
Embedded Linux Conference Europe

Supporting
Hardware-Accelerated
Video Encoding with
Mainline
Paul Kocialkowski
paul@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1



Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Co-maintainer of the cedrus VPU driver in V4L2
▶ Contributor to the sun4i-drm DRM driver
▶ Developed the displaying and rendering graphics with Linux training
▶ Contributed Allwinner MIPI CSI-2 support

▶ Living in Toulouse, south-west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1



Supporting Hardware-Accelerated Video Encoding with Mainline

H.264 Encoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1



Need for video encoding

▶ Representing pictures takes significant memory
▶ Example for a 10-minute 1920x1080 (32 bpp) video at 30 fps:

▶ 1920 × 1080 × 4 = 7.91 MiB/frame
▶ 1920 × 1080 × 4 × 30 = 237.3 MiB/s
▶ 1920 × 1080 × 4 × 30 × 10 × 60 = 142.4 GiB

▶ Significant sizes are an issue for storage and network transmission
▶ Video encoding aims at solving the issue:

▶ Applying methods to reduce the storage/transmission size
▶ Adding encoding and decoding overhead/latency
▶ Keeping the perceived quality under control: size/quality trade-off

▶ Only the currently-active frames are kept in memory when decoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1



Codec, Bitstream and Container

▶ Formats in which video is encoded are called video codecs
▶ e.g. MJPEG, MPEG-2, MPEG-4 Visual (DivX), H.264/AVC, H.265/HEVC
▶ Spanning over 7 generations with enriched features

▶ Video codecs are format specifications for both:
▶ Compressed video data, that can be decoded into frames
▶ Meta-data that configures the decoder (to match encoder settings)

▶ The video bitstream packs the data continuously (often with formatting)
▶ A container packs the video bitstream with other sources (audio, subtitles)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1



H.264 Introduction

▶ ITU-T H.264, aka ISO MPEG-4 AVC, aka ISO MPEG-4 Part 10
▶ Probably one of the most popular and used codecs nowadays
▶ Supports both progressive and interlaced (used for TV broadcast)
▶ Specific profiles support a sub-set of compression features, such as:

▶ Baseline: Simple profile with few features (low resources)
▶ High: More features and flexibility

▶ Levels limit the maximum bitrates and dimensions
▶ Designed for efficient hardware implementations

▶ Usually limited to specific profiles/levels
▶ Extended with annex specifications:

▶ H.264 SVC: temporal/spatial/quality scalability
▶ H.264 MVC: multi-view (stereoscopy)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1



H.264 Semantics

▶ H.264 specifies the semantics and syntax to store compressed video
▶ Information is split into Network Abstraction Layer Units (NALUs)
▶ Each NALU has a common header and a specific type:

▶ Sequence Parameter Set (SPS): meta-data for the sequence
▶ Picture Parameter Set (PPS): meta-data for the picture
▶ Coded slice data: slice header and data
▶ More for extra information and specific slice coding

▶ Meta-data is bit-aligned and often conditional
▶ NALUs are prefixed with a byte-aligned start code: 00000001 in Annex-B format
▶ Pictures are divided into blocks of 16x16 pixels called macroblocks
▶ Sets of macroblocks are grouped as slices
▶ Slices have a specific type, depending on the prediction mode:

I slices for intra prediction and P/B slices for inter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1



H.264 Compression Techniques: Color Sub-sampling

⇒

▶ Chroma sub-sampling is used to reduce the bpp
▶ The Human visual system is more sensitive to luminance than chrominance
▶ Color-model and color-space conversion, e.g. sRGB to YUV Rec. 709
▶ Spatial sub-sampling is applied to chrominance
▶ YUV 4:2:0 gives 12 bpp, reduces size by 2 without significant quality loss

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1



H.264 Compression Techniques: Quantization

▶ Macroblocks are converted from spatial to frequency domain,
using a discrete cosine transform (DCT) operation

