
Embedded Linux Conference Europe, October 2020

ECC engines
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Miquèl Raynal

I Embedded Linux engineer at Bootlin
I Embedded Linux expertise
I Development, consulting and training
I Strong open-source focus
I https://bootlin.com

I Contributions
I Maintainer of the NAND subsystem
I Co-maintainer of the MTD subsystem
I Kernel support for various ARM SoCs

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

https://bootlin.com

Embedded Linux Conference Europe, October 2020

A bit of context
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Error Correcting Codes

I You want to share an information
I The communication medium is subject to disturbances
I What do you do?
I In a crowd you would either...

I Speak louder?
I Uses more power in the case of telecommunications
I Would need to decrease storage media density

I Repeat yourself?
I Adds redundancy
I Introduces more latency

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Redundancy

I Provide the original data to an algorithm
I Retrieve the (transformed) data, including check/redundancy

information
I We usually prefer to transfer readable data, so the orginal data

prepends within the code
I Longer than the data you actually want to transmit

I The point of this code being, the receiver must be able to
I Detect one or more errors
I Eventually correct one or more errors

I Not only reserved to communications
I Already widely used with storage media as well!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

ECCs in communications

I Case of radio audio communications
I NATO phonetic alphabet

I Lima
I India
I November
I Uniform
I X-ray

I Probably the most widely known ECC
I All words are very different to the ears
I Mathematiciens call that the distance

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Binary informations

I Let’s take the number 0xA, b1010
I A single disturbance could produce b0010
I How do you know that 0x2 is not the right number?
I Any change leads to a (in appearance) valid number

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Simplest algorithms

I Repeatiting may be a solution
I Send twice the same bit

I b1010 becomes b11001100
I Detection of a single bit error
I No correction

I Send three times the same bit
I b1010 becomes b111000111000
I Detection of a single bit error
I Automatic correction by majority vote
I Very costly!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Simplest algorithms

I Repeatiting may be a solution
I Send twice the same bit

I b1010 becomes b11001100
I Detection of a single bit error
I No correction

I Send three times the same bit
I b1010 becomes b111000111000
I Detection of a single bit error
I Automatic correction by majority vote
I Very costly!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

ECCs are everywhere

I Parity bits in UART communications
I A byte may be composed of

I 7 bits of data
I 1 parity bit

I The parity bit is selected to match either an even or an odd
parity

I Example: 0x4A (b1001010) has 3 binary 1
I If we look for an even parity, we will then append a 1
I If the message has an odd parity it is assumed to be corrupted

I 1-bit error detection is achieved with a 15% overhead
I Much less than the 100% overhead of the “repeating”

algorithm!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

ECC for storage

I RAM chips embed simple
hardware ECC algorithms
I Old technologies used

parity bits
I Then 1-bit correction

algorithms
I Silicon vendors tend to

move towards more
complex on-the-fly
corrections

Elixir 512MB DDR RAM M2U51264DS8HC3G-5T for desktop

computers

I Compact Disks
I Are intrinsically less prone

to bit errors
I Errors come from external

scratches or dust
I Unlike RAMs, errors

happen in batch
I Philips norm covers the

loss of up to 4096
consecutive bits (this is a
1 millimeter thick
scratch!)

Flat view of a CD-R

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Embedded Linux Conference Europe, October 2020

NAND and
bitflips, a love
story
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

NAND technology 101

It’s cheap

It’s intrinsically unstable

ECC is mandatory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

NAND technology 101

It’s cheap

It’s intrinsically unstable

ECC is mandatory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

NAND technology 101

It’s cheap

It’s intrinsically unstable

ECC is mandatory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

NAND technology 102

I NAND devices are made of a huge amount of tiny NAND cells
I A cell is like a bucket with a small hole
I An empty bucket is seen as a binary 1
I A filled bucket is seen as a binary 0
I Multiple reasons can cause a NAND cell to not return the

right data:
I Time

→ remember, there is a hole in the bucket!
I Intensive use (too many erase cycles) damages the cell

→ the hole gets bigger!
I Read disturbances

→ looking into a bucket shakes the other one
I Level sensing

→ when do we consider the bucket full/empty?
I A more scientific explanation of the NAND technology

internals available here: conference / slides
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

https://www.youtube.com/watch?v=3PROYAbwCmY
https://elinux.org/images/3/3d/Raynal-understand-and-drive-your-nand.pdf

NAND technology 103

I Particularly true with newer chips
→ NAND cells are smaller
→ Density rises
→ The probability of bit error as well (due to the inherent

disturbances)
I We need reliable corrections that suit the chip requirements

I Stronger corrections involve:
I More processing power
I Additional delays
I A bigger overhead

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

ECC engine mission: write path

I The host controller provides to the ECC engine a chunk of
data

I The ECC engine processes the chunk and produces ECC bytes
I Usually the processed data is kept identical
I The ECC bytes are stored in the out-of-band area

