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Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Co-maintainer of the cedrus VPU driver in V4L2
▶ Contributor to the sun4i-drm DRM driver
▶ Developed the displaying and rendering graphics with Linux training
▶ Contributed Allwinner MIPI CSI-2 support

▶ Living in Toulouse, south-west of France
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Supporting Hardware-Accelerated Video Encoding with Mainline

H.264 Encoding
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Need for video encoding

▶ Representing pictures takes significant memory
▶ Example for a 10-minute 1920x1080 (32 bpp) video at 30 fps:

▶ 1920 × 1080 × 4 = 7.91 MiB/frame
▶ 1920 × 1080 × 4 × 30 = 237.3 MiB/s
▶ 1920 × 1080 × 4 × 30 × 10 × 60 = 142.4 GiB

▶ Significant sizes are an issue for storage and network transmission
▶ Video encoding aims at solving the issue:

▶ Applying methods to reduce the storage/transmission size
▶ Adding encoding and decoding overhead/latency
▶ Keeping the perceived quality under control: size/quality trade-off

▶ Only the currently-active frames are kept in memory when decoding
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Codec, Bitstream and Container

▶ Formats in which video is encoded are called video codecs
▶ e.g. MJPEG, MPEG-2, MPEG-4 Visual (DivX), H.264/AVC, H.265/HEVC
▶ Spanning over 7 generations with enriched features

▶ Video codecs are format specifications for both:
▶ Compressed video data, that can be decoded into frames
▶ Meta-data that configures the decoder (to match encoder settings)

▶ The video bitstream packs the data continuously (often with formatting)
▶ A container packs the video bitstream with other sources (audio, subtitles)
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H.264 Introduction

▶ ITU-T H.264, aka ISO MPEG-4 AVC, aka ISO MPEG-4 Part 10
▶ Probably one of the most popular and used codecs nowadays
▶ Supports both progressive and interlaced (used for TV broadcast)
▶ Specific profiles support a sub-set of compression features, such as:

▶ Baseline: Simple profile with few features (low resources)
▶ High: More features and flexibility

▶ Levels limit the maximum bitrates and dimensions
▶ Designed for efficient hardware implementations

▶ Usually limited to specific profiles/levels
▶ Extended with annex specifications:

▶ H.264 SVC: temporal/spatial/quality scalability
▶ H.264 MVC: multi-view (stereoscopy)
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H.264 Semantics

▶ H.264 specifies the semantics and syntax to store compressed video
▶ Information is split into Network Abstraction Layer Units (NALUs)
▶ Each NALU has a common header and a specific type:

▶ Sequence Parameter Set (SPS): meta-data for the sequence
▶ Picture Parameter Set (PPS): meta-data for the picture
▶ Coded slice data: slice header and data
▶ More for extra information and specific slice coding

▶ Meta-data is bit-aligned and often conditional
▶ NALUs are prefixed with a byte-aligned start code: 00000001 in Annex-B format
▶ Pictures are divided into blocks of 16x16 pixels called macroblocks
▶ Sets of macroblocks are grouped as slices
▶ Slices have a specific type, depending on the prediction mode:

I slices for intra prediction and P/B slices for inter
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H.264 Compression Techniques: Color Sub-sampling

⇒

▶ Chroma sub-sampling is used to reduce the bpp
▶ The Human visual system is more sensitive to luminance than chrominance
▶ Color-model and color-space conversion, e.g. sRGB to YUV Rec. 709
▶ Spatial sub-sampling is applied to chrominance
▶ YUV 4:2:0 gives 12 bpp, reduces size by 2 without significant quality loss
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H.264 Compression Techniques: Quantization

▶ Macroblocks are converted from spatial to frequency domain,
using a discrete cosine transform (DCT) operation

▶ A quantization step (Qstep) parameter divides coefficients before rounding,

Xq = round
(

X
Qstep

)

▶ A quantization parameter (QP ∈ J0; 51K) indexes the quantization step
▶ Details in the picture are lost as QP and Qstep increase
▶ Quantized coefficients are laid out in zig-zag order to group zeros,

easily compressed with entropy coding
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H.264 Compression Techniques: Spatial

▶ Pictures that can be decoded alone are intra-coded (I slices)
▶ Redundancy often exists within a picture
▶ Pixels can be deduced from neighbors with prediction patterns
▶ H.264 supports many intra prediction modes (with specified directions)

Intra prediction directions
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H.264 Compression Techniques: Temporal

▶ In most videos, subsequent pictures are mostly the same
▶ Temporal differences can be represented instead of each full picture
▶ Motion vectors between pictures are estimated at encoding
▶ They are applied to reference pictures for inter-picture prediction
▶ H.264 supports up to 16 references
▶ References need to be kept decoded and alive in memory
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H.264 Compression Techniques: Temporal

