
Embedded Live Event

Device Tree: hardware
description for
everybody!
Thomas Petazzoni
thomas.petazzoni@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Thomas Petazzoni

▶ 12+ years CTO/Embedded Linux engineer at
Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Bootloader, Linux kernel, Yocto Project,

Buildroot
▶ Complete Linux BSP development
▶ Hardware support in bootloader/Linux
▶ Strong open-source focus: upstreaming and

contributions
▶ Freely available training materials

▶ Co-maintainer of Buildroot
▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Agenda

▶ This talk is an update from the Device Tree for Dummies talk given in 2013/2014
▶ Why the Device Tree ?
▶ Basic Device Tree syntax
▶ Device Tree inheritance
▶ Device Tree specifications and bindings
▶ Building and validating Device Trees
▶ Common properties and examples

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Your typical embedded platform

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Discoverable vs. non-discoverable hardware

▶ Some hardware busses provide discoverability mechanisms
▶ E.g: PCI(e), USB
▶ One does not need to know ahead of time what will be connected on these busses
▶ Devices can be enumerated and identified at runtime
▶ Concept of vendor ID, product ID, device class, etc.

▶ But many hardware busses do not provide discoverability mechanisms
▶ E.g: I2C, SPI, 1-wire, memory-mapped, etc.
▶ One needs to know what is connected on those busses, and how they are connected

to the rest of the system
▶ Embedded systems typically make extensive use of such busses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Hardware description for non-discoverable hardware

Allows the operating system or bootloader to know things like:
▶ This system-on-chip has:

▶ 2 Cortex-A9 CPU cores
▶ 2 memory-mapped UART controllers of this variant, one with registers at

0xF1000000 and IRQ 23, and another with registers at 0xF1001000 and IRQ 24
▶ 3 I2C controllers of that variant, with registers at those memory-mapped addresses,

those IRQs and taking their input clock from this source
▶ This board has an CS4234 audio codec

▶ Connected on the I2C bus 0 of the SoC, at slave address 0x45
▶ Connected to the I2S interface 2 of the SoC, with the codec providing the clocks
▶ With its reset signal connected to GPIO 67 of the SoC

These details cannot be guessed by the operating system/bootloader.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Describing non-discoverable hardware

▶ Directly in the OS/bootloader code, using compiled data structures, typically in
C
▶ How it was done on most embedded platforms in Linux, U-Boot.
▶ Considered not maintainable/sustainable on ARM32, which motivated the move to

another solution.
▶ Using ACPI tables

▶ On x86 systems, but also on a subset of ARM64 platforms
▶ Tables provided by the firmware

▶ Using a Device Tree
▶ On most embedded-oriented CPU architectures that run Linux: ARC, ARM64,

RISC-V, ARM32, PowerPC, Xtensa, MIPS, etc.
▶ Originates from the PowerPC world, not Linux specific
▶ Now used by Linux, U-Boot, Barebox, TF-A, FreeBSD, etc.
▶ Writing/tweaking a DT is now always necessary when porting Linux to a new board.
▶ The topic of this talk !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Device Tree: principle

▶ A tree data structure describing the hardware is written by a developer in a Device
Tree Source file, .dts

▶ Gets compiled to a more efficient Device Tree Blob representation, .dtb by the
Device Tree Compiler, dtc

▶ The resulting .dtb accurately describes the hardware platform in an OS-agnostic
way and:
▶ Can be linked directly inside a bootloader binary (U-Boot, Barebox)
▶ Can be passed to the operating system by the bootloader (Linux)
▶ U-Boot: bootz <kernel-addr> - <dtb-addr>

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Base syntax

▶ Tree of nodes
▶ Nodes with

properties
▶ A node ≈ a device or

IP block
▶ Properties ≈ device

characteristics
▶ dtc only does syntax

checking, no
semantic validation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Simplified example

/ {
#address-cells = <1>;
#size-cells = <1>;
compatible = "vendor1,board", "vendor2,soc";

cpus { ... };
memory@0 { ... };
chosen { ... };
soc {

intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c@e0004000 { ... };
usb0: usb@e0002000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Simplified example

/ {
cpus {

#address-cells = <1>;
#size-cells = <0>;

cpu0: cpu@0 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <0>;

};

cpu1: cpu@1 {
compatible = "arm,cortex-a9";
device_type = "cpu";
reg = <1>;

};
};

memory@0 { ... };
chosen { ... };
soc {

intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c@e0004000 { ... };
usb0: usb@e0002000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Simplified example

/ {
cpus { ... };
memory@0 {

device_type = "memory";
reg = <0x0 0x20000000>;