▶ A quantization step (Qstep) parameter divides coefficients before rounding,

Xq = round
(

X
Qstep

)

▶ A quantization parameter (QP ∈ J0; 51K) indexes the quantization step
▶ Details in the picture are lost as QP and Qstep increase
▶ Quantized coefficients are laid out in zig-zag order to group zeros,

easily compressed with entropy coding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1



H.264 Compression Techniques: Spatial

▶ Pictures that can be decoded alone are intra-coded (I slices)
▶ Redundancy often exists within a picture
▶ Pixels can be deduced from neighbors with prediction patterns
▶ H.264 supports many intra prediction modes (with specified directions)

Intra prediction directions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1



H.264 Compression Techniques: Temporal

▶ In most videos, subsequent pictures are mostly the same
▶ Temporal differences can be represented instead of each full picture
▶ Motion vectors between pictures are estimated at encoding
▶ They are applied to reference pictures for inter-picture prediction
▶ H.264 supports up to 16 references
▶ References need to be kept decoded and alive in memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1



H.264 Compression Techniques: Temporal

Motion vectors visualized using:
ffplay -flags2 +export_mvs input.mp4 -vf codecview=mv=pf+bf+bb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1



H.264 Compression Techniques: Temporal

▶ Types of inter prediction in H.264:
▶ Backwards prediction (P slices): using previous pictures
▶ Bidirectional prediction (B slices): using previous and following pictures

▶ An intra-coded picture is necessary for inter prediction
▶ Following pictures for B slices need to come first in bitstream order
▶ A group of pictures (GOP) is sequence starting with an intra picture

▶ Bidirectional inter prediction introduces latency when encoding and decoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1



H.264 Compression Techniques: Entropy

▶ A final entropic compression pass is applied to produce the bitstream
▶ Entropy coding assigns shorter symbols to frequent occurrences
▶ Lossless compression method that yields good results for video
▶ Syntax elements (meta-data) numbers are coded as Exponential Golomb
▶ Quantized DCT coefficients are coded using either:

▶ CAVLC: Context-Adaptive Variable Length Coding (default)
▶ CABAC: Context-Adaptive Binary Arithmetic Coding (advanced)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1



H.264 Encoding Rate Control

▶ Encoders apply a trade-off between quality and bitstream size
the process is called rate control in general

▶ Quality is controlled by the quantization parameter QP
▶ Rate control modes:

▶ CQP: constant QP ∈ J0; 51K parameter for all frames
▶ CRF: constant rate factor (quality) CRF ∈ J0; 51K
▶ CBR: constant bitrate (kb/s)
▶ ABR: average bitrate (kb/s) for the whole sequence,

works best with two-passs encoding
▶ The most appropriate mode depends on the use-case
▶ Quality can be evaluated using a PSNR metric

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1



Supporting Hardware-Accelerated Video Encoding with Mainline

Hantro H1 H.264 Encoder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1



Hantro H1 Outline

▶ The Hantro H1 is a common hardware H.264/VP8/JPEG encoder
▶ Initially developed by Hantro Oy
▶ Acquired by On2 Technologies in 2007
▶ Acquired by Google in 2010
▶ Distributed as WebM Video Encoder Hardware IP
▶ Distributed with H.264 by VeriSilicon since 2015

▶ Found in some embedded ARM SoCs:
▶ Rockchip: RK3288, RK3328, RK3399, PX30, RK1808
▶ NXP: i.MX8MM

▶ Supports encoding H.264 in 1080p at 30 or 60 fps
▶ Supports Baseline, Main and High H.264 Profiles,

also MVC Stereo High

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1



Hantro H1 Block Diagram

External 
Memory System Bus

Bus Interface

Encoder and Pre-processor Hardware

Cropping

Rotation

YCbCr
Conversion

Motion
Estimation

Intra
Prediction

Mode
Selection

Differential 
MV Coding

Image
Scaling

Bitstream
Forming

Entropy
Coding

Transform and
Quantization

Inverse
Transform

Deblocking
Filter

Video
Stabilization

Hantro H1 Block Diagram from the i.MX8MM Manual

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1



Hantro H1 Operation

▶ Stateless implementation (no micro-controller/firmware)
▶ Pre-processor with cropping, rotation, scaling, CSC and stabilization
▶ Produces slice NALUs to memory, as Annex-B or direct NALU
▶ Meta-data (PPS, SPS) is generated in software, with parameter constraints:

