@e Live Embedded Event 2020

Embedded Linux from
scratch in 45 minutes

(on RISC-V)

Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2020, Bootlin
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

bootlin

embedded Linux and kernel engineering

1/1

EMBEDDED LINVX FROM SCRATCH IN XLV MINVTES ON RISC-V

~ ’ EMBEDDED \‘

LIVE
EVENT
I

‘0 A Y I‘o'

To'a™>

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 2/1

Michael Opdenacker

» Founder and Embedded Linux engineer at Bootlin:

» Embedded Linux expertise
» Development, consulting and training
» Focusing only on Free and Open Source Software

» Free Software contributor:

» Current maintainer of the Elixir Cross Referencer,
making it easier to study the sources of big C projects
like the Linux kernel. See
https://elixir.bootlin.com

» Co-author of Bootlin's freely available embedded Linux
and kernel training materials
(https://bootlin.com/docs/)

» Former maintainer of GNU Typist

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

Project
selection

vvvvv

Source
browsing

—]

3/1

https://elixir.bootlin.com
https://bootlin.com/docs/
https://www.gnu.org/software/gtypist/

6@ Embedded Linux from scratch in 45 minutes (on RISC-V)

Introduction

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

4/1

@e What | like in embedded Linux

>

| 2

bootlin - Kernel, drivers a

Linux is perfect for operating devices with a fixed set of features. Unlike on the
desktop, Linux is almost in every existing system.

Embedded Linux makes Linux easy to learn: just a few programs and libraries are

sufficient. You can understand the usefulness of each file in your filesystem.

The Linux kernel is standalone: no complex dependencies against external
software. The code is in C!

Linux works with just a few MB of RAM and storage
There's a new version of Linux every 2-3 months.

Relatively small development community. You end up meeting lots of familiar
faces at technical conferences (like the Embedded Linux Conference).

Lots of opportunities (and funding available) for becoming a contributor (Linux
kernel, bootloader, build systems...).

nd embedded Linux - Development, consulting, training and support - https://bootlin.con

5/1

Reviving an old presentation

» First shown in 2005 at the Libre
Software Meeting in Dijon, France.

» Showing a 2.6 Linux kernel booting on
a QEMU emulated ARM board.

» One of our most downloaded
presentations at that time.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

Embedded Linux From Scratch

Embedded Linux From Scratch
in 40 minutes!
Michael Opdenacker
Free Electrons
http://free-electrons.com/

nada + 40 min = 4}

Created with OpenOfficeorg 2.1
® -
Embedded Linux From Scratch ... in 40 minutes! X
© Copyright 20052008, i letrons
(@ Free Electrons e Common Ausbuion Shneati 30 mene g 1

Sep 15,2009

»_

6/1

Things that changed since 2005

In the embedded environment
» The Maker movement

» Cheap development boards
5004+ EUR —50-100 EUR

» The rise of Open Hardware
(Arduino, Beaglebone Black...)

» RISC-V: a new open-source hardware
instruction set architecture

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

In the Linux kernel:

>
>
>

Linux 2.6.x —5.x

tar —git

Linux is now everywhere, no need to
convince customers to use it. It's even
easier and easier to convince then to
fund contributions to the official
version.

devtmpfs: automatically creates device
files

ARM and other architectures: devices
described by the Device Tree instead
of C code

And many more!

71

RISC—V: a new open-source Instruction Set Architecture (ISA)

b RISC

>

» Created by the University of California Berkeley, in a world dominated by
proprietary ISAs with heavy royalties (ARM, x86)

Exists in 32, 64 and 128 bit variants, from microcontrollers to powerful server
hardware.

Anyone can use and extend it to create their own SoCs and CPUs.
This reduces costs and promotes reuse and collaboration

Implementations can be proprietary. Many hardware vendors are using RISC-V
CPUs in their hardware (examples: Microchip, Western Digital, Nvidia)

Free implementations are being created

See https://en.wikipedia.org/wiki/RISC-V

bootlin - Kernel, drivers

and embedded Linux - Development, consulting, training and support - https://bootlin.com

8/1

https://en.wikipedia.org/wiki/RISC-V

How to use RISC-V with Linux?