I Repeat this operation for all the data chunks contained in the
page

I Write the entire page to the storage medium

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

ECC engine mission: read path

I Raw data and ECC bytes (possibly corrupted) are retrieved

I The ECC engine processes all the available data, chunk after
chunk, to:
I Detects bit errors
I Eventually corrects them

I Return the original data to the caller and report a status

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Hamming algorithm

I Very popular with older/stronger Single Level
Cell (SLC) chips

I Efficiently corrects up to 1 bit error per chunk
I Detects up to 2 bit errors per chunk
I Invented in 1950 to cover defects from punched

card readers!
I Most of the existing raw NAND controllers

embed an hardware Hamming ECC engine
I Linux provides a software Hamming ECC engine

Historic portrait of Richard

W. Hamming

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

BCH algorithm

I Invented independently in 1959 by Alexis Hocquenghem and
1960 by Raj Bose and D. K. Ray-Chaudhuri

I Very powerful and flexible: fits almost any kind of (NAND)
requirement
I Adapts to almost any strength over any chunk size
I Carries the data unaltered
I Very good ratio overhead/correction capabilities
I Only limited by the available out-of-band area

I Read path almost 10 times more complex than the write path
⇒ Better if offloaded to hardware

I But still, BCH decoding is considered as rather inexpensive
compared to its correcting capabilities

I Leverages polynomial algebra over binary data
I Reverse engineering session of a hardware BCH ECC engine:

https://bootlin.com/blog/supporting-a-
misbehaving-nand-ecc-engine/

I Linux also provides a customizable software BCH ECC engine
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

https://bootlin.com/blog/supporting-a-misbehaving-nand-ecc-engine/
https://bootlin.com/blog/supporting-a-misbehaving-nand-ecc-engine/

Reed-Solomon algorithm

I Introduced in 1960 by Irving S. Reed and Gustave Solomon
I Considers symbols instead of bits

I Many bit-errors in a single symbol appear as a single failure
I Makes RS codes well suited to fight against burst errors

I Treats “lack of data” and “bit failures” differently
I Given t the number of check symbols, it can correct:

I up to t missing symbols (provided that the algorithm know
their position) or

I up to t/2 unlocated errors otherwise
I A bit less common than BCH codes in the NAND world
I Base of the CIRC ECC algorithm used for CD’s (Cross

Interleaved Reed-Solomon Code)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Embedded Linux Conference Europe, October 2020

ECC engines
support
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

The ECC engine in the raw NAND world

I How people usually see their hardware:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

Raw NAND real situation

I The real situation:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Current situation for parallel NANDs

I Historically, raw NAND device, NAND bus, NAND controller
and ECC engine were treated by Linux as a single entity

I Recently, we separated the NAND device and the NAND
controller representations

I The raw NAND controller and its embedded hardware ECC
engine are still mixed in practice

I We recently pushed in favor of the distinction between:
I struct nand_chip *chip
I struct nand_controller *controller
I stuct nand_ecc_ctrl *ecc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://elixir.bootlin.com/linux/latest/ident/struct nand_chip *chip
https://elixir.bootlin.com/linux/latest/ident/struct nand_controller *controller
https://elixir.bootlin.com/linux/latest/ident/stuct nand_ecc_ctrl *ecc

Current situation for serial NANDs

I Only “on-die” ECC engines:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Current situation for serial NANDs

I Support added much more recently (v4.19)
I At this time, only on-die ECC engines were supported
I Software engines not available (yet)!
I We see new devices coming out without embedded engines

I Cheaper to manufacture?
I More powerful (for larger corrections) to offload to dedicated

hardware
I Even more when mutualizing between several chips

I SPI-NAND subsystem not ready for that

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

External/pipelined ECC engine

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

What describes ECC engines?

I What should discriminate
two engines?

I Common properties may be
used to pick the most
appropriate one, like:
I The type of engine
I The possible strengths
I The supported chunk

sizes (also called step size,
or ECC size) on which the
correction applies

/**
* struct nand_ecc_props - NAND ECC properties
* @engine_type: ECC engine type
* @placement: OOB placement (if relevant)
* @algo: ECC algorithm (if relevant)
* @strength: ECC strength
* @step_size: Number of bytes per step
* @flags: Misc properties
*/

struct nand_ecc_props {
enum nand_ecc_engine_type engine_type;
enum nand_ecc_placement placement;
enum nand_ecc_algo algo;
unsigned int strength;
unsigned int step_size;
unsigned int flags;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

How is the engine’s configuration chosen?

I The core must tune the engine’s configuration to best fit the
engine’s capabilities, the NAND part requirements, the
subsystem defaults, the user desires,...