};

chosen {
bootargs = "";
stdout-path = "serial0:115200n8";

};

soc {
intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c@e0004000 { ... };
usb0: usb@e0002000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

intc: interrupt-controller@f8f01000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0xF8F01000 0x1000>,

<0xF8F00100 0x100>;
};

i2c0: i2c@e0004000 { ... };
usb0: usb@e0002000 { ... };

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };

soc {
intc: interrupt-controller@f8f01000 { ... };

i2c0: i2c@e0004000 {
compatible = "cdns,i2c-r1p10";
status = "okay";
clocks = <&clkc 38>;
interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
reg = <0xe0004000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;
clock-frequency = <400000>;

eeprom0: eeprom@52 {
compatible = "atmel,24c02";
reg = <0x52>;

};
};

usb0: usb@e0002000 { ... };
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Simplified example

/ {
cpus { ... };
memory@0 { ... };
chosen { ... };

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&intc>;

intc: interrupt-controller@f8f01000 { ... };
i2c0: i2c@e0004000 { ... };

usb0: usb@e0002000 {
compatible = "xlnx,zynq-usb-2.20a", "chipidea,usb2";
status = "okay";
clocks = <&clkc 28>;
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 21 IRQ_TYPE_LEVEL_HIGH>;
reg = <0xe0002000 0x1000>;
phy_type = "ulpi";
dr_mode = "host";
usb-phy = <&usb_phy0>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Where are Device Tree Sources located ?

▶ Even though they are OS-agnostic, no central and OS-neutral place to host
Device Tree sources and share them between projects
▶ Often discussed, never done

▶ In practice, the Linux kernel sources can be considered as the canonical location
for Device Tree Source files
▶ arch/<ARCH>/boot/dts
▶ ≈ 4700 Device Tree Source files in Linux as of 5.10

▶ Duplicated/synced in various projects
▶ U-Boot, Barebox

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Device Tree inheritance

▶ Device Tree files are not monolithic, they can be split in several files, including
each other.

▶ .dtsi files are included files, while .dts files are final Device Trees
▶ Only .dts files are accepted as input to dtc

▶ Typically, .dtsi will contain definition of SoC-level information (or sometimes
definitions common to several almost identical boards)

▶ The .dts file contains the board-level information
▶ The inclusion works by overlaying the tree of the including file over the tree of

the included file.
▶ Uses the C pre-processor #include directive

▶ Using the C pre-processor also allows to use #define to replace hardcoded values by
human readable definitions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Device Tree inheritance example

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Building Device Trees in Linux

▶ On ARM/ARM64, arch/<ARCH>/boot/dts/Makefile or
arch/<ARCH>/boot/dts/<vendor>/Makefile indicates which DT to build
depending on the platform

arch/arm64/boot/dts/marvell/Makefile
dtb-$(CONFIG_ARCH_MVEBU) += armada-3720-db.dtb
dtb-$(CONFIG_ARCH_MVEBU) += armada-3720-espressobin.dtb

▶ Building the kernel with make will also build the Device Trees on most
architectures

▶ Explicit make dtbs target also available

DTC armada-3720-db.dtb
DTC armada-3720-espressobin.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Validating Device Tree in Linux

▶ dtc only does syntaxic validation
▶ YAML bindings allow to do semantic validation

▶ make dt_bindings_check
verify that YAML bindings are valid

▶ make dtbs_check
validate DTs currently enabled against YAML bindings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Exploring the DT on the target

▶ In /sys/firmware/devicetree/base, there is a directory/file representation of
the Device Tree contents

ls -l /sys/firmware/devicetree/base/
total 0
-r--r--r-- 1 root root 4 Jan 1 00:00 #address-cells
-r--r--r-- 1 root root 4 Jan 1 00:00 #size-cells
drwxr-xr-x 2 root root 0 Jan 1 00:00 chosen
drwxr-xr-x 3 root root 0 Jan 1 00:00 clocks
-r--r--r-- 1 root root 34 Jan 1 00:00 compatible
[...]
-r--r--r-- 1 root root 1 Jan 1 00:00 name
drwxr-xr-x 10 root root 0 Jan 1 00:00 soc

▶ If dtc is available on the target, possible to ”unpack” the Device Tree using:
dtc -I fs /sys/firmware/devicetree/base

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Modifying the Device Tree at runtime

▶ U-Boot automatically patches the Device Tree Blob passed to Linux
▶ Sets the RAM base address and size
▶ Sets the kernel command line
▶ Sets MAC address for network interfaces

▶ Additional Device Tree Blob patching in U-Boot can be done
▶ Using fdt commands: fdt set, fdt mknode, fdt rm
▶ Using Device Tree Overlays

