
Live Embedded Event

An Overview of the
Linux and Userspace
Graphics Stack
Paul Kocialkowski
paul@bootlin.com

© Copyright 2004-2020, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1



Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Co-maintainer of the cedrus VPU driver in V4L2
▶ Contributor to the sun4i-drm DRM driver
▶ Developed the displaying and rendering graphics with Linux training
▶ Contributing Allwinner MIPI CSI-2 support in V4L2

▶ Living in Toulouse, south-west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1



An Overview of the Linux and Userspace Graphics Stack

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1



What All the Fuss is About with Graphics

What do we mean by graphics?

▶ Graphics deals with digital representation of light
▶ Taking the form of pictures or frames
▶ Light in the physical world is continuous
▶ Digital pictures are discrete or quantized
▶ Discrete picture elements are pixels
▶ Using a color model and color space

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1



All About Pictures and Pixels

▶ Pictures have dimensions (width and height) in pixels
▶ Aspect ratio is the width:height fraction
▶ Resolution links pixels to length units (px/in)
▶ Specified scan order in memory
▶ Pixels have a specific format:

▶ Color channels in a color space
▶ Alpha (transparency) channel
▶ Depth and bits per pixel (bpp)
▶ Organization in memory as planes
▶ Sub-sampling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1



All the Things Dealing with Pixels

Graphics:
▶ Displaying: producing light from a digital picture

▶ Monitors, panels, projectors
▶ Rendering: generating digital pictures from primitives

▶ 3D rendering, 2D shape drawing, font rendering and more
▶ Processing: transforming digital pictures

▶ Filtering, scaling, converting, compositing and more
Media:
▶ Decoding/encoding: (un)compressing pictures

▶ Picture codecs (JPEG, PNG, etc), Video codecs (H.264, VP8, etc)
▶ Capturing/outputting: receiving or sending pictures from/to the outside

▶ Cameras, DVB and more

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1



An Overview of the Linux and Userspace Graphics Stack

Graphics Hardware Components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1



Display Hardware (Source)

Display output is implemented through many components:
▶ Framebuffer: pixel memory
▶ Display engine: hardware compositor (from planes)
▶ Timings controller: CRT-compatible timings
▶ Display protocol controller: protocol logic
▶ Display interface PHY: protocol physical layer
▶ Connector and cable: link to the display device (monitor or panel)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1



Rendering and Processing Hardware

A few types of implementations are used for rendering and processing:
▶ GPUs (Graphics Processing Units):

▶ Highly specialized architectures and ISAs
▶ Designed for 3D rendering, can also do 2D and processing
▶ Loaded with small programs (shaders)
▶ Configured with a command stream

▶ DSPs (Digital Signal Processors):
▶ Dedicated processors with a specialized ISA
▶ Run with a dedicated firmware or RTOS

▶ Fixed-function ISPs (Image Signal Processors):
▶ Hardware implementations for specific tasks

▶ CPU-based implementations
▶ All done in software (often use SIMD)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1



An Overview of the Linux and Userspace Graphics Stack

Generic Concepts for Software

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1



Display Software Concepts

▶ Display access must be exclusive to a single program
▶ A display server manages the display framebuffer(s):

▶ Provides a protocol for clients
▶ Gathers buffers and updates from clients
▶ Handles input events
▶ Forwards relevant input events to clients
▶ In charge of security and isolation concerns

▶ A compositor produces the final image from client sources
▶ A window manager defines policy between clients

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1



Render Software Concepts

▶ Unlike display, GPUs can run different jobs in parallel
▶ GPU rendering is based on primitives:

▶ Vertices, lines and triangles
▶ Given positions in 3D

▶ Textures and maps can be involved as well
▶ Shaders (programs) define the result:

▶ Vertex shaders for transformations and lighting
▶ Fragment shaders for color and textures
▶ More advanced shaders also exist
▶ Shaders are compiled on-the-fly from source or intermediate forms (IRs)
▶ Binary shaders are attached to the GPU command stream

▶ Multiple rendering passes can be used

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1



An Overview of the Linux and Userspace Graphics Stack

Linux and Userspace Graphics Stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1



Displaying Stack: Kernel

▶ Historic and legacy subsystem for display: fbdev
▶ Very limited: static setup, no pipeline, pre-allocated buffers, sync issues
▶ Still used by fbcon for on-display console
▶ Available through /dev/fb0 (please stop using it)
▶ Source at drivers/video/fbdev in Linux

▶ Current and relevant interface: DRM KMS
▶ Exposes each display pipeline element for configuration
▶ Generic uAPI with a property-based system
▶ Dynamic framebuffer allocation
▶ Atomic API for synchronizing changes
▶ Legacy compatibility layer with fbdev
▶ Source at drivers/gpu/drm in Linux

▶ The TTY subsystem is also involved:
▶ Graphics mode switch to detach fbcon
▶ Virtual Terminal (VT) switching

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1



Displaying Stack: Userspace Protocols and Servers

▶ X is the historical display server project used with Linux:
▶ X11 (X protocol version 11) is the protocol
▶ Completed with many (many) protocol extensions:

e.g. XrandR, XSHM, Xinput2, Composite
▶ Xorg is the reference implementation
▶ Using hardware-specific drivers for display and input:

e.g. xf86-input-libinput, xf86-video-modesetting, xf86-video-fbdev
▶ X provides server-side rendering (not used a lot nowadays)
▶ Comes with various security issues and limitations
▶ No longer adapted to modern-day computers, nor embedded
▶ Most of its work is delegated through extensions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1



