running Linux, and of course details about Bootlin services around embedded Linux and Linux kernel development and training.

Three people from Bootlin will be present: Michael Opdenacker (CEO), Thomas Petazzoni (CTO) and Alexandre Belloni (embedded Linux engineer and trainer).

Embedded World 2020

Do not hesitate to get in touch with us prior to the event if you would like to schedule a meeting to discuss business, project or career opportunities.

Linux 5.5 released, Bootlin contributions inside

Linux 5.5 was recently released, as usual bringing a large number of new features and improvements, which are nicely detailed in the LWN articles on merge window part 1 and merge window part 2, but also on the Kernelnewbies wiki.

According to the statistics, a total of 14350 changes were made to this kernel release, to which Bootlin contributed 124 patches, making us the 19th contributing company by number of commits. Here are the highlights of our contributions:

  • By far and large our most important achievement in Linux 5.5 is the merge of the H265 decoding support in the Allwinner VPU driver, developed by Paul Kocialkowski. This was the last missing feature to complete the effort funded by the Kickstarter campaign we launched in February 2018. See our blog post wrapping up the Allwinner VPU work.
  • Alexandre Belloni as the RTC subsystem maintainer, as usual contributed a large number of RTC driver improvements and fixes.
  • Antoine Ténart contributed some improvements to the Cadence MACB driver, most notably used as the Ethernet controller driver on Microchip/Atmel platforms. The main improvement is the conversion to the phylink subsystem for the interaction with the Ethernet PHY.
  • Grégory Clement contributed numerous enhancements to the Microchip/Atmel SPI controller driver, mainly aimed at fixing and improving the support for Chip Select, both native Chip Selects and GPIO-based Chip Selects.
  • Kamel Bouhara contributed a few additional Device Tree files to describe home automation hardware platforms from Overkiz, based on the Microchip SAMA5D2 processor, as well as an improvement to a Microchip SoC driver that allows to expose the platform serial number to user-space.
  • Miquèl Raynal added support for a new Marvell system-on-chip called Marvell CN9130. Despite the name, this chip is from a hardware point of view in the same family as the Marvell Armada 7K and 8K, which were already supported upstream.
  • Miquèl Raynal contributed a number of fixes and improvements to the Macronix SPI controller driver.
  • Miquèl Raynal added support for the ADC converters over SPI MAX1227, MAX1229 and MAX1231 to the existing max1027 IIO driver in the kernel. These ADCs have a 12-bit resolution.
  • Miquèl Raynal improved the SPI controller driver for the Zynq system-on-chips to correctly support multiple Chip Selects.

In addition to these direct contributions, some of the Bootlin engineers are also Linux kernel maintainers and therefore review and merge patches from other contributors: Alexandre Belloni as the RTC subsystem maintainer and Microchip platform co-maintainer reviewed and merged 45 patches from other contributors, Miquèl Raynal as the MTD subsystem co-maintainer reviewed and merged 39 patches from other contributors and Grégory Clement as the Marvell platform co-maintainer reviewed and merged 29 patches from other contributors.

Here is the detail of our contributions:

Bootlin at FOSDEM and Buildroot Developers Meeting

FOSDEM 2020This week-end takes place one of the biggest and most important free and open-source software conference in Europe: FOSDEM. It will once again feature a very large number of talks, organized in several main tracks and developer rooms.

Bootlin CTO Thomas Petazzoni will participate to the FOSDEM conference, of course attending many of the talks from the Embedded, Mobile and Automative Devroom, to which he participated to the talk review and selection. Do not hesitate to get in touch with Thomas if you want to discuss career or business opportunities with Bootlin.

In addition, Thomas will also participate to the 3-day Buildroot Developers meeting which takes place in Brussels right after the FOSDEM conference, kindly hosted by Google. During 3 days, some of the core Buildroot developers will work together to discuss the future of Buildroot, as well as review and discuss pending patches and proposals.