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Device Tree Overlays

▶ A number of platforms have some flexibility aspects that are difficult to describe
in a static Device Tree
▶ Base boards to which an arbitrary number of expansion boards can be connected:

BeagleBoard capes, RaspberrPi hats, etc.
▶ FPGA with arbitrary IP blocks synthetized

▶ A Device Tree Overlay is a small snippet of Device Tree that acts as a patch to a
Device Tree
▶ For example to describe additional devices provided by an expansion board

▶ U-Boot supports applying DT overlays
▶ No support in Linux for applying DT overlays however
▶ Examples: https://github.com/raspberrypi/linux/tree/rpi-

5.4.y/arch/arm/boot/dts/overlays/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

https://github.com/raspberrypi/linux/tree/rpi-5.4.y/arch/arm/boot/dts/overlays/
https://github.com/raspberrypi/linux/tree/rpi-5.4.y/arch/arm/boot/dts/overlays/

Device Tree specifications

▶ How does one know how to write the correct
nodes/properties to describe a given hardware
platform ?

▶ The DeviceTree Specifications at
https://www.devicetree.org/specifications/
gives the base Device Tree syntax and specifies a
number of standard properties.
▶ Far from being sufficient, though.

▶ The Device Tree Bindings are documents that each
describe how a particular piece of hardware.
▶ Documentation/devicetree/bindings/ in Linux

kernel sources
▶ Reviewed by DT bindings maintainer team
▶ Legacy: human readable documents
▶ New norm: YAML-written specifications

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

https://www.devicetree.org/specifications/

Device Tree binding: old style

I2C for Atmel platforms

Required properties :
- compatible : Must be one of:

"atmel,at91rm9200-i2c",
"atmel,at91sam9261-i2c",
"atmel,at91sam9260-i2c",
"atmel,at91sam9g20-i2c",
"atmel,at91sam9g10-i2c",
"atmel,at91sam9x5-i2c",
"atmel,sama5d4-i2c",
"atmel,sama5d2-i2c",
"microchip,sam9x60-i2c".

- reg: physical base address of the controller and length of memory mapped
region.

- interrupts: interrupt number to the cpu.
- #address-cells = <1>;
- #size-cells = <0>;
- clocks: phandles to input clocks.

Optional properties:
- clock-frequency: Desired I2C bus frequency in Hz, otherwise defaults

to 100000
- dmas: A list of two dma specifiers, one for each entry in

dma-names.
- dma-names: should contain "tx" and "rx".
- scl-gpios: specify the gpio related to SCL pin
- sda-gpios: specify the gpio related to SDA pin
[...]

Examples :

i2c0: i2c@fff84000 {
compatible = "atmel,at91sam9g20-i2c";
reg = <0xfff84000 0x100>;
interrupts = <12 4 6>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&twi0_clk>;
clock-frequency = <400000>;

24c512@50 {
compatible = "atmel,24c512";
reg = <0x50>;
pagesize = <128>;

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Device Tree binding: YAML style

SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
Copyright 2019 BayLibre, SAS
%YAML 1.2

$id: "http://devicetree.org/schemas/i2c/amlogic,meson6-i2c.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"

title: Amlogic Meson I2C Controller

maintainers:
- Neil Armstrong <narmstrong@baylibre.com>
- Beniamino Galvani <b.galvani@gmail.com>

allOf:
- $ref: /schemas/i2c/i2c-controller.yaml#

properties:
compatible:

enum:
- amlogic,meson6-i2c # Meson6, Meson8 and compatible SoCs
- amlogic,meson-gxbb-i2c # GXBB and compatible SoCs

reg:
maxItems: 1

interrupts:
maxItems: 1

clocks:
minItems: 1

required:
- compatible
- reg
- interrupts
- clocks

unevaluatedProperties: false

examples:
- |
i2c@c8100500 {

compatible = "amlogic,meson6-i2c";
reg = <0xc8100500 0x20>;
interrupts = <92>;
clocks = <&clk81>;
#address-cells = <1>;
#size-cells = <0>;

eeprom@52 {
compatible = "atmel,24c32";
reg = <0x52>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Device Tree design principles

▶ Describe hardware (how the hardware is), not configuration (how I choose to use
the hardware)

▶ OS-agnostic
▶ For a given piece of HW, Device Tree should be the same for U-Boot, FreeBSD or

Linux
▶ There should be no need to change the Device Tree when updating the OS

▶ Describe integration of hardware components, not the internals of hardware
components
▶ The details of how a specific device/IP block is working is handled by code in device

drivers
▶ The Device Tree describes how the device/IP block is connected/integrated with the

rest of the system: IRQ lines, DMA channels, clocks, reset lines, etc.
▶ Like all beautiful design principles, these principles are not sometimes violated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

