Bootlin at the Embedded Linux Conference 2018

Like every year for more than 10 years, Bootlin engineers will participate to the next Embedded Linux Conference, which takes place in Portland on March 12-14. Of course, it will be our first ELC with our new company name! In total, eight engineers from Bootlin will participate to the event. Maxime Chevallier, who joined Bootlin last Monday, will be attending the conference, his first one with a Bootlin hat (but Maxime has already been a speaker at the last Embedded Linux Conference Europe).

Embedded Linux Conference 2018

We will also be giving a number of talks, tutorials or moderating Bird of a Feather sessions:

We’re really happy to again meet the embedded Linux open-source community at this event! It is worth mentioning that following this event, Bootlin CTO Thomas Petazzoni will be in the Silicon Valley on March 15-16, available for business meetings: do not hesitate to contact us if you’re interested.

Feedback from the Netdev 2.2 conference

The Netdev 2.2 conference took place in Seoul, South Korea. As we work on a diversity of networking topics at Free Electrons as part of our Linux kernel contributions, Free Electrons engineers Alexandre Belloni and Antoine Ténart went to Seoul to attend lots of interesting sessions and to meet with the Linux networking community. Below, they report on what they learned from this conference, by highlighting two talks they particularly liked.

Linux Networking Dietary Restrictions — slides — video

David S. Miller gave a keynote about reducing the size of core structures in the Linux kernel networking core. The idea behind his work is to use smaller structures which has many benefits in terms of performance as less cache misses will occur and less memory resources are needed. This is especially true in the networking core as small changes may have enormous impacts and improve performance a lot. Another argument from his maintainer hat perspective is the maintainability, where smaller structures usually means less complexity.

He presented five techniques he used to shrink the networking core data structures. The first one was to identify members of common base structures that are only used in sub-classes, as these members can easily be moved out and not impact all the data paths.

The second one makes use of what David calls “state compression”, aka. understanding the real width of the information stored in data structures and to pack flags together to save space. In his mind a boolean should take a single bit whereas in the kernel it requires way more space than that. While this is fine for many uses it makes sense to compress all these data in critical structures.

Then David S. Miller spoke about unused bits in pointers where in the kernel all pointers have 3 bits never used. He argued these bits are 3 boolean values that should be used to reduce core data structure sizes. This technique and the state compression one can be used by introducing helpers to safely access the data.

Another technique he used was to unionize members that aren’t used at the same time. This helps reducing even more the structure size by not having areas of memory never used during identified steps in the networking stack.

Finally he showed us the last technique he used, which was using lookup keys instead of pointers when the objects can be found cheaply based on their index. While this cannot be used for every object, it helped reducing some data structures.

While going through all these techniques he gave many examples to help understanding what can be saved and how it was effective. This was overall a great talk showing a critical aspect we do not always think of when writing drivers, which can lead to big performance improvements.

David S. Miller at Nedev 2.2

WireGuard: Next-generation Secure Kernel Network Tunnel — slides — video

Jason A. Donenfeld presented his new and shiny L3 network tunneling mechanism, in Linux. After two years of development this in-kernel formally proven cryptographic protocol is ready to be submitted upstream to get the first rounds of review.

The idea behind Wireguard is to provide, with a small code base, a simple interface to establish and maintain encrypted tunnels. Jason made a demo which was impressive by its simplicity when securely connecting two machines, while it can be a real pain when working with OpenVPN or IPsec. Under the hood this mechanism uses UDP packets on top of either IPv4 and IPv6 to transport encrypted packets using modern cryptographic principles. The authentication is similar to what SSH is using: static private/public key pairs. One particularly nice design choice is the fact that Wireguard is exposed as a stateless interface to the administrator whereas the protocol is stateful and timer based, which allow to put devices into sleep mode and not to care about it.

One of the difficulty to get Wireguard accepted upstream is its cryptographic needs, which do not match what can provide the kernel cryptographic framework. Jason knows this and plan to first send patches to rework the cryptographic framework so that his module nicely integrates with in-kernel APIs. First RFC patches for Wireguard should be sent at the end of 2017, or at the beginning of 2018.

We look forward to seeing Wireguard hit the mainline kernel, to allow everybody to establish secure tunnels in an easy way!

Jason A. Donenfeld at Netdev 2.2


Netdev 2.2 was again an excellent experience for us. It was an (almost) single track format, running alongside the workshops, allowing to not miss any session. The technical content let us dive deeply in the inner working of the network stack and stay up-to-date with the current developments.

Thanks for organizing this and for the impressive job, we had an amazing time!