Building a Linux system for the STM32MP1: implementing factory flashing

After several months, it’s time to resume our series of blog posts about building a Linux system for the STM32MP1 platform. After showing how to build a minimal Linux system for the STM32MP157 platform, how to connect and use an I2C based pressure/temperature/humidity sensor and how to integrate Qt5 in our system, how to set up a development environment to write our own Qt5 application and how to develop a Qt5 application, we will now cover the topic of factory flashing.

List of articles in this series:

  1. Building a Linux system for the STM32MP1: basic system
  2. Building a Linux system for the STM32MP1: connecting an I2C sensor
  3. Building a Linux system for the STM32MP1: enabling Qt5 for graphical applications
  4. Building a Linux system for the STM32MP1: setting up a Qt5 application development environment
  5. Building a Linux system for the STM32MP1: developing a Qt5 graphical application
  6. Building a Linux system for the STM32MP1: implementing factory flashing
  7. Building a Linux system for the STM32MP1: remote firmware updates

What is factory flashing ?

So far, we have used a microSD card as storage for the Linux system running on the STM32MP1 platform. Since this media is removable, we can easily switch the microSD card back and forth between the STM32MP1 platform and our development workstation, which is nice during development and debugging.

However, an actual product will most likely use some form of non-removable persistent storage, typically an eMMC or a NAND flash. While not available on the STM32MP1-DK1 board probably for cost reasons, these storage devices are very common in most embedded systems. For example, the STM32MP157A-EV1 board provides three non-removable persistent storage devices: a 4 GB eMMC, a 1 GB NAND flash, and a 64 MB QSPI NOR flash.

When such storage devices are shipped by their manufacturer, they are typically empty. Therefore, as part of the manufacturing process of your embedded systems, you will have to load the relevant storage device with your Linux system, applications and data, so that the embedded system is fully operational: this is the process referred to as factory flashing in this blog post.

If you are doing a very high volume product, you can ask your eMMC or NAND flash vendor to pre-load a system image on the storage before it is shipped to you and assembled on your board. However, many companies do products with volumes that are not large enough to make such a strategy possible: in this case, you really receive an empty storage device, and have to flash it.

A first possibility to flash the non-removable storage is to use a removable storage device, boot a Linux system on the device, and use it to flash the non-removable storage. This can definitely be a possible option in some situations, but it is not always possible (if there’s no removable storage device interface at all) or not always practical.

However, most system-on-chips, including the STM32MP1 include some ROM code that the processor executes at boot time, even before it loads the first stage bootloader. This ROM code is primarly responsible for loading the first stage bootloader into memory, but it also very often offers a communication channel with the outside world, which can be used to gain control of a platform that has nothing at all on its storage. This communication channel is typically over USB or UART, and most often uses a custom, vendor-specific protocol, which is understood by vendor-specific tools. This protocol generally allows to send some code to the target and get it executed, which is sufficient to be able to reflash the target device.

Here are a few examples with system-on-chips from various vendors:

  • The ROM code of the NXP i.MX processors implements a USB-based protocol, which can be interfaced either using the NXP-provided mfgtools, or using the community-developed imx_usb_loader. The latter was presented in one of our earlier blog posts about i.MX6 factory flashing.
  • The ROM code of Microchip SAMA5 processors implements a USB-based protocol, which can be interfaced using a tool called SAM-BA
  • The ROM code of Rockchip processors implements a USB-based protocol, which can be interfaced either using a Rockchip-specific tool called rkdeveloptool
  • The ROM code of the ST STM32MP15 processors also implement a USB-based protocol, which can be interfaced using the STM32 Cube Programmer

Obviously, in this blog post, we are going to use the latter, STM32 Cube Programmer, to flash our STM32MP1 platform. Since the DK2 board only has a removable device, we will use the tool to flash the SD card, but the process and logic would be the same for any other (non-removable) storage device.

