Device Tree: hardware
description for
everybody!

Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyr gh 't 2004-2020, Bootlin
Creative Commons BY-SA 3.0 lics
Corrections, suggestions, contributions and translations are welcome!

bootlin

e

juflae

embedtigefﬁ"’ld&mﬂd ‘engineering

T VO, S

» 12+ years CTO/Embedded Linux engineer at
Bootlin

> Embedded Linux expertise b O Otl I I .

» Development, consulting and training

» Bootloader, Linux kernel, Yocto Project,
Buildroot

» Complete Linux BSP development

» Hardware support in bootloader/Linux

» Strong open-source focus: upstreaming and
contributions

> Freely available training materials

» Co-maintainer of Buildroot

» Living in Toulouse, France

This talk is an update from the Device Tree for Dummies talk given in 2013/2014
Why the Device Tree ?

Basic Device Tree syntax

Device Tree inheritance

Device Tree specifications and bindings

Building and validating Device Trees

vVvvyVvYVYyyypy

Common properties and examples

DDR
memory

Camera
sensor

»(Ehemet WiFi
Ethernet PCle
i C2C MAC controller U
SPI DDR
flash < SH@ CRUlcores controller
Touchscreen IRQ clock L
controller 12€ 0 controller controller Gl <
12C1 12S DSI Crypto
System-on-chip
w| Audio Display
7| codec panel

» Some hardware busses provide discoverability mechanisms
> E.g: PCl(e), USB
» One does not need to know ahead of time what will be connected on these busses
» Devices can be enumerated and identified at runtime
» Concept of vendor ID, product ID, device class, etc.
» But many hardware busses do not provide discoverability mechanisms
» E.g: 12C, SPI, 1-wire, memory-mapped, etc.
» One needs to know what is connected on those busses, and how they are connected
to the rest of the system
» Embedded systems typically make extensive use of such busses

Allows the operating system or bootloader to know things like:
» This system-on-chip has:
» 2 Cortex-A9 CPU cores
» 2 memory-mapped UART controllers of this variant, one with registers at
0xF1000000 and IRQ 23, and another with registers at 0xF1001000 and IRQ 24
» 3 12C controllers of that variant, with registers at those memory-mapped addresses,
those IRQs and taking their input clock from this source

» This board has an CS4234 audio codec

» Connected on the I12C bus 0 of the SoC, at slave address 0x45
» Connected to the 125 interface 2 of the SoC, with the codec providing the clocks
» With its reset signal connected to GPIO 67 of the SoC

These details cannot be guessed by the operating system /bootloader.

» Directly in the OS/bootloader code, using compiled data structures, typically in

» How it was done on most embedded platforms in Linux, U-Boot.
> Considered not maintainable/sustainable on ARM32, which motivated the move to
another solution.
» Using ACPI tables
» On x86 systems, but also on a subset of ARM64 platforms
» Tables provided by the firmware
» Using a Device Tree
» On most embedded-oriented CPU architectures that run Linux: ARC, ARM64,
RISC-V, ARM32, PowerPC, Xtensa, MIPS, etc.
» Originates from the PowerPC world, not Linux specific
» Now used by Linux, U-Boot, Barebox, TF-A, FreeBSD, etc.
» Writing/tweaking a DT is now always necessary when porting Linux to a new board.
» The topic of this talk !

P A tree data structure describing the hardware is written by a developer in a Device
Tree Source file, .dts

» Gets compiled to a more efficient Device Tree Blob representation, .dtb by the
Device Tree Compiler, dtc

» The resulting .dtb accurately describes the hardware platform in an OS-agnostic
way and:

» Can be linked directly inside a bootloader binary (U-Boot, Barebox)
> Can be passed to the operating system by the bootloader (Linux)
» U-Boot: bootz <kernel-addr> - <dtb-addr>

Tree of nodes

Nodes with
properties

A node =~ a device or
IP block

Properties & device
characteristics

dtc only does syntax
checking, no
semantic validation

Node name

Unit address
/1 Property name
Property value
node@d { ‘ pery
a-string-property = "A string";
Properties of node@ol a-string-list-property = "first string", "second string";
a-byte-data-property = [0x01 0x23 0x34 0x56];

child-node@0d { t
first-child-property; Bytestring

second-child-property = <1>;
a-reference-to-something = <&nodel>;
b
child-nodeel { A phandle
3