Back from ELCE: selection of talks from the Free Electrons team

As discussed in our previous blog post, Free Electrons had a strong presence at the Embedded Linux Conference Europe, with 7 attendees, 4 talks, one BoF and one poster during the technical show case.

In this blog post, we would like to highlight a number of talks from the conference that we found interesting. Each Free Electrons engineer who attended the conference has selected one talk, and gives his/her feedback about this talk.

uClibc Today: Still Makes Sense – Alexey Brodkin

Talk selected by Michael Opdenacker

uClibc Today: Still Makes Sense – Alexey BrodkinAlexey Brodkin, an active contributor to the uClibc library, shared recent updates about this C library, trying to show people that the project was still active and making progress, after a few years during which it appeared to be stalled. Alexey works for Synopsys, the makers of the ARC architecture, which uClibc supports.

If you look at the repository for uClibc releases, you will see that since version 1.0.0 released in 2015, the project has made 26 releases according to a predictable schedule. The project also runs runtime regression tests on all its releases, which weren’t done before. The developers have also added support for 4 new architectures (arm64 in particular), and uClibc remains the default C library that Buildroot proposes.

Alexey highlighted that in spite of the competition from the musl library, which causes several projects to switch from uClibc to musl, uClibc still makes a lot of sense today. As a matter of fact, it supports more hardware architectures than glibc and musl do, as it’s the only one to support platforms without an MMU (such as noMMU ARM, Blackfin, m68k, Xtensa) and as the library size is still smaller that what you get with musl (though a static hello_world program is much smaller with musl if you have a close look at the library comparison tests he mentioned).

Alexey noted that the uClibc++ project is still alive too, and used in OpenWRT/Lede by default.

Read the slides and watch the video of his talk.

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu Tsai

Talk selected by Quentin Schulz

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu TsaiAn SoC is made of multiple IP blocks from different vendors. In some cases the source or model of the hardware blocks are neither documented nor marketed by the SoC vendor. However, since there are only very few vendors of a given IP block, stakes are high that your SoC vendor’s undocumented IP block is compatible with a known one.

With his experience in developing drivers for multiple IP blocks present in Allwinner SoCs and as a maintainer of those same SoCs, Chen-Yu first explained that SoC vendors often either embed some vendors’ licensed IP blocks in their SoCs and add the glue around it for platform- or SoC-specific hardware (clocks, resets and control signals), or they clone IP blocks with the same logic but some twists (missing, obfuscated or rearranged registers).

To identify the IP block, we can dig into the datasheet or the vendor BSP and compare those with well documented datasheets such as the one for NXP i.MX6, TI KeyStone II or the Zynq UltraScale+ MPSoC, or with mainline drivers. Asking the community is also a good idea as someone might have encountered an IP with the same behaviour before and can help us identify it quicker.

Some good identifiers for IPs could be register layouts or names along with DMA logic and descriptor format. For the unlucky ones that have been provided only a blob, they can look for the symbols in it and that may slightly help in the process.

He also mentioned that identifying an IP block is often the result of the developer’s experience in identifying IPs and other time just pure luck. Unfortunately, there are times when someone couldn’t identify the IP and wrote a complete driver just to be told by someone else in the community that this IP reminds him of that IP in which case the work done can be just thrown away. That’s where the community plays a strong role, to help us in our quest to identify an IP.

Chen-Yu then went on with the presentation of the different ways to handle the multiple variants of an IP blocks in drivers. He said that the core logic of all IP drivers is usually presented as a library and that the different variants have a driver with their own resources, extra setup and use this library. Also, a good practice is to use booleans to select features of IP blocks instead of using the ID of each variant.
For IPs whose registers have been altered, the way to go is usually to write a table for the register offsets, or use regmaps when bitfields are also modified. When the IP block differs a bit too much, custom callbacks should be used.

He ended his talk with his return from experience on multiple IP blocks (UART, USB OTG, GMAC, EMAC and HDMI) present in Allwinner SoCs and the differences developers had to handle when adding support for them.

Read the slides and watch the video of his talk.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey Senozhatsky

Talks selected by Boris Brezillon. Boris also covered the related talk “printk: It’s Old, What Can We Do to Make It Young Again?” from the same speakers.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey SenozhatskyMaybe I should be ashamed of saying that but printk() is one of the basic tool I’m using to debug kernel code, and I must say it did the job so far, so when I saw these presentations talking about how to improve printk() I was a bit curious. What could be wrong in printk() implementation?
Before attending the talks, I never digged into printk()’s code, because it just worked for me, but what I thought was a simple piece of code appeared to be a complex infrastructure with locking scheme that makes you realize how hard it is when several CPUs are involved.