Getting and installing STM32 Cube Programmer

While ST generally has very good upstream and open-source support for its products, the STM32 Cube Programmer unfortunately doesn’t follow this strategy: you need to be registered on the ST web site to download it, and its source code is not available. Due to this registration process, we for example cannot create a Buildroot package that would automatically download and install this tool for you.

So, follow the process to create an account on the ST web site, and then go to the STM32 Cube Programmer page. At the time of this writing, the latest version is 2.2.1, but according this Wiki page, this version doesn’t work for the STM32MP1 platform. Instead, select to download the 2.2.0 version, which is known to work. You will then download a file called en.stm32cubeprog.zip (it doesn’t have the version in its name, which isn’t great) weighting 187 MB, and which has the SHA256 hash 91107b4d605d126f5c32977247d7419d42abb2655848d2d1a16d52f5f7633d2d.

Extract this ZIP file somewhere in your system, and then run the SetupSTM32CubeProgrammer-2.2.0.linux executable:

$ ./SetupSTM32CubeProgrammer-2.2.0.linux

Got through the installation steps. On our system, we customized the installation path to be just $HOME/stm32cube, and the remainder of this blog post will assume this is where you installed the STM32 Cube Programmer.

In this blog post, we are only going to use the command line interface (CLI) of STM32 Cube Programmer, so just make sure you can run the corresponding tool:

$ ~/stm32cube/bin/STM32_Programmer_CLI
      -------------------------------------------------------------------
                        STM32CubeProgrammer v2.2.0
      -------------------------------------------------------------------


Usage :
STM32_Programmer_CLI.exe [command_1] [Arguments_1][[command_2] [Arguments_2]...]
[...]

Testing the communication with the board

On the back of the board, there is a two-way DIP switch labeled SW1, which is used to configure the boot mode. When both are “ON”, the board boots from the SD card. When both are “OFF”, the board enters the “USB boot for flashing mode”, which is what we are going to use. So switch both switches to OFF, and reset the board.

Plug an additional USB-C cable from the board CN7 connector (which is located between the HDMI port and the 4 USB host ports).

USB-C connection for factory flashing

Then, reset the board. If you run lsusb on your Linux workstation, you should see a new device:

Bus 003 Device 011: ID 0483:df11 STMicroelectronics STM Device in DFU Mode

Then, you can ask STM32_Programmer_CLI to list the devices it sees over USB. This needs root permissions (unless appropriate udev rules are created):

$ sudo ~/stm32cube/bin/STM32_Programmer_CLI -l usb
      -------------------------------------------------------------------
                        STM32CubeProgrammer v2.2.0
      -------------------------------------------------------------------

=====  DFU Interface   =====

Total number of available STM32 device in DFU mode: 1

  Device Index           : USB1
  USB Bus Number         : 003
  USB Address Number     : 003
  Product ID             : DFU in HS Mode @Device ID /0x500, @Revision ID /0x0000
  Serial number          : 004200343338510534383330
  Firmware version       : 0x0110
  Device ID              : 0x0500

Good, the STM32CubeProgrammer tool is seeing our board, and we see that the Device Index is USB1. Keep that in mind for the next steps.

Change the Linux system boot chain

STM32CubeProgrammer works by sending a U-Boot bootloader over USB, and then talking to this U-Boot to make it erase the MMC or NAND flash, and make it write some data to those storage devices. However, for some reason, STM32CubeProgrammer doesn’t work with the boot flow we have used so far, which uses the U-Boot SPL as the first-stage bootloader, and U-Boot itself as the second stage bootloader. It only works when the first stage bootloader is the Arm Trusted Firmware, also called TF-A. You can get more details about the different possible boot chains on STM32MP1 on this Wiki page.

Due to this constraint, we are going to switch our Buildroot configuration to use TF-A instead of U-Boot SPL as the first stage bootloader.

First of all, we need to backport two Buildroot commits, which did not exist in the Buildroot 2019.02 we are using, but have been integrated later. The first commit, 9dbc934217e170578d4cbfdf524bc1b3988d0b9e allows to build TF-A for ARM 32-bit platforms, while the second commit, e4d276c357fdf9f19f99f826cab63f373687f902 allows to provide a custom name for the TF-A image name.