Hardware is now getting available

» Icicle kit: with Microchip’s PolarFire SoC and an FPGA with
254 K gates. Sold at 499 USD at CrowdSupply:
https://frama.link/dKloanrd

» Boards with the Kendryte K210 SoC. Sipeed MAix BiT only
costs 13 USD at Seed Studio:
https://frama.link/QhBdPjsm. Supported by Linux 5.8
but limited, but its MMU is not supported by Linux.

» You can also synthetize RISC-V cores on programmable logic
(FPGASs)

» Before more hardware is available next year, you can get
started with the QEMU emulator, which simulates a virtual
board with virtio hardware

Already try it with JSLinux: https://bellard.org/jslinux/

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

Seed Studio Sipeed MAix BiT

9/1

https://frama.link/dK1oanrd
https://frama.link/QhBdPjsm
https://bellard.org/jslinux/

Things to build today

» Cross-compiling toolchain: Buildroot 2020.08

» Firmware / Bootloader: OpenSBI

» Kernel: Linux 5.10-rc6

» Root filesystem and application: BusyBox 1.32.0

That's easy to compile and assemble in less than 45 minutes!

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 10/1

Embedded Linux - host and target

Development PC
(host)

Tools
compiler
debugger

Embedded system (target)

Application Application
Library
Library Library Library
C library
Linux kernel
Bootloader

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

11/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Cross-compiling toolchain

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

s

Source code

@e What's a cross-compiling toolchain?

A7

Native toolchain

x86 binary

x86

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

v Compilation

. machine
Cross-compiling

toolchain
x86

Execution

RISC-V binary machine

RISC-V

13/1

Why generate your own cross-compiling toolchain?

Com
| 2

>
>
>

bootlin - Kernel, drivers an

pared to ready-made toolchains:

You can choose your compiler version

You can choose your C library (glibc, uClibc, musl)
You can tweak other features

You gain reproducibility: if a bug is found, just apply a fix.
Don't need to get another toolchain (different bugs)

d embedded Linux - Development, consulting, training and support - https://bootlin.com

14/1

Choosing the C library

» The C library is an essential component of a Linux
system
» Interface between the applications and the kernel
» Provides the well-known standard C API to ease
application development

» Several C libraries are available:

> glibc: full featured, but rather big (2 MB on ARM)

» uClibc: better adapted to embedded use, smaller and
supporting RISC-V 64. Not supported by Buildroot on
this platform though.

» musl. great for embedded use too, more recent Source: Wikipedia

(http://bit.ly/2zrGve2)

» The choice of the C library must be made at
cross-compiling toolchain generation time, as the GCC
compiler is compiled against a specific C library.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 15/1

http://bit.ly/2zrGve2

Generating a RISC-V musl toolchain with Buildroot

Download Buildroot 2020.08 from https://buildroot.org
Extract the sources (tar xf)

Run make menuconfig

vV v. vy

In Target options —Target Architecture, choose

RI SCV mm of the iten you vl to select follamed by (he soace
BAR>. Press <7> for additional infornation about this

tomrre

)
0
{) Fowerrces (11tte natan)
05
O

v

i
|
|
|
|
|
3

In Toolchain —C library, choose musl.

» Save your configuration and run:
make sdk

» At the end, you have an toolchain archive in https://asciinena.org/a/375640
output/images/riscv64-buildroot-linux-musl_sdk-
buildroot.tar.gz

» Extract the archive in a suitable directory, and in the
extracted directory, run: ./relocate-sdk.sh

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://buildroot.org
https://asciinema.org/a/375640

6@ Testing the toolchain

O
» Create a new riscv64-env.sh file you can source to set environment variables
for your project:
export PATH=$HOME/toolchain/riscv64-buildroot-linux-musl_sdk-buildroot/bin:$PATH
» Run source riscv64-env.sh, take a hello.c file and test your new compiler:

$ riscv64-linux-gcc -static -o hello hello.c
$ file hello
hello: ELF 64-bit LSB executable, UCB RISC-V, version 1 (SYSV), statically linked, not stripped

We are compiling statically so far to avoid having to deal with shared libraries.