At its core, printk() is supposed to store logs into a circular buffer and push new entries to one or several consoles. In his first talk Steven Rostedt walked through the history of printk() and explained why it became more complex when support for multi CPU appeared. He also detailed why printk() is not re-entrant and the problem it causes when called from an NMI handler. He finally went through some fixes that made the situation a bit better and advertised the 2nd half of the talk driven by Sergey Senozhatsky.

Note that between these two presentations, the printk() rework has been discussed at Kernel Summit, so Sergey already had some feedback on his proposals. While Steven presentation focused mainly on the main printk() function, Sergey gave a bit more details on why printk() can deadlock, and one of the reasons why preventing deadlocks is so complicated is that printk() delegates the ‘print to console’ aspect to console drivers which have their own locking scheme. To address that, it is proposed to move away from the callback approach and let console drivers poll for new entries in the console buffer instead, which would remove part of the locking issues. The problem with this approach is that it brings even more uncertainty on when the logs are printed on the consoles, and one of the nice things about printk() in its current form is that you are likely to have the log printed on the output before printk() returns (which helps a lot when you debug things).

He also mentioned other solutions to address other possible deadlocks, but I must admit I got lost at some point, so if you’re interested in this topic I recommend that you watch the video (printk(): The Most Useful Tool is Now Showing its Age, sadly no video is available for the second talk) and read the slides (printk(): The Most Useful Tool is Now Showing its Age and printk: It’s Old, What Can We Do to Make It Young Again?).

More robust I2C designs with a new fault-injection driver – Wolfram Sang

Talk selected by Miquèl Raynal

More robust I2C designs with a new fault-injection driver – Wolfram SangAlthough Wolfram had a lot of troubles starting its presentation lacking a proper HDMI adaptater, he gave an illuminating talk about how, as an I2C subsystem maintainer, he would like to strengthen the robustness of I2C drivers.

He first explained some basics of the I2C bus like START and STOP conditions and introduced us to a few errors he regularly spots in drivers. For instance, some badly written drivers used a START and STOP sequence while a “repeated START” was needed. This is very bad because another master on the bus could, in this little spare idle delay, decide to grab the medium and send its message. Then the message right after the repeated START would not have the expected effect. Of course plenty other errors can happen: stalled bus (SDA or SCL stuck low), lost arbitration, faulty bits… All these situations are usually due to incorrect sequences sent by the driver.

To avoid so much pain debugging obscure situations where this happens, he decided to use an extended I2C-gpio interface to access SDA and SCL from two external GPIOs and this way forces faulty situations by simply pinning high or low one line (or both) and see how the driver reacts. The I2C specification and framework provide everything to get out of a faulty situation, it is just a matter of using it (sending a STOP condition, clocking 9 times, operate a reset, etc).

Wolfram is aware of his quite conservative approach but he is really scared about breaking users by using random quirks so he tried with this talk to explain his point of view and the solutions he wants to promote.

Two questions that you might have a hard time hearing were also interesting. The first person asked if he ever considered using a “default faulty chip” designed to do by itself this kind of fault injection and see how the host reacts and behaves. Wolfram said buying hardware is too much effort for debugging, so he was more motivated to get something very easy and straightforward to use. Someone else asked if he thought about multiple clients situation, but from Wolfram’s point of view, all clients are in the same state whether the bus is busy or free and should not badly behave if we clock 9 times.

Watch the video and grab the slides.

HDMI 4k Video: Lessons Learned – Hans Verkuil

Talk selected by Maxime Ripard

HDMI 4k Video: Lessons Learned – Hans VerkuilHaving worked recently on a number of display related drivers, it was quite natural to go see what I was probably going to work on in a quite close future.

Hans started by talking about HDMI in general, and the various signals that could go through it. He then went on with what was basically a war story about all the mistakes, gotchas and misconceptions that he encountered while working on a video-conference box for Cisco. He covered the hardware itself, but also more low-level oriented aspects, such as the clocks frequencies needed to operate properly, the various signals you could look at for debugging or the issues that might come with the associated encoding and / or color spaces, especially when you want to support as many displays as you can. He also pointed out the flaws in the specifications that might lead to implementation inconsistencies. He concluded with the flaws of various HDMI adapters, the issues that might arise using them on various OSes, and how to work around them when doable.

Watch the video and the slides.