In Buildroot, do:

$ git cherry-pick 9dbc934217e170578d4cbfdf524bc1b3988d0b9e
$ git cherry-pick e4d276c357fdf9f19f99f826cab63f373687f902

The second one will cause some minor conflict in boot/arm-trusted-firmware/Config.in. Resolve the conflict by removing the BR2_TARGET_ARM_TRUSTED_FIRMWARE_DEBUG option from this file, remove the conflict markers, then run:

git add boot/arm-trusted-firmware/Config.in
git commit

If you’re not sure about this, you can check our 2019.02/stm32mp157-dk-blog-6 branch on Github, which has these changes already integrated.

Once done, we can run make menuconfig and start modifying the Buildroot configuration. Here are the changes that we need:

  • In the Bootloaders menu, enable ARM Trusted Firmware (ATF), and then:
    • Set ATF Version to Custom Git repository
    • Set URL of custom repository to https://github.com/STMicroelectronics/arm-trusted-firmware.git
    • Set Custom repository version to v2.0-stm32mp-r2
    • Set ATF platform to stm32mp1
    • Set Additional ATF build variables to DTB_FILE_NAME=stm32mp157c-dk2.dtb AARCH32_SP=sp_min. The DTB_FILE_NAME selects the correct Device Tree file for the DK2 board, while the AARCH32_SP indicates that we are using the “minimal” secure payload, and not a complete Trusted Execution Environment such as OP-TEE.
    • Set Binary boot images to *.stm32. This makes sure the final image gets copied to output/images.
  • Still in the Bootloaders menu, inside the U-Boot option, make the following changes:
    • Change Board defconfig to stm32mp15_trusted. This is the most important change, which makes U-Boot build only the second stage, and in a format that gets loaded by TF-A as the first stage.
    • In U-Boot binary format, disable u-boot.img, and instead enable Custom (specify below) and indicate u-boot.stm32 as the value for U-Boot binary format: custom names.
    • Disable the Install U-Boot SPL binary image option.

Overall, the diff of the changes in the configuration looks like this:

@@ -30,16 +30,22 @@ BR2_TARGET_ROOTFS_EXT2=y
 BR2_TARGET_ROOTFS_EXT2_4=y
 BR2_TARGET_ROOTFS_EXT2_SIZE="120M"
 # BR2_TARGET_ROOTFS_TAR is not set
+BR2_TARGET_ARM_TRUSTED_FIRMWARE=y
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_CUSTOM_GIT=y
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_CUSTOM_REPO_URL="https://github.com/STMicroelectronics/arm-trusted-firmware.git"
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_CUSTOM_REPO_VERSION="69cc28c5a1b877cf67def7f94dece087f3917b1c"
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_PLATFORM="stm32mp1"
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_ADDITIONAL_VARIABLES="DTB_FILE_NAME=stm32mp157c-dk2.dtb AARCH32_SP=sp_min"
+BR2_TARGET_ARM_TRUSTED_FIRMWARE_IMAGES="*.stm32"
 BR2_TARGET_UBOOT=y
 BR2_TARGET_UBOOT_BUILD_SYSTEM_KCONFIG=y
 BR2_TARGET_UBOOT_CUSTOM_GIT=y
 BR2_TARGET_UBOOT_CUSTOM_REPO_URL="https://github.com/STMicroelectronics/u-boot.git"
 BR2_TARGET_UBOOT_CUSTOM_REPO_VERSION="v2018.11-stm32mp-r2.1"
-BR2_TARGET_UBOOT_BOARD_DEFCONFIG="stm32mp15_basic"
+BR2_TARGET_UBOOT_BOARD_DEFCONFIG="stm32mp15_trusted"
 BR2_TARGET_UBOOT_CONFIG_FRAGMENT_FILES="board/stmicroelectronics/stm32mp157-dk/uboot-fragment.config"
 # BR2_TARGET_UBOOT_FORMAT_BIN is not set
-BR2_TARGET_UBOOT_FORMAT_IMG=y
-BR2_TARGET_UBOOT_SPL=y
-BR2_TARGET_UBOOT_SPL_NAME="spl/u-boot-spl.stm32"
+BR2_TARGET_UBOOT_FORMAT_CUSTOM=y
+BR2_TARGET_UBOOT_FORMAT_CUSTOM_NAME="u-boot.stm32"
 BR2_TARGET_UBOOT_CUSTOM_MAKEOPTS="DEVICE_TREE=stm32mp157c-dk2"
 BR2_PACKAGE_HOST_GENIMAGE=y