Motion vectors visualized using:
ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv=pf+bf+bb
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H.264 Compression Techniques: Temporal

▶ Types of inter prediction in H.264:
▶ Backwards prediction (P slices): using previous pictures
▶ Bidirectional prediction (B slices): using previous and following pictures

▶ An intra-coded picture is necessary for inter prediction
▶ Following pictures for B slices need to come first in bitstream order
▶ A group of pictures (GOP) is sequence starting with an intra picture

▶ Bidirectional inter prediction introduces latency when encoding and decoding
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H.264 Compression Techniques: Entropy

▶ A final entropic compression pass is applied to produce the bitstream
▶ Entropy coding assigns shorter symbols to frequent occurrences
▶ Lossless compression method that yields good results for video
▶ Syntax elements (meta-data) numbers are coded as Exponential Golomb
▶ Quantized DCT coefficients are coded using either:

▶ CAVLC: Context-Adaptive Variable Length Coding (default)
▶ CABAC: Context-Adaptive Binary Arithmetic Coding (advanced)
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H.264 Encoding Rate Control

▶ Encoders apply a trade-off between quality and bitstream size
the process is called rate control in general

▶ Quality is controlled by the quantization parameter QP
▶ Rate control modes:

▶ CQP: constant QP ∈ J0; 51K parameter for all frames
▶ CRF: constant rate factor (quality) CRF ∈ J0; 51K
▶ CBR: constant bitrate (kb/s)
▶ ABR: average bitrate (kb/s) for the whole sequence,

works best with two-passs encoding
▶ The most appropriate mode depends on the use-case
▶ Quality can be evaluated using a PSNR metric
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Supporting Hardware-Accelerated Video Encoding with Mainline

Hantro H1 H.264 Encoder
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Hantro H1 Outline

▶ The Hantro H1 is a common hardware H.264/VP8/JPEG encoder
▶ Initially developed by Hantro Oy
▶ Acquired by On2 Technologies in 2007
▶ Acquired by Google in 2010
▶ Distributed as WebM Video Encoder Hardware IP
▶ Distributed with H.264 by VeriSilicon since 2015

▶ Found in some embedded ARM SoCs:
▶ Rockchip: RK3288, RK3328, RK3399, PX30, RK1808
▶ NXP: i.MX8MM

▶ Supports encoding H.264 in 1080p at 30 or 60 fps
▶ Supports Baseline, Main and High H.264 Profiles,

also MVC Stereo High
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Hantro H1 Block Diagram
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Hantro H1 Block Diagram from the i.MX8MM Manual
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Hantro H1 Operation

▶ Stateless implementation (no micro-controller/firmware)
▶ Pre-processor with cropping, rotation, scaling, CSC and stabilization
▶ Produces slice NALUs to memory, as Annex-B or direct NALU
▶ Meta-data (PPS, SPS) is generated in software, with parameter constraints:

▶ SPS pic_order_cnt_type = 2
▶ SPS log2_max_frame_num_minus4 = 12
▶ PPS weighted_bipred_idc = 0

▶ Only supports I and P slices (no B slices), for embedded recording
▶ References (for P slices) are stored in dedicated reconstruction buffers
▶ CABAC tables (for High-Profile) are also stored in a dedicated buffer
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Hantro H1 Internal Rate Control Mechanisms

▶ Base Quantization is specified with QP, QPmin, QPmax
▶ Advanced internal mechanisms exist for Rate Control in Hantro H1

▶ Allow QP adjustments during the encoding process
▶ No longer used by reference software nowadays

▶ MAD (mean absolute difference) mechanism:
▶ Threshold value (MADthreshold) for QP increase/decrease (∆QP)
▶ Single threshold and delta for a picture

▶ Checkpoints mechanism:
▶ Checkpoints at regular macroblock distance, with up to 10 checkpoints
▶ Targets for cumulative non-zero quantization coefficients
▶ Error between target and actual count is evaluated at checkpoints
▶ A ∆QP is applied depending on the error

▶ Feedback data (from registers) is used for control loop regulation
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Hantro H1 Feedback Data

▶ QP sum: sum of the QP value for each macroblock:

QPsum =
∑

macroblocks
QPmacroblock

▶ RLC count: number of non-zero quantization coefficients in the picture
▶ Checkpoint values: number of non-zero quantization coefficients at specified

macroblock intervals
▶ MAD count: number of macroblocks under a specified mean absolute

difference threshold
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Supporting Hardware-Accelerated Video Encoding with Mainline

V4L2 Integration for Stateless Encoding
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V4L2 stateful encoding support

▶ V4L2 already supports stateful H.264 encoders:
▶ Using the V4L2_PIX_FMT_H264 pixel format for H.264 bitstream
▶ Producing both slice and meta-data NALUs
▶ Using the V4L2 M2M framework
▶ Drivers: coda, mtk-vcodec, venus, s5p-mfc, hva