» Test your executable with QEMU in user mode:

$ gemu-riscv64 hello
Hello world!

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 17/1

6@ Embedded Linux from scratch in 45 minutes (on RISC-V)

Hardware emulator

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 18/1

@e Getting QEMU 5.0

| like to work with recent versions, but QEMU 4.x is probably good enough too!
» On Ubuntu 20.10:

sudo apt install gemu-system-misc

» On Ubuntu 20.04:

sudo add-apt-repository ppa:jacob/virtualisation
sudo apt-get update
sudo apt install gemu-system-misc

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

19/1

@e Finding which machines are emulated by QEMU

o0

$ gemu-system-riscv64 -M 7
Supported machines are:

none empty machine

sifive_e RISC-V Board compatible with SiFive E SDK
sifive_u RISC-V Board compatible with SiFive U SDK
spike RISC-V Spike Board (default)

spike_v1.10 RISC-V Spike Board (Privileged ISA v1.10)
spike_v1.9.1 RISC-V Spike Board (Privileged ISA v1.9.1)
virt RISC-V VirtIO board

We are going to use the virt one, emulating VirtlO peripherals (more efficient than
emulating real hardware).

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 20/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Booting process and privileges

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

RISC-V privilege modes

RISC-V has three privilege modes:
» User (U-Mode): applications b mode beeremmce (omteatons
» Supervisor (5-Mode): OS kernel T __________________________
» Machine (M-Mode): bootloader and firmware

Here are typical combinations:

S mode Operating system (U-Boot / Linux)

» M: simple embedded systems

M mode Firmware (OpenSBI / U-Boot SPL)

» M, U: embedded systems with memory protection

> M, S, U: Unix-style operating systems with virtual Boot sequence and decreasing privileges
memory

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 22/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Linux kernel

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 23/1

Kernel building overview

Environment setup Kernel building
and configuration and deployment
Specify target Kernel
architecture compiling
(if different from host) —>
make
export ARCH=riscv

v

Kernel
configuration

make menuconfig

'

Specify Installing the kernel
cross-compiler Installing modules
(if cross-compiling) . make install
make modules_install or manual copy

export CROSS_COMPILE=riscv64-linux-

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 24/1

Environment for kernel cross-compiling

» Download Linux 5.10-rc6 sources

» Let's add two environment variables for kernel cross-compiling to our
riscv64-env.sh file:

export CROSS_COMPILE=riscv64-linux-
export ARCH=riscv

> CROSS_COMPILE is the cross-compiler prefix, as our cross-compiler is
riscv64-linux-gcc.

» ARCH is the name of the subdirectory in arch/ corresponding to the target
architecture.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

25/1

https://elixir.bootlin.com/linux/latest/source/arch/

@e Kernel configuration

o

> Lets take the default Linux kernel configuration for RISCV:

$ make help | grep defconfig

defconfig - New config with default from ARCH supplied defconfig
savedefconfig - Save current config as ./defconfig (minimal config)
alldefconfig - New config with all symbols set to default
olddefconfig - Same as oldconfig but sets new symbols to their
nommu_k210_defconfig - Build for nommu_k210
nommu_virt_defconfig — Build for nommu_virt

rv32_defconfig - Build for rv32

$ make defconfig
> We can now further customize the configuration:

make menuconfig

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

26/1

Compiling the kernel

make

To compile faster, run multiple jobs in parallel:

make -j 8

To recompile faster (7x according to some benchmarks), run multiple jobs in parallel:
make -j 8 CC="ccache riscv64-linux-gcc"

At the end, you have these files:

vmlinux: raw kernel in ELF format (not bootable, for debugging)
arch/riscv/boot/Image: uncompressed bootable kernel
arch/riscv/boot/Image.gz: compressed kernel

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 27/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Firmware