Before we can restart the build, we need to adjust the genimage.cfg file that describes the layout of the SD card. Indeed, the file name of the first stage bootloader is now tf-a-stm32mp157c-dk2.stm32 instead of u-boot-spl.stm32 and the file name of the second stage bootloader is now u-boot.stm32 instead of u-boot.img. All in all, your genimage.cfg file in board/stmicroelectronics/stm32mp157-dk/genimage.cfg should now look like this:

image sdcard.img {
	hdimage {
		gpt = "true"
	}

	partition fsbl1 {
		image = "tf-a-stm32mp157c-dk2.stm32"
	}

	partition fsbl2 {
		image = "tf-a-stm32mp157c-dk2.stm32"
	}

	partition ssbl {
		image = "u-boot.stm32"
	}

	partition rootfs {
		image = "rootfs.ext4"
		partition-type = 0x83
		bootable = "yes"
		size = 256M
	}
}

With this in place, it’s time to restart the build. You can do a complete rebuild with make clean all, or you can just clean up U-Boot, and restart the build:

$ make uboot-dirclean
$ make

You should now have in output/images the new TF-A image tf-a-stm32mp157c-dk2.stm32 and the new U-Boot image u-boot.stm32. Of course the sdcard.img file has been updated.

Rather than updating our SD card on our workstation, we’ll directly use the STM32CubeProgrammer tool to do that, in the next section.

Flashing the board

The STM32CubeProgrammer tool takes as input a flash layout file, which has a .tsv extension. The format of this file is extensively documented on this Wiki page. It is essentially a text file that says what should be flashed in each partition.

In our case, we are going to simply flash the entire sdcard.img instead of flashing partition by partition. To achieve this, we are going to use the RawImage image type, also described on the Wiki page.

Let’s create a file board/stmicroelectronics/stm32mp157-dk/flash.tsv, with the following contents:

#Opt	Id	Name	Type	IP	Offset	Binary
-	0x01	fsbl1-boot	Binary	none	0x0	tf-a-stm32mp157c-dk2.stm32
-	0x03	ssbl-boot	Binary	none	0x0	u-boot.stm32
P	0x10	sdcard	RawImage	mmc0		0x0	sdcard.img

The first line is a comment, just to help remember what each field is about. The second and third lines tell STM32CubeProgrammer which bootloader images should be used as part of the flashing process. Finally, the last line says we want to flash sdcard.img as a raw image on the mmc0 device.

Then, go do output/images, and run STM32CubeProgrammer. We use the -c port=usb1 argument, because our board was detected as device USB1 when we enumerated all detected devices using the -l usb previously.

$ cd output/images/
$ sudo ~/stm32cube/bin/STM32_Programmer_CLI -c port=usb1 -w ../../board/stmicroelectronics/stm32mp157-dk/flash.tsv

The output will look like this:

      -------------------------------------------------------------------
                        STM32CubeProgrammer v2.2.0                  
      -------------------------------------------------------------------



USB speed   : High Speed (480MBit/s)
Manuf. ID   : STMicroelectronics
Product ID  : DFU in HS Mode @Device ID /0x500, @Revision ID /0x0000
SN          : 004200343338510534383330
FW version  : 0x0110
Device ID   : 0x0500
Device name : STM32MPxxx
Device type : MPU
Device CPU  : Cortex-A7