Displaying Stack: Userspace Protocols and Servers

▶ Wayland is a modern display server:
▶ Designed from scratch to avoid common limitations and issues in X
▶ Wayland is a protocol specification, not an implementation

coming as a core protocol and optional extensions (e.g. XDG-Shell)
▶ Server implementations are called Wayland compositors
▶ Weston is the Wayland compositor reference implementation
▶ Other implementations: sway (wlroots), mutter (GNOME), Kwin (KDE)
▶ Improved security and isolation between clients
▶ Compatible with X applications via XWayland

▶ Other display servers also exist:
▶ Mir: Canonical’s display server, more or less abandoned
▶ SurfaceFlinger: Android’s display server

▶ Display managers are commonly used at startup:
▶ Serve as login screens at startup
▶ Launch display servers and environments for users

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1



Displaying Stack: Userspace Libraries

▶ Libraries implement low-level display server protocols:
▶ Wayland: libwayland-client, libwayland-server
▶ X11: XCB, Xlib

▶ Graphics toolkits abstract display server protocols:
▶ GTK (C): Widget-based UI toolkit for X and Wayland
▶ Qt (C++): Widget-based UI toolkit for X and Wayland
▶ EFL (C): Lightweight UI and application library
▶ SDL (C): Drawing-oriented graphics library (used in games)

▶ Desktop environments are based on a given toolkit:
▶ Provide a desktop UI and a set of base applications
▶ Implement a window manager/compositor

▶ Calls to the DRM uAPI are wrapped by libdrm
▶ Used by every single program that supports DRM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1



Rendering Stack for 3D: Kernel

▶ The DRM subsystem is also in charge of managing GPUs
▶ Unlike DRM KMS, no generic interface but driver-specific uAPIs

supported with thin helpers in libdrm
▶ Handles various low-level aspects:

▶ Memory buffers (BO) management with GEM
▶ Command stream validation and submission
▶ Tasks scheduling with the DRM scheduler

▶ Most of the heavy lifting is left to userspace (only I/O in kernel)
▶ Proprietary implementations use their custom interfaces

found in downstream kernels or out-of-tree drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1



Rendering Stack for 3D: Userspace APIs

Generic APIs are used for programs to leverage the GPU:
▶ OpenGL for rendering with desktop GPUs:

▶ Compromise between complexity and control
▶ Stateful and context-based programming model
▶ Using GLSL (GL shading language) for shader sources

▶ OpenGL ES for rendering with embedded GPUs
▶ EGL for interfacing OpenGL with the display stack

▶ Provides scanout buffers and sync
▶ Supports X11, Wayland, Android and more
▶ Replaces the legacy GLX for X11

▶ Vulkan for advanced GPU usage:
▶ Low-level API with direct programming and memory management
▶ Uses its own display stack integration: Vulkan WSI
▶ Supports more than rendering (e.g. compute)
▶ Uses a pre-built shader format: SPIR-V

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1



Rendering Stack for 3D: Userspace Implementations

▶ Mesa 3D is the reference free software rendering library:
▶ Supports OpenGL, OpenGL ES and Vulkan APIs (also Direct 3D 9)
▶ Supports GPUs that have a DRM render driver:

radeon, amdgpu, nouveau, etnaviv, vc4/v3d, lima, panfrost
▶ Implements software rendering fallbacks:

softpipe, swr, llvmpipe, lavapipe
▶ Implements shader compilation with intermediate representations (IRs)
▶ Also supports GPU video decoding through VDPAU, VAAPI or OMX
▶ Also supports compute via OpenCL (clover driver)

▶ Proprietary libraries have their own secret implementations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1



Rendering Stack for 2D: Libraries

▶ General drawing/rasterization:
▶ cairo: widely-used drawing library
▶ Skia: Google’s drawing library

▶ Font rendering:
▶ FreeType: historical vector font rendering library
▶ HarfBuzz: recent vector font rendering library

▶ User interface rendering:
▶ Full widget toolkits: GTK, Qt, EFL and more
▶ Immediate-mode GUIs: Dear ImGui, nuklear
▶ Animations: Clutter

▶ Mostly CPU-based implementations
▶ Sometimes leverage GPU rendering through 3D APIs and shaders

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1



Processing Stack: Libraries

▶ Processing can be implemented:
▶ Using optimized CPU-based algorithms
▶ Using specific SIMD CPU instructions (NEON, SSE, AVX)
▶ Using GPU rendering through 3D APIs and shaders

▶ Various libraries exist:
▶ FFmpeg’s libswscale for pixel format conversion and scaling
▶ Pixman for various pixel operations
▶ ARM’s Ne10 for NEON-accelerated pixel operations
▶ FFTW for fast Fourier transforms
▶ G’MIC image processing framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1



Graphics Stack Overview

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1



Advanced Topics: Memory Sharing and Fences

▶ Copying buffers between (hardware) components is a major bottleneck
▶ Specific APIs are used to share references (file descriptors) between applications:

▶ Shared memory (SHMem) for system memory pages
▶ DMA-BUF memory for device-allocated memory

▶ Synchronization between hardware devices is possible with fences:
▶ A graphics pipeline is configured with fence references (file descriptors)
▶ Fences are signaled when a device is done
▶ The next device in the chain is then triggered by the kernel
▶ No userspace roundtrip is necessary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1



Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://bootlin.com/pub/conferences/