(reference to another node)
Label

H

nodel: node@l {
an-empty-property;
a-cell-property = <1 2 3 4>;

child-node@® {
h Four cells (32 bits values)
b
b

%

System-on-chip
CPU cores
/ {

#address-cells = <1>;

#size-cells = <1>; Chipidea Cortex A9 Cortex A9

compatible = "vendorl,board", "vendor2,soc"; USB antm”er

cpus { ... }; |

memory@ { ... };

:]:zsi" Looo B GIC _ Cadence DDR
intc: interrupt-controller@f8f01000 { ... }; 170 @emieiler PG @ity ot
i2c0: i2c@e0004000 { ... };
usb0: usb@e0002000 { ... };

};

}
Y A\ 4
DDR
EEPROM
memory

/A
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@o {
compatible = "arm,cortex-a9";
device_type = "cpu';
reg = <0>;
};
cpul: cpu@l {
compatible = "arm,cortex-a9";
device_type = "cpu';
reg = <1>;
};
s
memory@0 { ... };
chosen { ... };
soc {
intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c0e0004000 { ... };
usb0: usb@e0002000 { ... };
};
};

System-on-chip

CPU cores

Cortex A9 Cortex A9
Chipldea
USB controller

GIC _ Cadence DDR
IRQ controller 12C controller controller
Y \ 4
EEPROM DDR
memory

%

System-on-chip
CPU cores
/ {
cpus { ... };
memory@0 {
device_type = "memory";
reg = <0x0 0x20000000>; Chipldea Cortex A9 Cortex A9
¥ USB controller
chosen { 1
bootargs = "";
stdout-path = "serial0:115200n8"; GIC Cadence DDR
’ IRQ controller | 12C controller controller
soc {
intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c0e0004000 { ... };
usb0: usb@e0002000 { ... };
b v v
}
DDR
EEPROM
memory

()

/A

cpus { .

soc {

oo 18
memory@0 { ... };
chosen { ... };

compatible = "simple-bus';
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

intc:

g

i2c0:
usb0:

interrupt-controller@f8£01000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xF8F01000 0x1000>,
<0xF8F00100 0x100>;

12c0e0004000 { ... };
usb@e0002000 { ... };

System-on-chip

CPU cores

USB controller

Cortex A9 Cortex A9
Chipldea

GIC _ Cadence DDR
IRQ controller 12C controller controller
Y \ 4
EEPROM I
memory

/ { .
cpus € ... }; System-on-chip
memory@) { ... };
chosen { ... };
CPU cores
soc {
intc: interrupt-controller@f8f01000 { ... };
i2¢0: 12c0e0004000 { Cortex A9 Cortex A9
compatible = "cdns,i2c-rip10"; Chipldea
status = "okay"; USB controller
clocks = <&clkc 38>;
interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>; 1
reg = <0xe0004000 0x1000>;
#address-cells = <1>; GIC _ Cadence DDR
#size-cells = <0>; IRQ controller 12C controller controller
clock-frequency = <400000>;
eeprom0: eeprom@52 {
compatible = "atmel,24c02";
reg = <0x52>;
N v v
}
DDR
EEPROM
usb0: usb@e0002000 { ... }; memory
};
};

/ {
cpus { ... };
memory@0 { .
chosen { ... };

g

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c@e0004000 { ... };

usb0: usb0e0002000 {
compatible = "xlnx,zynq-usb-2.20a", "chipidea,usb2";
status = "okay";
clocks = <&clkc 28>;
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 21 IRQ_TYPE_LEVEL_HIGH>;
reg = <0xe0002000 0x1000>;
phy_type = "ulpi';
dr_mode = "host";
usb-phy = <&usb_phy0>;

14
45

System-on-chip

CPU cores

Cortex A9 Cortex A9
Chipldea
USB controller

GIC _ Cadence DDR
IRQ controller 12C controller controller
Y A\ 4
EEPROM DDR
memory

» Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects

» Often discussed, never done

» In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files
» arch/<ARCH>/boot/dts
» =~ 4700 Device Tree Source files in Linux as of 5.10
» Duplicated/synced in various projects
» U-Boot, Barebox

» Device Tree files are not monolithic, they can be split in several files, including
each other.
> .dtsi files are included files, while .dts files are final Device Trees
» Only .dts files are accepted as input to dtc
» Typically, .dtsi will contain definition of SoC-level information (or sometimes
definitions common to several almost identical boards)

» The .dts file contains the board-level information

» The inclusion works by overlaying the tree of the including file over the tree of
the included file.
» Uses the C pre-processor #include directive

» Using the C pre-processor also allows to use #define to replace hardcoded values by
human readable definitions

Definition of the AM33xx SoC

Definition of the BeagleBone board

"ti,am335x-bone", "ti,am33xx";

uart0: serial@44e09000 {
pinctrl-names =
pinctrl-0 = <&uart@_pins>;
status =

"default";

okay";

am335x-bone.dts

7 { #include "am33xx.dtsi"
compatible = "ti,am33xx";
[..0] AL .
ocp { compatible =
uart®: serial@44e09000 { oé“(
compatible = "ti,omap3-uart"; P
reg = <0x44e09000 0x2000>;
interrupts = <72>;
status = "disabled";
+i ¥ b8
b am33xx.dtsi g
—
X —
Compiled DTB
/4
compatible = "ti,am335x-bone", "ti,am33xx";
soell
ocp {

b

uart@: serial@44e09000 {
compatible = "ti,omap3-uart";
reg = <0x44e09000 0x2000>;
interrupts = <72>;
pinctrl-names = "default";
pinctrl-0 = <&uart0_pins>;
status = "okay";

am335x-bone.dtb

Note: the real DTB is in binary format.
Here we show the text equivalent of the
DTB contents;

» On ARM/ARM64, arch/<ARCH>/boot/dts/Makefile or
arch/<ARCH>/boot/dts/<vendor>/Makefile indicates which DT to build

depending on the platform

arch/arm64 /boot/dts/marvell /Makefile

dtb-$ (CONFIG_ARCH_MVEBU) += armada-3720-db.dtb
dtb-$ (CONFIG_ARCH_MVEBU) += armada-3720-espressobin.dtb

» Building the kernel with make will also build the Device Trees on most
architectures
P> Explicit make dtbs target also available

DTC armada-3720-db.dtb
DTC armada-3720-espressobin.dtb

> dtc only does syntaxic validation
» YAML bindings allow to do semantic validation
» make dt_bindings_check
verify that YAML bindings are valid
» make dtbs_check
validate DTs currently enabled against YAML bindings

» In /sys/firmware/devicetree/base, there is a directory/file representation of
the Device Tree contents

1s -1 /sys/firmware/devicetree/base/

total O

Tt 1 root root 4 Jan 1 00:00 #address-cells
o Ta 1 root root 4 Jan 1 00:00 #size-cells
drwxr-xr-x 2 root root 0 Jan 1 00:00 chosen
drwxr-xr-x 3 root root 0 Jan 1 00:00 clocks

STES TS BES 1 root root 34 Jan 1 00:00 compatible
[...]

Sip==ir==ir== 1 root root 1 Jan 1 00:00 name
drwxr-xr-x 10 root root 0 Jan 1 00:00 soc

» If dtc is available on the target, possible to "unpack” the Device Tree using:
dtc -I fs /sys/firmware/devicetree/base

» U-Boot automatically patches the Device Tree Blob passed to Linux

» Sets the RAM base address and size
» Sets the kernel command line
» Sets MAC address for network interfaces

» Additional Device Tree Blob patching in U-Boot can be done

» Using fdt commands: fdt set, fdt mknode, fdt rm
» Using Device Tree Overlays

» A number of platforms have some flexibility aspects that are difficult to describe
in a static Device Tree

» Base boards to which an arbitrary number of expansion boards can be connected:
BeagleBoard capes, RaspberrPi hats, etc.
» FPGA with arbitrary IP blocks synthetized

» A Device Tree Overlay is a small snippet of Device Tree that acts as a patch to a
Device Tree