The Serial Device Bus – Johan Hovold

Talk selected by Thomas Petazzoni

The Serial Device Bus – Johan HovoldJohan started his talk at ELCE by exposing the problem with how serial ports (UARTs) are currently handled in the Linux kernel. Serial ports are handled by the TTY layer, which allows user-space applications to send and receive data with what is connected on the other side of the UART. However, the kernel doesn’t provide a good mechanism to model the device that is connected at the other side of the UART, such as a Bluetooth chip. Due to this, people have resorted to either writing user-space drivers for such devices (which falls short when those devices need additional resources such as regulators, GPIOs, etc.) or to developing specific TTY line-discipline in the kernel. The latter also doesn’t work very well because a line discipline needs to be explicitly attached to a UART to operate, which requires a user-space program such as hciattach used in Bluetooth applications.

In order to address this problem, Johan picked up the work initially started by Rob Herring (Linaro), which consisted in writing a serial device bus (serdev in short), which consists in turning UART into a proper bus, with bus controllers (UART controllers) and devices connected to this bus, very much like other busses in the Linux kernel (I2C, SPI, etc.). serdev was initially merged in Linux 4.11, with some improvements being merged in follow-up versions. Johan then described in details how serdev works. First, there is a TTY port controller, which instead of registering the traditional TTY character device will register the serdev controller and its slave devices. Thanks to this, one can described in its Device Tree child nodes of the UART controller node, which will be probed as serdev slaves. There is then a serdev API to allow the implementation of serdev slave drivers, that can send and receive data of the UART. Already a few drivers are using this API: hci_serdev, hci_bcm, hci_ll, hci_nokia (Bluetooth) and qca_uart (Ethernet).

We found this talk very interesting, as it clearly explained what is the use case for serdev and how it works, and it should become a very useful subsystem for many embedded applications that use UART-connected devices.

Watch the video and the slides.

GStreamer for Tiny Devices – Olivier Crête

Talk selected by Grégory Clement

GStreamer for Tiny Devices – Olivier CrêteThe purpose of this talk was to show how to shrink Gstreamer to make it fit in an embedded Linux device. First, Olivier Crête introduced what GStreamer is, it was very high level but well done. Then after presenting the issue, he showed step by step how he managed to reduce the footprint of a GStreamer application to fit in his device.

In a first part it was a focus on features specific to GStreamer such as how to generate only the needed plugins. Then most of the tricks showed could be used for any C or C++ application. The talk was pretty short so there was no useless or boring part Moreover, the speaker himself was good and dynamic.

To conclude it was a very pleasant talk teaching step by step how to reduce the footprint of an application being GStreamer or not.

Watch the video and the slides.

Free Electrons at Embedded and Kernel Recipes 2017

Kernel RecipesEmbedded RecipesThe Kernel Recipes conference has become over the last few years a very interesting conference, with an original single track format and a limited number of attendees, which fosters communication and networking. Held in Paris, France, it is obviously a conference of choice for Free Electrons engineers to attend and speak at. We participated to multiple editions, Free Electrons engineer Maxime Ripard gave a talk at the 2014 edition, while Thomas Petazzoni gave a talk at the 2013 edition.

In 2017, the organizers decided to complement the 3-day Kernel Recipes conference with a 1-day Embedded Recipes event, and Free Electrons will participate by having two engineers attend those events and give talks:

If you’re interested in attending one of those events, make sure to register on time, there are only 100 seats available!

Free Electrons at the Linux Plumbers 2017 conference

The Linux Plumbers conference has established itself as a major conference in the Linux ecosystem, discussing numerous aspects of the low-level layers of the Linux software stack. Linux Plumbers is organized around a number of micro-conferences, plus a number of more regular talks.

Linux Plumbers 2017

Free Electrons already participated to several previous editions of Linux Plumbers, and will again participate to this year’s edition that takes place in Los Angeles on September 13-15. Free Electrons engineers Boris Brezillon, Alexandre Belloni, Grégory Clement and Thomas Petazzoni will attend the conference.

If you’re attending this conference, or are located in the Los Angeles area, and want to meet us, do not hesitate to drop us a line at You can also follow Free Electrons Twitter feed for updates during the conference.

Feedback from the Netdev 2.1 conference

At Free Electrons, we regularly work on networking topics as part of our Linux kernel contributions and thus we decided to attend our very first Netdev conference this year in Montreal. With the recent evolution of the network subsystem and its drivers capabilities, the conference was a very good opportunity to stay up-to-date, thanks to lots of interesting sessions.

Eric Dumazet presenting “Busypolling next generation”

The speakers and the Netdev committee did an impressive job by offering such a great schedule and the recorded talks are already available on the Netdev Youtube channel. We particularly liked a few of those talks.

Distributed Switch Architecture – slidesvideo

Andrew Lunn, Viven Didelot and Florian Fainelli presented DSA, the Distributed Switch Architecture, by giving an overview of what DSA is and by then presenting its design. They completed their talk by discussing the future of this subsystem.