/**
* struct nand_ecc - Information relative to the ECC
* @defaults: Default values, depend on the underlying subsystem
* @requirements: ECC requirements from the NAND chip perspective
* @user_conf: User desires in terms of ECC parameters
* @ctx: ECC context for the ECC engine, derived from the device @requirements
* the @user_conf and the @defaults
* @ondie_engine: On-die ECC engine reference, if any
* @engine: ECC engine actually bound
*/

struct nand_ecc {
struct nand_ecc_props defaults;
struct nand_ecc_props requirements;
struct nand_ecc_props user_conf;
struct nand_ecc_context ctx;
struct nand_ecc_engine *ondie_engine;
struct nand_ecc_engine *engine;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Engine and configuration selection

I For each NAND device, the core must find the engine to be
used and tune it appropriately

nanddev_ecc_engine_init(struct nand_device *nand)
{

/* Look for the ECC engine to use */
nanddev_get_ecc_engine(nand);

/*
* Configure the engine:
* balance user input and chip requirements
*/

nanddev_find_ecc_configuration(nand)
{

nand_ecc_init_ctx(nand);

if (!nand_ecc_is_strong_enough(nand))
pr_warn("weak ECC...\n");

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

SPI-NAND Bindings

On die ECC engine
&spi_host {

flash@0 {
compatible = "spi-nand";
reg = <0>;
nand-ecc-engine = <&flash>;

};
};

External ECC engine
&spi_host {

flash@0 {
compatible = "spi-nand";
reg = <0>;
nand-ecc-engine = <&ecc_engine>;

};
};

ecc_engine: ecc@xxxxxxxx {
compatible = "mxic,nand-ecc-engine";
reg = <xxxxxxxx yyyyyyyy>;

};

Software ECC engine
&spi_host {

flash@0 {
compatible = "spi-nand";
reg = <0>;

nand-use-soft-ecc-engine;
nand-ecc-algo = "bch";

};
};

On host ECC engine
&spi_host {

nand-ecc-engine = <&ecc_engine>;
flash@0 {

compatible = "spi-nand";
reg = <0>;
nand-ecc-engine = <&spi_host>;

};
};

ecc_engine: ecc@xxxxxxxx {
compatible = "mxic,nand-ecc-engine";
reg = <xxxxxxxx yyyyyyyy>;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Hooks to provide

I ->init/cleanup_ctx() one time configuration/allocations
I ->prepare_io_req() gets called for any page I/O

requesting ECC correction, enables the engine, save
information on the request, etc

I ->finish_io_req() gets called for any page I/O requesting
ECC correction, ends the transfer, disables the engine, reports
read errors if relevant, etc

/**
* struct nand_ecc_engine_ops - ECC engine operations
* @init_ctx: given a desired user configuration for the pointed NAND device, requests
* the ECC engine driver to setup a configuration with values it supports.
* @cleanup_ctx: clean the context initialized by @init_ctx.
* @prepare_io_req: is called before reading/writing a page to prepare the I/O request
* to be performed with ECC correction.
* @finish_io_req: is called after reading/writing a page to terminate the I/O request
* and ensure proper ECC correction.
*/

struct nand_ecc_engine_ops {
int (*init_ctx)(struct nand_device *nand);
void (*cleanup_ctx)(struct nand_device *nand);
int (*prepare_io_req)(struct nand_device *nand, struct nand_page_io_req *req);
int (*finish_io_req)(struct nand_device *nand, struct nand_page_io_req *req);

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

The final NAND ECC engine structure

I This structure will be registered at probe time and saved into
a system-wide list of available ECC engines

/**
* struct nand_ecc_engine - ECC engine abstraction for NAND
* devices
* @dev: Host device
* @node: Private field for registration time
* @ops: ECC engine operations
* @priv: Private data
*/

struct nand_ecc_engine {
struct device *dev;
struct list_head node;
struct nand_ecc_engine_ops *ops;
void *priv;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

What’s next?

I Bootloaders don’t have support for these external engines yet
I The raw NAND core carries so much history that is very

difficult to make it fit the ECC abstraction without breaking
numerous drivers

I New ECC engine drivers to come?
I NOR flashes carrying embedded Hamming ECC engines due

to automotive safety constraints (ASIL-B/ASIL-D).
→ Will it soon be offloaded? (please don’t)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Questions? Suggestions?
Comments?
Miquèl Raynal

miquel@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://bootlin.com/pub/conferences/2020/elce/raynal-ecc-engines

References

I RAM picture slide ??:
Unkown author. Possibly Cyberdex (given the authors right
revendication). “Personnal work” supposed (given the
revendication). Public domain,
https://commons.wikimedia.org/w/index.php?curid=647267

I CD-R picture slide ??:
Author: Ubern00b, Personnal work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=226419

I R. Hamming picture slide ??:
Source (WP: NFCC 4), Fair use,
https://en.wikipedia.org/w/index.php?curid=40177109

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

https://commons.wikimedia.org/w/index.php?curid=647267
https://commons.wikimedia.org/w/index.php?curid=226419
https://en.wikipedia.org/w/index.php?curid=40177109