» For example to describe additional devices provided by an expansion board
» U-Boot supports applying DT overlays
» No support in Linux for applying DT overlays however

» Examples: https://github.com/raspberrypi/linux/tree/rpi-
5.4.y/arch/arm/boot/dts/overlays/

https://github.com/raspberrypi/linux/tree/rpi-5.4.y/arch/arm/boot/dts/overlays/
https://github.com/raspberrypi/linux/tree/rpi-5.4.y/arch/arm/boot/dts/overlays/

» How does one know how to write the correct
nodes/properties to describe a given hardware
pIatform ? 111

» The DeviceTree Specifications at ﬁf

https://www.devicetree.org/specifications/
gives the base Device Tree syntax and specifies a T

number of standard properties. Devicetree Specification
» Far from being sufficient, though. e
» The Device Tree Bindings are documents that each covcstenorg

describe how a particular piece of hardware.

» Documentation/devicetree/bindings/ in Linux
kernel sources

» Reviewed by DT bindings maintainer team

> Legacy: human readable documents

» New norm: YAML-written specifications

13 February 2020

https://www.devicetree.org/specifications/

I2C for Atmel platforms

Required properties :

- compatible : Must be one of:
"atmel,at91rm9200-i2¢c",
"atmel,at91sam9261-i2c",
"atmel,at91sam9260-i2c",
"atmel,at91sam9g20-i2c",
"atmel,at91sam9g10-i2c",
"atmel,at91sam9x5-i2c",
"atmel,samabd4-i2c",
"atmel,samabd2-i2c",
"microchip,sam9x60-i2c" .

- reg: physical base address of the controller and length of memory mapped

Tegion.

interrupts: interrupt number to the cpu.

#address-cells = <1>;

- #size-cells = <0>;

clocks: phandles to input clocks.

Optional properties:

- clock-frequency: Desired I2C bus frequency in Hz, otherwise defaults
‘to 100000

- dmas: A list of two dma specifiers, one for each entry in
dma-names.

- dma-names: should contain "tx" and "rx".

- scl-gpios: specify the gpio related to SCL pin

- sda-gpios: specify the gpio related to SDA pin

[...1

Examples :

i2c0: 12cOff£84000 {
compatible = "atmel,at91sam9g20-i2c";
reg = <0xfff£84000 0x100>;
interrupts = <12 4 6>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&twil_clk>;
clock-frequency = <400000>;

24¢512050 {
compatible = "atmel,24c512";
Teg = <0x50>;
pagesize = <128>;

()

SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause) clocks:

Copyright 2019 BayLibre, SAS minltems: 1
YAML 1.2

f— required:

$id: "http://devicetree.org/schemas/i2c/amlogic,meson6-i2c.yaml#" - compatible
$schema: "http://devicetree.org/meta-schemas/core.yaml#" - reg
- interrupts
title: Amlogic Meson I2C Controller - clocks
maintainers: unevaluatedProperties: false
- Neil Armstrong <narmstrong@baylibre.com>
- Beniamino Galvani <b.galvani@gmail.com> examples
allOf: 12c0c8100500 {
- $ref: /schemas/i2c/i2c-controller.yaml# compatible = "amlogic,meson6-i2c";
reg = <0xc8100500 0x20>;
properties: interrupts = <92>;
compatible: clocks = <&clk81>;
enum: #address-cells = <1>;
- amlogic,meson6-i2c # Meson6, Meson8 and compatible SoCs #size-cells = <0>;

- amlogic,meson-gxbb-i2c # GXBB and compatible SoCs
eeprom@52 {
Teg: compatible

"atmel,24c32";

maxItems: 1 reg = <0x52>;
interrupts: I
maxItems: 1

» Describe hardware (how the hardware is), not configuration (how | choose to use
the hardware)
» OS-agnostic
» For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or
Linux
» There should be no need to change the Device Tree when updating the OS
» Describe integration of hardware components, not the internals of hardware
components
» The details of how a specific device/IP block is working is handled by code in device
drivers
» The Device Tree describes how the device/IP block is connected/integrated with the
rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.

» Like all beautiful design principles, these principles are not sometimes violated.

>

>
>

Is a list of strings
» From the most specific to the less specific

Describes the specific binding to which the node complies.