▶ Various generic V4L2 controls allow configuring the encode run:
▶ V4L2_CID_MPEG_VIDEO_H264_PROFILE, V4L2_CID_MPEG_VIDEO_H264_LEVEL
▶ V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM,

V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE
▶ V4L2_CID_MPEG_VIDEO_BITRATE_MODE, V4L2_CID_MPEG_VIDEO_BITRATE

▶ Some drivers have specific V4L2 controls too:
▶ V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE

▶ Rate-control is implemented by the encoder firmware
▶ State and reference management is also done by the firmware
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V4L2 Stateless Encoding Considerations

▶ With stateless encoding on the Hantro H1, many parameters can be set:
▶ Most of the PPS/SPS/slice header parameters
▶ Some are restricted to specific values

▶ State is tracked by V4L2 and userspace:
▶ Buffers and parameters are tied (using the Media Request API)
▶ Reconstruction buffers need to be kept around
▶ They are provided as references when needed

▶ Rate control is left to the V4L2 driver and/or userspace:
▶ Feedback data needs to be provided
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V4L2 Stateless Encoding: Existing Hantro H1 Support

▶ Chromium OS supports the Hantro H1 on Rockchip
▶ Chromium OS kernel implementation (downstream based on Linux 4.4):

https://chromium.googlesource.com/chromiumos/third_party/kernel/+/
chromeos-4.4/drivers/media/platform/rockchip-vpu

▶ Chromium OS userspace libv4l2plugins implementation :
https://chromium.googlesource.com/chromiumos/third_party/libv4lplugins/

▶ Rockchip’s MPP supports the Hantro H1 (VEPU1/VEPU2):
https://github.com/rockchip-linux/mpp
http://opensource.rock-chips.com/wiki_Mpp
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V4L2 Stateless Encoding: First Approach

▶ The mainline hantro driver (in staging) supports Hantro G1 decoding
▶ Bootlin added support for H.264 Hantro H1 encoding to the driver
▶ Inspired by Chromium OS and MPP implementations
▶ Using the Media Request API and V4L2 controls
▶ Rate control (CBR) is done fully in userspace based on feedback
▶ Kernel side (based on Linux 5.4 with backported media patches):

https://github.com/bootlin/linux/tree/hantro/h264-encoding
▶ Userspace side: https://github.com/bootlin/v4l2-hantro-h264-encoder
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V4L2 Stateless Encoding: First Approach API
struct v4l2_ctrl_h264_encode_params {

/* Slice parameters */
__u8 slice_type;
__u8 pic_parameter_set_id;
__u16 frame_num;
__u16 idr_pic_id;
__u8 cabac_init_idc;
__u8 disable_deblocking_filter_idc;
__s8 slice_alpha_c0_offset_div2;
__s8 slice_beta_offset_div2;
__s32 slice_size_mb_rows;
/* PPS parameters */
__s8 pic_init_qp_minus26;
__s8 chroma_qp_index_offset;
__u32 flags; /* V4L2_H264_ENCODE_FLAG_ */
/* Reference */
__u64 reference_ts;

};

struct v4l2_ctrl_h264_encode_rc {
__u32 qp;
__u32 qp_min;
__u32 qp_max;
__s32 mad_qp_delta;
__u32 mad_threshold;

__u32 cp_distance_mbs;
__u32 cp_target[10];
__s32 cp_target_error[6];
__s32 cp_qp_delta[7];

};

struct v4l2_ctrl_h264_encode_feedback {
__u32 qp_sum;
__u32 cp[10];
__u32 mad_count;
__u32 rlc_count;

};
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V4L2 Stateless Encoding Approaches: Proposals

▶ Major downside is the lack of genericity for a single API
▶ Using generic V4L2 controls for encode parameters could work:

▶ Existing stateful controls (profile/level/features)
▶ Additional controls to indicate references

▶ Generic rate control done in userspace:
▶ Requires generic controls (QP, slice type/GOP can be enough)
▶ Requires generic feedback data (RLC and QP sum can be)
▶ Cannot support hardware-specific mechanisms
▶ Encourages proprietary implementations

▶ Rate control done in kernel drivers:
▶ Easier for userspace but no fine control
▶ Can reuse existing stateful V4L2 RC controls
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V4L2 Stateless Encoding Approaches: Plan

▶ Bootlin has interest in starting a discussion
▶ Design decisions are needed to upstream Hantro H1 support
▶ Also concerns other stateless encoders (e.g. on Allwinner)

▶ Little information is available currently
▶ Feel free to let us know about:

▶ Interest in the topic
▶ Details of stateless hardware that could be affected
▶ Relevant use-cases to support for hardware encoding
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Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/
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