DSA in one slide

The goal of the DSA subsystem is to support Ethernet switches connected to the CPU through an Ethernet controller. The distributed part comes from the possibility to have multiple switches connected together through dedicated ports. DSA was introduced nearly 10 years ago but was mostly quiet and only recently came back to life thanks to contributions made by the authors of this talk, its maintainers.

The main idea of DSA is to reuse the available internal representations and tools to describe and configure the switches. Ports are represented as Linux network interfaces to allow the userspace to configure them using common tools, the Linux bridging concept is used for interface bridging and the Linux bonding concept for port trunks. A switch handled by DSA is not seen as a special device with its own control interface but rather as an hardware accelerator for specific networking capabilities.

DSA has its own data plane where the switch ports are slave interfaces and the Ethernet controller connected to the SoC a master one. Tagging protocols are used to direct the frames to a specific port when coming from the SoC, as well as when received by the switch. For example, the RX path has an extra check after netif_receive_skb() so that if DSA is used, the frame can be tagged and reinjected into the network stack RX flow.

Finally, they talked about the relationship between DSA and Switchdev, and cross-chip configuration for interconnected switches. They also exposed the upcoming changes in DSA as well as long term goals.

Memory bottlenecks – slides

As part of the network performances workshop, Jesper Dangaard Brouer presented memory bottlenecks in the allocators caused by specific network workloads, and how to deal with them. The SLAB/SLUB baseline performances are found to be too slow, particularly when using XDP. A way from a driver to solve this issue is to implement a custom page recycling mechanism and that’s what all high-speed drivers do. He then displayed some data to show why this mechanism is needed when targeting the 10G network budget.

Jesper is working on a generic solution called page pool and sent a first RFC at the end of 2016. As mentioned in the cover letter, it’s still not ready for inclusion and was only sent for early reviews. He also made a small overview of his implementation.

DDOS countermeasures with XDP – slides #1slides #2 – video #1video #2

These two talks were given by Gilberto Bertin from Cloudflare and Martin Lau from Facebook. While they were not talking about device driver implementation or improvements in the network stack directly related to what we do at Free Electrons, it was nice to see how XDP is used in production.

XDP, the eXpress Data Path, provides a programmable data path at the lowest point of the network stack by processing RX packets directly out of the drivers’ RX ring queues. It’s quite new and is an answer to lots of userspace based solutions such as DPDK. Gilberto andMartin showed excellent results, confirming the usefulness of XDP.

From a driver point of view, some changes are required to support it. RX hooks must be added as well as some API changes and the driver’s memory model often needs to be updated. So far, in v4.10, only a few drivers are supporting XDP.

XDP MythBusters – slides – video

David S. Miller, the maintainer of the Linux networking stack and drivers, did an interesting keynote about XDP and eBPF. The eXpress Data Path clearly was the hot topic of this Netdev 2.1 conference with lots of talks related to the concept and David did a good overview of what XDP is, its purposes, advantages and limitations. He also quickly covered eBPF, the extended Berkeley Packet Filters, which is used in XDP to filter packets.

This presentation was a comprehensive introduction to the concepts introduced by XDP and its different use cases.


Netdev 2.1 was an excellent experience for us. The conference was well organized, the single track format allowed us to see every session on the schedule, and meeting with attendees and speakers was easy. The content was highly technical and an excellent opportunity to stay up-to-date with the latest changes of the networking subsystem in the kernel. The conference hosted both talks about in-kernel topics and their use in userspace, which we think is a very good approach to not focus only on the kernel side but also to be aware of the users needs and their use cases.

Free Electrons at the Netdev 2.1 conference

Netdev 2.1 is the fourth edition of the technical conference on Linux networking. This conference is driven by the community and focus on both the kernel networking subsystems (device drivers, net stack, protocols) and their use in user-space.

This edition will be held in Montreal, Canada, April 6 to 8, and the schedule has been posted recently, featuring amongst other things a talk giving an overview and the current status display of the Distributed Switch Architecture (DSA) or a workshop about how to enable drivers to cope with heavy workloads, to improve performances.

At Free Electrons, we regularly work on networking related topics, especially as part of our Linux kernel contribution for the support of Marvell or Annapurna Labs ARM SoCs. Therefore, we decided to attend our first Netdev conference to stay up-to-date with the network subsystem and network drivers capabilities, and to learn from the community latest developments.

Our engineer Antoine Ténart will be representing Free Electrons at this event. We’re looking forward to being there!

Free Electrons at the Embedded Linux Conference 2017

Last month, five engineers from Free Electrons participated to the Embedded Linux Conference in Portlan, Oregon. It was once again a great conference to learn new things about embedded Linux and the Linux kernel, and to meet developers from the open-source community.