Start Embedded Flashing service



Memory Programming ...
Opening and parsing file: tf-a-stm32mp157c-dk2.stm32
  File          : tf-a-stm32mp157c-dk2.stm32
  Size          : 237161 Bytes
  Partition ID  : 0x01 

Download in Progress:
[==================================================] 100% 

File download complete
Time elapsed during download operation: 00:00:00.444

RUNNING Program ... 
  PartID:      :0x01 
Start operation done successfully at partition 0x01

Flashlayout Programming ...
[==================================================] 100% 
Running Flashlayout Partition ...
Flashlayout partition started successfully


Memory Programming ...
Opening and parsing file: u-boot.stm32
  File          : u-boot.stm32
  Size          : 748042 Bytes
  Partition ID  : 0x03 

Download in Progress:
[==================================================] 100% 

File download complete
Time elapsed during download operation: 00:00:00.791

RUNNING Program ... 
  PartID:      :0x03 

reconnecting the device ...

USB speed   : High Speed (480MBit/s)
Manuf. ID   : STMicroelectronics
Product ID  : USB download gadget@Device ID /0x500, @Revision ID /0x0000
SN          : 004200343338510534383330
FW version  : 0x0110
Device ID   : 0x0500
Start operation done successfully at partition 0x03


Memory Programming ...
Opening and parsing file: sdcard.img
  File          : sdcard.img
  Size          : 539002368 Bytes
  Partition ID  : 0x10 

Download in Progress:
[==================================================] 100% 

File download complete
Time elapsed during download operation: 00:04:31.583

RUNNING Program ... 
  PartID:      :0x10 
Start operation done successfully at partition 0x10
Flashing service completed successfully

Finally, we can toggle back the SW1 DIP switches to their ON position, to boot again from SD card, and hit the reset button. The board should boot, but this time with our new image, which uses TF-A instead of U-Boot SPL, so the first lines of the boot process should look like this:

NOTICE:  CPU: STM32MP157CAC Rev.B
NOTICE:  Model: STMicroelectronics STM32MP157C-DK2 Discovery Board
NOTICE:  Board: MB1272 Var2 Rev.C-01
NOTICE:  BL2: v2.0-r2.0(release):
NOTICE:  BL2: Built : 16:10:53, Jan  7 2020
NOTICE:  BL2: Booting BL32
NOTICE:  SP_MIN: v2.0-r2.0(release):
NOTICE:  SP_MIN: Built : 16:10:53, Jan  7 2020

U-Boot 2018.11-stm32mp-r2.1 (Jan 07 2020 - 16:13:55 +0100)

Conclusion

In this article, we have discussed the concept of factory flashing, understood better the different boot chains available for the STM32MP1, switched to a boot chain using TF-A, and presented how to use STM32CubeProgrammer to reflash the entire SD card.

As usual, we have a branch on Github with the Buildroot changes corresponding to this blog post, see the branch 2019.02/stm32mp157-dk-blog-6.

Stay tuned for the next article in this series of blog post, in which we will cover the topic of Over-The-Air firmware update.

2019 at Bootlin, a year in review

First of all, the entire team at Bootlin wishes you a Happy New Year, and best wishes for 2020 in your personal and professional life. The beginning of the new year is a good time to look back and see the achievements of the past year, which is why we review the 2019 year in terms of Bootlin news and activity.

Linux kernel contributions

In 2019, we made contributions to Linux 5.0, Linux 5.1, Linux 5.2, Linux 5.3 and Linux 5.4. We contributed a total of 1078 patches to these releases.

Some of the highlights were:

  • The brand new subsystem to support the MIPI I3C bus that we developed from scratch was merged in Linux 5.0. This paved the way to support both I3C controllers and I3C devices in Linux. See our blog post.
  • The Marvell Ethernet controller driver was extended to support packet classification offloading in hardware.
  • A brand new driver in the IIO subsystem for the TI ADS8344 ADC chip.
  • Support for HW-accelerated H264 video decoding was added to the Allwinner VPU driver, as part of our crowd-funded project, see our recent blog post.
  • Numerous improvements in the support of Allwinner, Microchip and Marvell platforms, see our blog posts for each kernel release for more details.