▶ SPS pic_order_cnt_type = 2
▶ SPS log2_max_frame_num_minus4 = 12
▶ PPS weighted_bipred_idc = 0

▶ Only supports I and P slices (no B slices), for embedded recording
▶ References (for P slices) are stored in dedicated reconstruction buffers
▶ CABAC tables (for High-Profile) are also stored in a dedicated buffer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1



Hantro H1 Internal Rate Control Mechanisms

▶ Base Quantization is specified with QP, QPmin, QPmax
▶ Advanced internal mechanisms exist for Rate Control in Hantro H1

▶ Allow QP adjustments during the encoding process
▶ No longer used by reference software nowadays

▶ MAD (mean absolute difference) mechanism:
▶ Threshold value (MADthreshold) for QP increase/decrease (∆QP)
▶ Single threshold and delta for a picture

▶ Checkpoints mechanism:
▶ Checkpoints at regular macroblock distance, with up to 10 checkpoints
▶ Targets for cumulative non-zero quantization coefficients
▶ Error between target and actual count is evaluated at checkpoints
▶ A ∆QP is applied depending on the error

▶ Feedback data (from registers) is used for control loop regulation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1



Hantro H1 Feedback Data

▶ QP sum: sum of the QP value for each macroblock:

QPsum =
∑

macroblocks
QPmacroblock

▶ RLC count: number of non-zero quantization coefficients in the picture
▶ Checkpoint values: number of non-zero quantization coefficients at specified

macroblock intervals
▶ MAD count: number of macroblocks under a specified mean absolute

difference threshold

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1



Supporting Hardware-Accelerated Video Encoding with Mainline

V4L2 Integration for Stateless Encoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1



V4L2 stateful encoding support

▶ V4L2 already supports stateful H.264 encoders:
▶ Using the V4L2_PIX_FMT_H264 pixel format for H.264 bitstream
▶ Producing both slice and meta-data NALUs
▶ Using the V4L2 M2M framework
▶ Drivers: coda, mtk-vcodec, venus, s5p-mfc, hva

▶ Various generic V4L2 controls allow configuring the encode run:
▶ V4L2_CID_MPEG_VIDEO_H264_PROFILE, V4L2_CID_MPEG_VIDEO_H264_LEVEL
▶ V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM,

V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE
▶ V4L2_CID_MPEG_VIDEO_BITRATE_MODE, V4L2_CID_MPEG_VIDEO_BITRATE

▶ Some drivers have specific V4L2 controls too:
▶ V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE

▶ Rate-control is implemented by the encoder firmware
▶ State and reference management is also done by the firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1



V4L2 Stateless Encoding Considerations

▶ With stateless encoding on the Hantro H1, many parameters can be set:
▶ Most of the PPS/SPS/slice header parameters
▶ Some are restricted to specific values

▶ State is tracked by V4L2 and userspace:
▶ Buffers and parameters are tied (using the Media Request API)
▶ Reconstruction buffers need to be kept around
▶ They are provided as references when needed

▶ Rate control is left to the V4L2 driver and/or userspace:
▶ Feedback data needs to be provided

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1



V4L2 Stateless Encoding: Existing Hantro H1 Support

▶ Chromium OS supports the Hantro H1 on Rockchip
▶ Chromium OS kernel implementation (downstream based on Linux 4.4):

https://chromium.googlesource.com/chromiumos/third_party/kernel/+/
chromeos-4.4/drivers/media/platform/rockchip-vpu