Free Electrons team at work at ELC 2017, with Maxime Ripard, Antoine Ténart, Mylène Josserand and Quentin Schulz

Free Electrons talks

Free Electrons CEO Michael Opdenacker gave a talk on Embedded Linux Size Reduction techniques, for which the slides and video are available:

Free Electrons engineer Quentin Schulz gave a talk on Power Management Integrated Circuits: Keep the Power in Your Hands, the slides and video are also available:

Free Electrons selection of talks

Of course, the slides from many other talks are progressively being uploaded, and the Linux Foundation published the video recordings in a record time: they are all already available on Youtube!

Below, each Free Electrons engineer who attended the conference has selected one talk he/she has liked, and gives a quick summary of the talk, hopefully to encourage you watch the corresponding video recording.

Using SWupdate to Upgrade your system, Gabriel Huau

Talk selected by Mylène Josserand.

Gabriel Huau from Witekio did a great talk at ELC about SWUpdate, a tool created by Denx to update your system. The talk gives an overview of this tool, how it is working and how to use it. Updating your system is very important for embedded devices to fix some bugs/security fixes or add new features, but in an industrial context, it is sometimes difficult to perform an update: devices not easily accessible, large number of devices and variants, etc. A tool that can update the system automatically or even Over The Air (OTA) can be very useful. SWUpdate is one of them.

SWUpdate allows to update different parts of an embedded system such as the bootloader, the kernel, the device tree, the root file system and also the application data.
It handles different image types: UBI, MTD, Raw, Custom LUA, u-boot environment and even your custom one. It includes a notifier to be able to receive feedback about the updating process which can be useful in some cases. SWUPdate uses different local and OTA/remote interfaces such as USB, SD card, HTTP, etc. It is based on a simple update image format to indicate which images must be updated.

Many customizations can be done with this tool as it is provided with the classic menuconfig configuration tool. One great thing is that this tool is supported by Yocto Project and Buildroot so it can be easily tested.

Do not hesitate to have a look to his slides, the video of his talk or directly test SWUpdate!

GCC/Clang Optimizations for embedded Linux, Khem Raj

Talk selected by Michael Opdenacker.

Khem Raj from Comcast is a frequent speaker at the Embedded Linux Conference, and one of his strong fields of expertise is C compilers, especially LLVM/Clang and Gcc. His talk at this conference can interest anyone developing code in the C language, to know about optimizations that the compilers can use to improve the performance or size of generated binaries. See the video and slides.

Khem Raj slide about compiler optimization optionsOne noteworthy optimization is Clang’s -Oz (Gcc doesn’t have it), which goes even beyond -Os, by disabling loop vectorization. Note that Clang already performs better than Gcc in terms of code size (according to our own measurements). On the topic of bundle optimizations such as -O2 or -Os, Khem added that specific optimizations can be disabled in both compilers through the -fno- command line option preceding the name of a given optimization. The name of each optimization in a given bundle can be found through the -fverbose-asm command line option.

Another new optimization option is -Og, which is different from the traditional -g option. It still allows to produce code that can be debugged, but in a way that provides a reasonable level of runtime performance.

On the performance side, he also recalled the Feedback-Directed Optimizations (FDO), already covered in earlier Embedded Linux Conferences, which can be used to feed the compiler with profiler statistics about code branches. The compiler can use such information to optimize branches which are the more frequent at run-time.

Khem’s last advise was not to optimize too early, and first make sure you do your debugging and profiling work first, as heavily optimized code can be very difficult to debug. Therefore, optimizations are for well-proven code only.

Note that Khem also gave a similar talk in the IoT track for the conference, which was more focused on bare-metal code optimization code and portability: “Optimizing C for microcontrollers” (slides, video).

A Journey through Upstream Atomic KMS to Achieve DP Compliance, Manasi Navare

Talk selected by Quentin Schulz.

This talk was about the journey of a new comer in the mainline kernel community to fix the DisplayPort support in Intel i915 DRM driver. It first presented what happens from the moment we plug a cable in a monitor until we actually see an image, then where the driver is in the kernel: in the DRM subsystem, between the hardware (an Intel Integrated Graphics device) and the libdrm userspace library on which userspace applications such as the X server rely.

The bug to fix was that case when the driver would fail after updating to the requested resolution for a DP link. The other existing drivers usually fail before updating the resolution, so Manasi had to add a way to tell the userspace the DP link failed after updating the resolution. Such addition would be useless without applications using this new information, therefore she had to work with their developers to make the applications behave correctly when reading this important information.