Other contributions

  • We contributed 52 patches to the U-Boot project in 2019: a new network driver the Microsemi Ocelot platform, improvements to the MTD subsystem, fixes to the NXP LPC3250 and Rockchip PX30 platform support.
  • We contributed 314 patches to the Buildroot project, our most significant contribution is support for top-level parallel build, which will land in the upcoming Buildroot 2020.02 release. In addition, Bootlin engineer Thomas Petazzoni remains an active Buildroot co-maintainer: in 2019 he reviewed and merged 2924 patches from other contributors, out of the total of 5503 patches merged throughout the year.
  • We improved our Web-based Elixir code browser. Elixir now indexes the sources of 16 projects, allows to browse various types of include files, has support for project specific HTML post-processing filters, has a new REST API (thanks to Carmeli Tamir), and has many fixed bugs. All this activity corresponds to a round number of commits: 128.

Engineering projects

Of course, most of the contributions described above are driven by the engineering projects we have with our customers worldwide. Here are some of the significant engineering projects we worked on in 2019:

  • Implemented support for MACsec hardware offloading, and support for this functionality for the Microchip VSC8584 Ethernet PHY. We presented this work in detail in a blog post, and submitted 4 iterations in 2019 and hope to see this merged in early 2020.
  • Improved the Intel GMA500 display driver to support page flipping, so that one of our customers can use the Weston Wayland compositor on hardware platforms that use this display controller.
  • Started a project to support the Microchip VSC8572 Ethernet PHY in Linux, used as a pass-through to SFP cages. As part of this project, we already contributed patches to convert the cpsw network driver to phylink, and we will contribute VSC8572 patches once the project has made enough progress.
  • Migrated a complete Buildroot-based BSP for a Danish customer in the healthcare industry: migration to a newer Linux kernel version and a newer Buildroot version for a Microchip AT91SAM9G45 platform and a TI AM335x platform.
  • Migrated a complete Yocto-based BSP for a Belgian customer to a newer mainline version of the Linux kernel for an i.MX6 platform, implemented secure boot and optimized the boot time.
  • For a major US customer, implemented a complete Linux BSP for a custom Xilinx Zynq 7000 platform: upstream U-Boot, upstream Linux and Yocto-based build system. As part of this project, we did a number of kernel contributions and we still have a major kernel contribution pending: a complete DRM driver for the logiCVC display controller.
  • For a German customer in the healthcare industry, continued to support additional hardware features of an i.MX6 platform, and built a complete new BSP for an SAMA5D3-based hardware platform.
  • For a Canadian customer, completely upgraded the Linux BSP for a NXP LPC3250 platform: update to U-Boot upstream, to Linux upstream, and migration to Buildroot as a build system.
  • For an Italian customer, started a brand new BSP for a Rockchip PX30 based platform, which will require a number of improvements and additions to the Linux kernel support for this platform, which we will work on in 2020.
  • For a Belgian customer, migrated a Linux BSP for an OMAP44xx platform with complex audio interfaces to a recent upstream Linux kernel version.
  • For a French customer, implemented and delivered a complete Yocto-based Linux BSP for an i.MX6 platform.
  • For the French company Overkiz, updated, cleaned-up and upstreamed to the Linux kernel the Device Tree files for their Microchip SAMA5 home automation platforms.
  • Implemented support for software-based ECC and external hardware ECC engines in the SPI flash subsystem of the Linux kernel, for one of our customers that manufactures flash chips. This patch series is still under review, but we expect to get it merged in early 2020.
  • Implemented support for dm-verity and SELinux in OpenWRT, for one of our customers. See our blog post.
  • Continued to work on implementing top-level parallel build in Buildroot, which finally got merged at the end of 2019 in upstream Buildroot.
  • Continued to work on improving the support for Microchip ARM processors and Marvell Armada ARM processors in the Linux kernel, in many areas.
  • For a customer building a complex audio product based on an Allwinner system-on-chip, we implemented support for TDM in the Allwinner audio interface driver and used it in conjunction with PDM microphones.
  • Published a long series of blog posts on how to create a Linux system with Buildroot for the STM32MP1 platform: part 1, part 2, part 3, part 4 and part 5. This series will continue in 2020.
  • Completed the work on the Allwinner VPU that was funded by the Kickstarter campaign of early 2018: the Allwinner VPU driver was merged, with MPEG2, H264 and H265 decoding support, see our blog post.
  • Continued to work on the support for the RaspberryPi platforms, making a number of enhancements to the display support and its testing, as we reported in a blog post.