▶ Chromium OS userspace libv4l2plugins implementation :
https://chromium.googlesource.com/chromiumos/third_party/libv4lplugins/

▶ Rockchip’s MPP supports the Hantro H1 (VEPU1/VEPU2):
https://github.com/rockchip-linux/mpp
http://opensource.rock-chips.com/wiki_Mpp

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://chromium.googlesource.com/chromiumos/third_party/kernel/+/chromeos-4.4/drivers/media/platform/rockchip-vpu
https://chromium.googlesource.com/chromiumos/third_party/kernel/+/chromeos-4.4/drivers/media/platform/rockchip-vpu
https://chromium.googlesource.com/chromiumos/third_party/libv4lplugins/
https://github.com/rockchip-linux/mpp
http://opensource.rock-chips.com/wiki_Mpp


V4L2 Stateless Encoding: First Approach

▶ The mainline hantro driver (in staging) supports Hantro G1 decoding
▶ Bootlin added support for H.264 Hantro H1 encoding to the driver
▶ Inspired by Chromium OS and MPP implementations
▶ Using the Media Request API and V4L2 controls
▶ Rate control (CBR) is done fully in userspace based on feedback
▶ Kernel side (based on Linux 5.4 with backported media patches):

https://github.com/bootlin/linux/tree/hantro/h264-encoding
▶ Userspace side: https://github.com/bootlin/v4l2-hantro-h264-encoder

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://github.com/bootlin/linux/tree/hantro/h264-encoding
https://github.com/bootlin/v4l2-hantro-h264-encoder


V4L2 Stateless Encoding: First Approach API
struct v4l2_ctrl_h264_encode_params {

/* Slice parameters */
__u8 slice_type;
__u8 pic_parameter_set_id;
__u16 frame_num;
__u16 idr_pic_id;
__u8 cabac_init_idc;
__u8 disable_deblocking_filter_idc;
__s8 slice_alpha_c0_offset_div2;
__s8 slice_beta_offset_div2;
__s32 slice_size_mb_rows;
/* PPS parameters */
__s8 pic_init_qp_minus26;
__s8 chroma_qp_index_offset;
__u32 flags; /* V4L2_H264_ENCODE_FLAG_ */
/* Reference */
__u64 reference_ts;

};

struct v4l2_ctrl_h264_encode_rc {
__u32 qp;
__u32 qp_min;
__u32 qp_max;
__s32 mad_qp_delta;
__u32 mad_threshold;

__u32 cp_distance_mbs;
__u32 cp_target[10];
__s32 cp_target_error[6];
__s32 cp_qp_delta[7];

};

struct v4l2_ctrl_h264_encode_feedback {
__u32 qp_sum;
__u32 cp[10];
__u32 mad_count;
__u32 rlc_count;

};
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1



V4L2 Stateless Encoding Approaches: Proposals

▶ Major downside is the lack of genericity for a single API
▶ Using generic V4L2 controls for encode parameters could work:

▶ Existing stateful controls (profile/level/features)
▶ Additional controls to indicate references

▶ Generic rate control done in userspace:
▶ Requires generic controls (QP, slice type/GOP can be enough)
▶ Requires generic feedback data (RLC and QP sum can be)
▶ Cannot support hardware-specific mechanisms
▶ Encourages proprietary implementations

▶ Rate control done in kernel drivers:
▶ Easier for userspace but no fine control
▶ Can reuse existing stateful V4L2 RC controls

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1



V4L2 Stateless Encoding Approaches: Plan

▶ Bootlin has interest in starting a discussion
▶ Design decisions are needed to upstream Hantro H1 support
▶ Also concerns other stateless encoders (e.g. on Allwinner)

▶ Little information is available currently
▶ Feel free to let us know about:

▶ Interest in the topic
▶ Details of stateless hardware that could be affected
▶ Relevant use-cases to support for hardware encoding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1



Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

https://bootlin.com/pub/conferences/