With a working set of patches, she thought she had done most of the work with only the upstreaming left and didn’t know it would take her many versions to make it upstream. She wished to have sent a first version of a driver for review earlier to save time over the whole development plus upstreaming process. She also had to make sure the changes in the userspace applications will be ready when the driver will be upstreamed.

The talk was a good introduction on how DisplayPort works and an excellent example on why involving the community even in early stages of the development process may be a good idea to quicken the overall driver development process by avoiding complete rewriting of some code parts when upstreaming is under way.

See also the video and slides of the talk.

Timekeeping in the Linux Kernel, Stephen Boyd

Talk selected by Maxime Ripard.

Stephen did a great talk about one thing that is often overlooked, and really shouldn’t: Timekeeping. He started by explaining the various timekeeping mechanisms, both in hardware and how Linux use them. That meant covering the counters, timers, the tick, the jiffies, and the various POSIX clocks, and detailing the various frameworks using them. He also explained the various bugs that might be encountered when having a too naive counter implementation for example, or using the wrong POSIX clock from an application.

See also the video and slides of the talk.

Android Things, Karim Yaghmour

Talk selected by Antoine Ténart

Karim did a very good introduction to Android Things. His talk was a great overview of what this new OS from Google targeting embedded devices is, and where it comes from. He started by showing the history of Android, and he explained what this system brought to the embedded market. He then switched to the birth of Android Things; a reboot of Google’s strategy for connected devices. He finally gave an in depth explanation of the internals of this new OS, by comparing Android Things and Android, with lots of examples and demos.

Android Things replaces Brillo / Weave, and unlike its predecessor is built reusing available tools and services. It’s in fact a lightweight version of Android, with many services removed and a few additions like the PIO API to drive GPIO, I2C, PWM or UART controllers. A few services were replaced as well, most notably the launcher. The result is a not so big, but not so small, system that can run on headless devices to control various sensors; with an Android API for application developers.

See also the video and slides of the talk.

Free Electrons at the Developer Conference 2016

The Foundation hosts every year around september the Developer Conference, which, unlike its name states, is not limited to developers, but gathers all the Linux graphics stack developers, including, Mesa, wayland, and other graphics stacks like ChromeOS, Android or Tizen.

This year’s edition was held last week in the University of Haaga-Helia, in Helsinki. At Free Electrons, we’ve had more and more developments on the graphic stack recently through the work we do on Atmel and NextThing Co’s C.H.I.P., so it made sense to attend.

XDC 2016 conference

There’s been a lot of very interesting talks during those three days, as can be seen in the conference schedule, but we especially liked a few of those:

DRM HWComposer – SlidesVideo

The opening talk was made by two Google engineers from the ChromeOS team, Sean Paul and Zach Reizner. They talked about the work they did on the drm_hwcomposer they wrote for the Pixel C, on Android.

The hwcomposer is one of the HAL in Android that interfaces between Surface Flinger, the display manager, and the underlying display driver. It aims at providing hardware composition features, so that Android can leverage the capacities of the display engine to perform compositions (through planes and sprites), without having to use the CPU or the GPU to do this work.

The drm_hwcomposer started out as yet another hwcomposer library implementation for the tegra-drm driver in Linux. While they implemented it, it turned into some generic enough implementation that should be useful for all the DRM drivers out there, and they even introduced some particularly nice features, to split the final screen content into several planes based on the actual displayed content rather than on windows like it’s usually done.

Their work also helped to point out a few flaws in the hwcomposer API, that will eventually be fixed in a new revision of that API.

ARC++ SlidesVideo

The next talk was once again from a ChromeOS engineer, David Reveman, who came to show his work on ARC++, the component in ChromeOS that allows to run Android applications. He was obviously mostly talking about the display side.

In order to achieve that, he had to implement an hwcomposer that would just act as a proxy between SurfaceFlinger and Wayland that is used on the ChromeOS side. The GL rendering is still direct though, and each Android application will talk directly to the GPU, as usual. Only the composition will be forwarded to the ChromeOS side.

In order to minimize that composition process, whenever possible, ARC++ tries to back each application with an overlay so that the composition would happen directly in hardware.

This also led to some interesting challenges, especially since some of the assumptions of both systems are in contradiction. For example, any application can be resized in ChromeOS, while it’s not really a thing in Android where all the applications run full screen.

HDR Displays in Linux – SlidesVideo

The next talk we found interesting was Andy Ritger from nVidia explaining how the HDR displays were supposed to be handled in Linux.