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 28/1

OpenSBI: Open Supervisor Binary Interface

> Required to start an OS (S mode) from the Supervisor/Firmware (M mode)

git clone https://github.com/riscv/opensbi.git
cd opensbi

make PLATFORM=generic FW_PAYLOAD_PATH=../linux-5.10-rc6/arch/riscv/boot/Image

» Run the above command every time you update your kernel

» This generates the build/platform/generic/firmware/fw_payload.elf file

which is a binary that QEMU can boot. QEMU cannot directly boot the binary
kernel, unlike on ARM.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

29/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Booting the kernel

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

6@ Booting the kernel with QEMU

gemu-system-riscv64 \
-nographic \
-machine virt \
-m 128M \

-kernel opensbi/build/platform/generic/firmware/fw_payload.elf \
-append "console=ttySO0" \

» -m: amount of RAM in the emulated machine
> -append: kernel command line

The kernel starts to boot but eventually panics. We need a root filesystem!

[0.491433] ---[end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)]---

Exit QEMU with [Ctrl] [a] followed by [x]

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 31/1

Embedded Linux from scratch in 45 minutes (on RISC-V)

Building the root filesystem

BusyBox - Most commands in one binary - about 10 years ago

[, [[, acpid, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, beep, blkid, brctl, bunzip2, bzcat, bzip2,
cal, cat, catv, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio,
crond, crontab, cryptpw, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, dhcprelay, diff, dirname,
dmesg, dnsd, dnsdomainname, dos2unix, dpkg, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid,
expand, expr, fakeidentd, false, fbset, fbsplash, fdflush, fdformat, fdisk, fgrep, find, findfs, flash_lock, flash_unlock,
fold, free, freeramdisk, fsck, fsck.minix, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, gunzip, gzip, hd,
hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifplugd, ifup, inetd,
init, inotifyd, insmod, install, ionice, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode,
kill, killall, killall5, klogd, last, length, less, linux32, linux64, linuxrc, 1ln, loadfont, loadkmap, logger, login,
logname, logread, losetup, lpd, lpq, lpr, 1ls, lsattr, lsmod, lzmacat, lzop, lzopcat, makemime, man, md5sum, mdev, mesg,
microcom, mkdir, mkdosfs, mkfifo, mkfs.minix, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modprobe, more, mount,
mountpoint, mt, mv, nameif, nc, netstat, nice, nmeter, nohup, nslookup, od, openvt, passwd, patch, pgrep, pidof, ping,
ping6, pipe_progress, pivot_root, pkill, popmaildir, printenv, printf, ps, pscan, pwd, raidautorun, rdate, rdev, readlink,
readprofile, realpath, reformime, renice, reset, resize, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-

parts, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfont, setkeycodes,
setlogcons, setsid, setuidgid, sh, shalsum, sha256sum, sha512sum, showkey, slattach, sleep, softlimit, sort, split, start-
stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl, syslogd, tac,
tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute, true, tty,
ttysize, udhcpc, udhcpd, udpsvd, umount, uname, uncompress, unexpand, uniq, unix2dos, unlzma, unlzop, unzip, uptime,
usleep, uudecode, uuencode, vconfig, vi, vlock, volname, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat,
zcip

Source: run /bin/busybox

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

BusyBox - Most commands in one binary - In 2019

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, ar, arch, arp, arping, awk, base64, basename, bbconfig, bc, beep,
blkdiscard, blkid, blockdev, bootchartd, brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, chat, chattr, chcon, chgrp,
chmod, chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw,
cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, diff, dirname, dmesg, dnsd, dnsdomainname,
dos2unix, dpkg, dpkg-deb, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-