The compatible property

▶ Is a list of strings
▶ From the most specific to the less specific

▶ Describes the specific binding to which the node complies.
▶ It uniquely identifies the programming model of the device.
▶ Practically speaking, it is used by the operating system to find the appropriate

driver for this device.
▶ Special value: simple-bus indicates a bus where all sub-nodes are

memory-mapped devices. Generally used for devices inside the SoC.
▶ When describing real hardware, typical form is vendor,model
▶ Examples:

▶ compatible = "arm,armv8-timer";
▶ compatible = "actions,s900-uart", "actions,owl-uart";
▶ compatible = "regulator-fixed";
▶ compatible = "gpio-keys";

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Matching with drivers in Linux: platform driver

drivers/tty/serial/imx.c
static const struct of_device_id imx_uart_dt_ids[] = {

{ .compatible = "fsl,imx6q-uart", .data = ... },
{ .compatible = "fsl,imx53-uart", .data = ... },
{ .compatible = "fsl,imx1-uart", .data = ... },
{ .compatible = "fsl,imx21-uart", .data = ... },
{ /* sentinel */ }

};
MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);

static struct platform_driver imx_uart_platform_driver = {
.probe = imx_uart_probe,
.remove = imx_uart_remove,

.id_table = imx_uart_devtype,

.driver = {
.name = "imx-uart",
.of_match_table = imx_uart_dt_ids,
.pm = &imx_uart_pm_ops,

},
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Common properties

▶ reg
▶ Memory-mapped devices: base address and size of the registers. Can have several

entries.
▶ I2C devices: address on the I2C bus
▶ SPI devices: chip select number

▶ interrupts, interrupt-parent, interrupts-extended: interrupts lines used
by the device, and which interrupt controller they are connected to.

▶ clocks: which clock(s) are used by the device, from which clock controller
▶ dmas: which DMA controller and channels are used by the device
▶ status: okay means the device is present and should be enabled, otherwise, the

device is left unused
▶ pinctrl-*: indicates the pin-muxing configuration requested by the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
/* This property has 1 cell */
foo = <0xdeadbeef>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells

▶ #address-cells and #size-cells: how
many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
/* This property has 2 cells */
foo = <0xdeadbeef 0xbadcafe>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

i2c@f1001000 {
reg = <0xf1001000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;

eeprom@52 {
reg = <0x52>;

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
intc: interrupt-controller@f1002000 {

compatible = "foo,bar-intc";
reg = <0xf1002000 0x1000>;
interrupt-controller;
#interrupt-cells = <2>;

};

i2c@f1001000 {
interrupt-parent = <&intc>;
/* Must have two cells */
interrupts = <12 24>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Cells concept

▶ Integer values represented as 32-bit integers
called cells

▶ Encoding a 64-bit value requires two cells
▶ #address-cells and #size-cells: how

many cells are used in sub-nodes to encode the
address and size in the reg property

▶ #interrupts-cells: how many cells are used
to encode interrupt specifiers for this interrupt
controller

▶ Ditto #clock-cells, #gpio-cells,
#phy-cells, #pwm-cells, #dma-cells, etc.

soc {
clkc: clock@f1003000 {

compatible = "foo,bar-clock";
reg = <0xf1003000 0x1000>;
#clock-cells = <3>;

};

i2c@f1001000 {
/* Must have three cells */
clocks = <&clkc 12 24 32>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

-names properties

▶ Some properties are associated to a corresponding <prop>-names property
▶ Gives some human-readable names to entries of the corresponding <prop>

properties

interrupts = <0 59 0>, <0 70 0>;
interrupt-names = "macirq", "macpmt";
clocks = <&car 39>, <&car 45>, <&car 86>, <&car 87>;
clock-names = "gnssm_rgmii", "gnssm_gmac", "rgmii", "gmac";

▶ Such names can be typically be used by the driver
▶ platform_get_irq_byname(pdev, "macirq");

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Conclusion

▶ Representation of non-discoverable hardware
▶ Tree of nodes, with properties
▶ Standardization based on Device Tree bindings
▶ New description language with lots of properties and sometimes complex bindings
▶ Used for numerous CPU architectures
▶ Now widely used outside of Linux
▶ A must know for all embedded Linux developers!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Questions? Suggestions? Comments?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2020/lee/petazzoni-dt-hw-description-everybody

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://bootlin.com/pub/conferences/2020/lee/petazzoni-dt-hw-description-everybody