He first started by explaining what HDR is exactly. While the HDR is just about having a wider range of luminance than on a regular display, you often also get a wider gamut with HDR capable displays. This means that on those screens you can display a wider range of colors, and with a better range and precision in their intensity. And
while the applications have been able to generate HDR content for more than 10 years, the rest of the display stack wasn’t really ready, meaning that you had convert the HDR colors to colors that your monitor was able to display, using a technique called tone mapping.

He then explained than the standard, non-HDR colorspace, sRGB, is not a linear colorspace. This means than by doubling the encoded luminance of a color, you will not get a color twice brighter on your display. This was meant this way because the human eye is much more sensitive to the various shades of colors when they are dark than when they are bright. Which essentially means that the darker the color is, the more precision you want to get.

However, the luminance “resolution” on the HDR display is so good that you actually don’t need that anymore, and you can have a linear colorspace, which is in our case SCRGB.

But drawing blindly in all your applications in SCRGB is obviously not a good solution either. You have to make sure that your screen supports it (which is exposed through its EDIDs), but also that you actually tell your screeen to switch to it (through the infoframes). And that requires some support in the kernel drivers.

The Anatomy of a Vulkan Driver – SlidesVideo

This talk by Jason Ekstrand was some kind of a war story of the bring up Intel did of a Vulkan implementation on their GPU.

He first started by saying that it was actually a not so long project, especially when you consider that they wrote it from scratch, since it took roughly 3 full-time engineers 8 months to come up with a fully compliant and open source stack.

He then explained why Vulkan was needed. While OpenGL did amazingly well to cope with the hardware evolutions, it was still designed over 20 years ago, This proved to have some core characteristics that are not really relevant any more, and are holding the application developers back. For example, he mentioned that at its core, OpenGL is based on a singleton-based state machine, that obviously doesn’t scale well anymore on our SMP systems. He also mentioned that it was too abstracted, and people just wanted a lower level API, or that you might want to render things off screen without X or any context.

This was fixed in Vulkan by effectively removing the state machine, which allows it to scale, push things like the error checking or the synchronization directly to the applications, making the implementation much simpler and less layered which also simplifies the development and debugging.

He then went on to discuss how we could share the code that was still shared between the two implementations, like implementing OpenGL on top of Vulkan (which was discarded), having some kind of lighter intermediate language in Mesa to replace Gallium or just sharing through a library the common bits and making both the OpenGL and Vulkan libraries use that.

Motivating preemptive GPU scheduling for real-time systems – SlidesVideo

The last talk that we want to mention is the talk on preemptive scheduling by Roy Spliet, from the University of Cambridge.

More and more industries, and especially the automotive industry, offload some computations to the GPU for example to implement computer vision. This is then used in a car to implement the autonomous driving to make the car recognize signs or stay in its lane. And obviously, this kind of computations are supposed to be handled in a real time
system, since you probably don’t want your shiny user interface for the heating to make your car crash in the car before it because its rendering was taking too long.

He first started to explain what real time means, and what the usual metrics are, which should to no surprise to people used to “CPU based” real time systems: latency, deadline, execution time, and so on.

He then showed a bunch of benchmarks he used to test his preemptive scheduler, in a workload that was basically running OpenArena while running some computations, on various nouveau based platforms (both desktop-grade GPUs, and embedded SoCs).

This led to some expected conclusions, like the fact that a preemptive scheduler is indeed adding some overhead, but is on average worth it, while some have been quite interesting. He was for example observing some worst case latencies that were quite rare (0.3%), but were actually interferences from the display engine filling up its empty FIFOs, and creating some contention on the memory bus.


Overall, this has been a great experience. The organisation was flawless, and the one-track-only format allows you to meet easily both the speakers and attendees. The content was also highly technical, as you might expect, which made us learn a lot and led us to think about some interesting developments we could do on our various projects in the future, such as NextThing Co’s CHIP.

Free Electrons at the X Developer Conference

The next Developer Conference will take place on September 21 to September 23 in Helsinki, Finland. This is a major event for Linux developers working in the graphics/display areas, not only at the level, but also at the kernel level, in Mesa, and other related projects.

Free Electrons engineer Maxime Ripard will be attending this conference, with 80+ other engineers from Intel, Google, NVidia, Texas Instruments, AMD, RedHat, etc.

Maxime is the author of the DRM/KMS driver in the upstream Linux kernel for the Allwinner SoCs, which provides display support for numerous Allwinner platforms, especially Nextthing’s CHIP (with parallel LCD support, HDMI support, VGA support and composite video support). Maxime has also worked on making the 3D acceleration work on this platform with a mainline kernel, by adapting the Mali kernel driver. Most recently, Maxime has been involved in Video4Linux development, writing a driver for the camera interface of Allwinner SoCs, and supervising Florent Revest work on the Allwinner VPU that we published a few days ago.