wake, expand, expr, factor, fakeidentd, fallocate, false, fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole,
fgrep, find, findfs, flash_eraseall, flash_lock, flash_unlock, flashcp, flock, fold, free, freeramdisk, fsck, fsck.minix,
fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty, grep, groups, gunzip, gzip,
halt, hd, hdparm, head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave,
ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh, iproute,
iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, 1ln, load_policy,
loadfont, loadkmap, logger, login, logname, logread, losetup, 1lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi,
lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime, man, matchpathcon, md5sum, mdev, mesg, microcom, minips, mkdir,
mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.reiser, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp, modinfo,
modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite, nbd-client, nc, netcat, netstat, nice, nl,
nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd, paste, patch, pgrep, pidof,
ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, printenv, printf, ps, pscan, pstree, pwd, pwdx,
raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime, remove-shell, renice, reset,
resize, restorecon, resume, rev, rfkill, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-

parts, runcon, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfattr, setfiles, setfont, setkeycodes, setlogcons, setpriv, setsebool, setserial, setsid,
setuidgid, sh, shalsum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap, softlimit, sort,
split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff, swapon,
switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, tune2fs, ubiattach, ubidetach,
ubimkvol, ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpd, udpsvd, uevent, umount, uname, uncompress,
unexpand, uniq, unit, unix2dos, unlink, unlzma, unlzop, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig,
vi, vlock, volname, w, wall, watch, watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Oo BusyBox - Dowloading

> Create a rootfs installation directory
» Download BusyBox 1.32.0 sources from https://busybox.net

» Extract archive with tar xf

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 35/1

https://busybox.net

BusyBox - Configuring

» Run make allnoconfig
Starts with no applet selected

» Run make menuconfig

<Enter> sele

» In Settings —Build Options, enable LA
Build static binary (no shared 1ibs) T

» In Settings —Build Options, set ié:‘/m:mﬂwg
Cross compiler prefix to riscv64-linux-

» In Settings —Installation Optionms..., set
Destination path for 'make install' to the path
of your rootfs directory.

» Then enable support for the following commands:
ash, init, halt, mount, cat, mkdir, echo, 1s,
uptime, vi, ifconfig, httpd

https://asciinema.org/a/281501

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

https://asciinema.org/a/281501

BusyBox - Installing and compiling

rootfs
— bin
» Compiling: make or make -j 8 (faster) — ash -> busybox
. . — busybox
Resulting size: 301,016 bytes only! L cat -> busybox
, . . — 1s -> busybox
Funny to see that we're using a 64 bit system [mount -> busybox
to run such small programs! " sh -> busybox
— sSbln
» Installing: make install — halt -> ../bin/busybox
— ifconfig -> ../bin/busybox
» See the created directory structure and the — init -> ../bin/busybox
. . . — usr
symbolic links to /bin/busybox L— sbin

L— httpd -> ../../bin/busybox

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 37/1

O

6@ Creating a root filesystem image

» Creating an empty file with a 1M size:

dd if=/dev/zero of=rootfs.img bs=1M count=1
» Formating this file for the ext2 filesystem:

mkfs.ext2 rootfs.img

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 38/1

@e Populating the root filesystem

O

> Create a mount point:

sudo mkdir /mnt/rootfs

» Mounting the root filesystem image:

sudo mount -o loop rootfs.img /mnt/rootfs
> Filling the BusyBox file structure:

sudo rsync -a rootfs/ /mnt/rootfs/

» Flushing the changes into the mounted filesystem image:

sync

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 39/1

@e Booting Linux with the root filesystem

O

» Add a disk to the emulated machine:

gemu-system-riscv64 -nographic -machine virt -m 128M \
-kernel opensbi/build/platform/generic/firmware/fw_payload.elf \
-append "console=ttySO ro root=/dev/vda" \
—-drive file=rootfs.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \

» You should see the root filesystem is mounted:

[0.630560] EXT4-fs (vda): mounting ext2 file system using the ext4 subsystem
[0.659433] EXT4-fs (vda): mounted filesystem without journal. Opts: (null)
[0.663114] VFS: Mounted root (ext2 filesystem) readonly on device 254:0.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 40/1

Completing and configuring the root filesystem (1)

» Create a dev directory.
The devtmpfs filesystem will automatically be mounted there
(as CONFIG_DEVTMPFS_MOUNT=y)