It uniquely identifies the programming model of the device.

Practically speaking, it is used by the operating system to find the appropriate
driver for this device.

Special value: simple-bus indicates a bus where all sub-nodes are
memory-mapped devices. Generally used for devices inside the SoC.

When describing real hardware, typical form is vendor ,model

Examples:

» compatible = "arm,armv8-timer";

» compatible = "actions,s900-uart", "actions,owl-uart";
» compatible = "regulator-fixed";

» compatible = "gpio-keys";

()

drivers/tty/serial /imx.c

static const struct of_device_id imx_uart_dt_ids[] = {

{ .compatible sl,imx6q-uart", .data = ... },
{ .compatible = "fsl,imx53-uart", .data = ... },
{ .compatible = "fsl,imxl-uart", .data = .

{ .compatible = "fsl,imx21-uart", .data = ...

{ /* sentinel */ }

g
MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);

static struct platform_driver imx_uart_platform_driver
.probe = imx_uart_probe,
.remove = imx_uart_remove,

.id_table = imx_uart_devtype,

.driver = {
.name = "imx-uart",
.of _match_table = imx_uart_dt_ids,
.pm = &imx_uart_pm_ops,

> reg
» Memory-mapped devices: base address and size of the registers. Can have several

entries.
» 12C devices: address on the 12C bus
» SPI devices: chip select number

> interrupts, interrupt-parent, interrupts-extended: interrupts lines used
by the device, and which interrupt controller they are connected to.

» clocks: which clock(s) are used by the device, from which clock controller
» dmas: which DMA controller and channels are used by the device

> status: okay means the device is present and should be enabled, otherwise, the
device is left unused

» pinctrl-*: indicates the pin-muxing configuration requested by the device

%

» Integer values represented as 32-bit integers =8 &
/* This property has 1 cell */
Ca”ed Ce”S foo = <Oxdeadbeef>;
3

%

» Integer values represented as 32-bit integers =8 &
/* This property has 2 cells */
Ca”ed Ce”s foo = <Oxdeadbeef Oxbadcafe>;

};
» Encoding a 64-bit value requires two cells

%

» Integer values represented as 32-bit integers
called cells

» Encoding a 64-bit value requires two cells

» #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

soc {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

i2c@£1001000 {
reg = <0x£1001000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;

eeprom@52 {
reg = <0x52>;

H

Integer values represented as 32-bit integers
called cells

Encoding a 64-bit value requires two cells

#address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property
#interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

soc {
intc: interrupt-controller@f1002000 {
compatible = "foo,bar-intc";
reg = <0x£1002000 0x1000>;
interrupt-controller;
#interrupt-cells = <2>;

Irg

12c¢@£1001000 {
interrupt-parent = <&intc>;
/* Must have two cells */
interrupts = <12 24>;

Integer values represented as 32-bit integers
called cells

Encoding a 64-bit value requires two cells

#address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property

#interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
clkc: clock@f1003000 {
compatible = "foo,bar-clock";
reg = <0xf1003000 0x1000>;
#clock-cells = <3>;
};

12¢@£1001000 {
/* Must have three cells */
clocks = <&clkc 12 24 32>;
};
};

» Some properties are associated to a corresponding <prop>-names property

» Gives some human-readable names to entries of the corresponding <prop>

properties
interrupts =<0 59 0>, <0 70 0>;
interrupt-names = "macirq", "macpmt';
clocks = <&car 39>, <&car 45>, <&car 86>, <&car 87>;
clock-names = "gnssm_rgmii", "gnssm_gmac", "rgmii", "gmac";

» Such names can be typically be used by the driver
» platform_get_irq_byname(pdev, "macirq");

Representation of non-discoverable hardware
Tree of nodes, with properties

Standardization based on Device Tree bindings

Used for numerous CPU architectures

>
>
>
» New description language with lots of properties and sometimes complex bindings
>
» Now widely used outside of Linux

>

A must know for all embedded Linux developers!

Questions? Suggestions? Comments?

Thomas Petazzoni

thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2020/1lee/petazzoni-dt-hw-description-everybody

https://bootlin.com/pub/conferences/2020/lee/petazzoni-dt-hw-description-everybody