Training

Our training business has seen quite a bit of activity in 2019:

  • We created and published a new training course: Displaying and rendering graphics with Linux. This 2-day course, created by Bootlin engineer Paul Kocialkowski provides a detailed walk-through of Linux graphics: graphics hardware and theory, low-level support in the Linux kernel, support in user-space in Wayland or X.org, OpenGL acceleration, etc. This course is available on-site and we already delivered it to customers in Spain, Portugal and France.
  • Our Embedded Linux and Yocto/OpenEmbedded training courses have been ported to use the STM32MP1 platform for practical labs, and we became a member of the STMicroelectronics Partner Program. The support for STM32MP1 in our training courses is proposed as an alternative to the Microchip SAMA5D3 platform (for the Embedded Linux training) and the BeagleBone Black (for the Yocto training) that we continue to support as well.
  • Thanks to funding from Zuehlke Engineering in Serbia, we expanded our Linux boot time optimization training course to 3 days, adding much more lecture and lab content, and collecting useful benchmarks that we later shared in the Embedded Linux Conference Europe.
  • Overall our publicly available training materials have received 376 commits during the course of 2019, all visible in their GitHub repository.
  • We delivered many of our on-site training courses in France, India, Spain, Serbia, Poland, Finland, Portugal, Nederlands and Austria, and continued to offer our training courses in public sessions in Avignon, France.

Conferences

As usual in 2019, we attended and participated to a number of conferences:

  • Our networking experts Antoine Ténart and Maxime Chevallier attended the Netdev 0x13 conference in Prague.
  • Bootlin engineer Alexandre Belloni attended the SiFive Tech Symposium about the RISC-V architecture, in Grenoble.
  • A significant part of our engineering team attended the Linux Plumbers conference in Lisbon.
  • Bootlin engineer Grégory Clement attended the Kernel Recipes conference in Paris.
  • Our display/video expert Paul Kocialkowski attended the X.org Developers Conference, in Montreal.
  • And of course, we attended the Embedded Linux Conference Europe 2019. We gave 5 talks and 2 tutorials at this event (see our blog post) and shared our selection of talks.
  • We participated to the Capitole du Libre conference in Toulouse, where Michael Opdenacker gave a talk on Embedded Linux from scratch in 40 minutes (on RISC-V).
  • Participated to the Buildroot Developers Meeting throughout the year: after FOSDEM 2019 and before ELCE 2019. See our report from the FOSDEM meeting.
  • Recruiting

    • An additional engineer joined our team in Lyon: Kamel Bouhara. Kamel is now working with our senior engineers Grégory Clement and Alexandre Belloni in this office.
    • During the summer 2019, Victor Huesca joined Bootlin as an intern in Toulouse, and worked on improving the tooling used for the maintenance of the Buildroot project. All the work done by Victor is now used by the Buildroot community, see our blog post for more details.
    • An additional engineer will join our Toulouse office at the end of January 2020, and 3 interns will also join Bootlin during the first half of 2020, working on improving the Elixir Cross Referencer, and contributing to Linux and U-Boot.
    • We still have positions opened for Embedded Linux and kernel engineers, see job offer.