» Let's try to mount the proc and sysfs filesystems:

mount -t proc nodev /proc
mount -t sysfs nodev /sys

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

41/1

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

6@ Completing and configuring the root filesystem (1)

s

Let's automate the mounting of proc and sysfs...
> Let's create an /etc/inittab file to configure Busybox Init:

This is run first script:
::sysinit:/etc/init.d/rcS

Start an "askfirst" shell on the comnsole:
::askfirst:/bin/sh

P Let's create and fill /etc/init.d/rcS to automatically mount the virtual
filesystems:

#!/bin/sh
mount -t proc nodev /proc
mount -t sysfs nodev /sys

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 42/1

Common mistakes

> Don't forget to make the rcS script executable. Linux won't allow to execute it
otherwise.

» Do not forget #!/bin/sh at the beginning of shell scripts! Without the leading
#1 characters, the Linux kernel has no way to know it is a shell script and will try
to execute it as a binary file!

» Don't forget to specify the execution of a shell in /etc/inittab or at the end of
/etc/init.d/rcS. Otherwise, execution will just stop without letting you type
new commands!

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

43/1

@e Add support for networking (1)

s

» Add a network interface to the emulated machine:

sudo gemu-system-riscv64 -nographic -machine virt -m 128M \
-kernel opensbi/build/platform/generic/firmware/fw_payload.elf \
-append "console=ttySO ro root=/dev/vda" \
-drive file=rootfs.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \
-netdev tap,id=tapnet,ifname=tap2,script=no,downscript=no \
-device virtio-net-device,netdev=tapnet \

» Need to be root to bring up the tap2 network interface

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 44/1

@e Add support for networking (2)

s

» On the target machine:

ifconfig -a
ifconfig ethO 192.168.2.100

» On the host machine:

ifconfig -a
ifconfig tap2 192.168.2.1
ping 192.168.2.100

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 45/1

@e Simple CGI script

O

#!/bin/sh
echo "Content-type: text/html"
echo

echo "<html>"

echo "<meta http-equiv=\"refresh\" content=\"1\">"

echo "<header></header><body>"

echo "<h1>Uptime information</hi>"

echo "Your embedded device has been running for:<pre>"
echo “uptime’

echo "</pre>"

echo "</body></html>"

Store it in /www/cgi-bin/uptime and make it executable.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 46/1

Start a web server

» On the target machine:

/usr/sbin/httpd -h /www

» On the host machine, open in your browser:
http://192.168.2.100/cgi-bin/uptime

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 47/1

http://192.168.2.100/cgi-bin/uptime

Next steps

Starting Linux from U-Boot in QEMU
» Would allow to show the U-Boot bootloader here too

» Almost ready: loads U-Boot, loads the Linux kernel but fails in early kernel
booting

> Investigations documented and ongoing on RISC-V sw-dev mailing list:
https://frama.link/TDCk_VBV

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

48/1

https://frama.link/TDCk_VBV

What to remember

» Embedded Linux is easy. It makes it easier to get started with Linux.
» You just need a toolchain, a kernel and a few executables.
» RISC-V is a new, open Instruction Set Architecture, use it and support it!

» In embedded Linux, things don't change that much over time. You just get more
features.

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 49/1

Going further

» Drew Fustini's unmatched presentation about Linux on RISC-V:
https://tinyurl.com/y6j8lfyz

» Our "Embedded Linux system development” training materials (500+ pages,
CC-BY-SA licence):
https://bootlin.com/doc/training/embedded-1linux/

» All our training materials and conference presentations:
https://bootlin.com/docs/

» The Embedded Linux Wiki: presentations, howtos... contribute to it!
https://elinux.org

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com 50/1

https://tinyurl.com/y6j8lfyz
https://bootlin.com/doc/training/embedded-linux/
https://bootlin.com/docs/
https://elinux.org

Questions? Suggestions? Comments?

Michael Opdenacker

michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2020/1lee/

bootlin - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin. com

https://bootlin.com/pub/conferences/2020/lee/

