@

An Overview of the
Linux and Userspace
Graphics Stack

Paul Kocialkowski
paul@bootlin.com

bootlin

= em?éddgefﬁ?ﬂd&m ‘engineering

S a0 VO S

» Embedded Linux engineer at Bootlin
» Embedded Linux expertise
» Development, consulting and training
» Strong open-source focus
» Open-source contributor
» Co-maintainer of the cedrus VPU driver in V4L2
» Contributor to the sundi-drm DRM driver
» Developed the displaying and rendering graphics with Linux training
» Contributing Allwinner MIPI CSI-2 support in V4L2

» Living in Toulouse, south-west of France

Introduction

What do we mean by graphics?

Graphics deals with digital representation of light
Taking the form of pictures or frames

Light in the physical world is continuous

Digital pictures are discrete or quantized
Discrete picture elements are pixels

Using a color model and color space

Pictures have dimensions (width and height) in pixels
Aspect ratio is the width:height fraction

Resolution links pixels to length units (px/in)
Specified scan order in memory

Pixels have a specific format:

» Color channels in a color space
Alpha (transparency) channel
Depth and bits per pixel (bpp)
Organization in memory as planes
Sub-sampling

vvyvyy

Graphics:
» Displaying: producing light from a digital picture
» Monitors, panels, projectors
» Rendering: generating digital pictures from primitives
» 3D rendering, 2D shape drawing, font rendering and more
» Processing: transforming digital pictures
> Filtering, scaling, converting, compositing and more
Media:
» Decoding/encoding: (un)compressing pictures
> Picture codecs (JPEG, PNG, etc), Video codecs (H.264, VP8, etc)
» Capturing/outputting: receiving or sending pictures from/to the outside
» Cameras, DVB and more

Graphics Hardware Components

Display output is implemented through many components:
» Framebuffer: pixel memory
Display engine: hardware compositor (from planes)
Timings controller: CRT-compatible timings

>

>

> Display protocol controller: protocol logic

» Display interface PHY:: protocol physical layer
>

Connector and cable: link to the display device (monitor or panel)

A few types of implementations are used for rendering and processing:
» GPUs (Graphics Processing Units):

» Highly specialized architectures and ISAs

» Designed for 3D rendering, can also do 2D and processing
» Loaded with small programs (shaders)

» Configured with a command stream

» DSPs (Digital Signal Processors):

» Dedicated processors with a specialized ISA
» Run with a dedicated firmware or RTOS

» Fixed-function ISPs (Image Signal Processors):
» Hardware implementations for specific tasks

» CPU-based implementations
» All done in software (often use SIMD)

Generic Concepts for Software

» Display access must be exclusive to a single program
> A display server manages the display framebuffer(s):

» Provides a protocol for clients

» Gathers buffers and updates from clients
» Handles input events

» Forwards relevant input events to clients

» In charge of security and isolation concerns

» A compositor produces the final image from client sources

» A window manager defines policy between clients

» Unlike display, GPUs can run different jobs in parallel
» GPU rendering is based on primitives:
» Vertices, lines and triangles
» Given positions in 3D
> Textures and maps can be involved as well
» Shaders (programs) define the result:

» Vertex shaders for transformations and lighting

»> Fragment shaders for color and textures

» More advanced shaders also exist

» Shaders are compiled on-the-fly from source or intermediate forms (IRs)
» Binary shaders are attached to the GPU command stream

» Multiple rendering passes can be used

Linux and Userspace Graphics Stack

» Historic and legacy subsystem for display: fbdev

» Very limited: static setup, no pipeline, pre-allocated buffers, sync issues
» Still used by fbcon for on-display console
» Available through /dev/£b0 (please stop using it)
» Source at drivers/video/fbdev in Linux
» Current and relevant interface: DRM KMS
» Exposes each display pipeline element for configuration
» Generic uAPI with a property-based system
» Dynamic framebuffer allocation
» Atomic API for synchronizing changes
» Legacy compatibility layer with fbdev
» Source at drivers/gpu/drm in Linux
» The TTY subsystem is also involved:

» Graphics mode switch to detach fbcon
» Virtual Terminal (VT) switching

> X is the historical display server project used with Linux:

>
>

vy

vVvyyvyy

X11 (X protocol version 11) is the protocol

Completed with many (many) protocol extensions:

e.g. XrandR, XSHM, Xinput2, Composite

Xorg is the reference implementation

Using hardware-specific drivers for display and input:

e.g. xf86-input-libinput, xf86-video-modesetting, xf86-video-fbdev
X provides server-side rendering (not used a lot nowadays)

Comes with various security issues and limitations

No longer adapted to modern-day computers, nor embedded

Most of its work is delegated through extensions

@

> Wayland is a modern display server:

>
>

vVVYyVYYVYY

Designed from scratch to avoid common limitations and issues in X
Wayland is a protocol specification, not an implementation

coming as a core protocol and optional extensions (e.g. XDG-Shell)
Server implementations are called Wayland compositors

Weston is the Wayland compositor reference implementation

Other implementations: sway (wlroots), mutter (GNOME), Kwin (KDE)
Improved security and isolation between clients

Compatible with X applications via XWayland

» Other display servers also exist:

>
>

Mir: Canonical’s display server, more or less abandoned
SurfaceFlinger: Android's display server

» Display managers are commonly used at startup:

>
>

Serve as login screens at startup
Launch display servers and environments for users

——

i
i

» Libraries implement low-level display server protocols:
> Wayland: libwayland-client, libwayland-server
» X11: XCB, X1ib
» Graphics toolkits abstract display server protocols:
> GTK (C): Widget-based Ul toolkit for X and Wayland
> Qt (C++): Widget-based Ul toolkit for X and Wayland
> EFL (C): Lightweight Ul and application library
» SDL (C): Drawing-oriented graphics library (used in games)
» Desktop environments are based on a given toolkit:
» Provide a desktop Ul and a set of base applications
> Implement a window manager/compositor
» Calls to the DRM uAPI are wrapped by 1ibdrm
» Used by every single program that supports DRM

» The DRM subsystem is also in charge of managing GPUs

» Unlike DRM KMS, no generic interface but driver-specific uAPls
supported with thin helpers in 1ibdrm

» Handles various low-level aspects:

» Memory buffers (BO) management with GEM
» Command stream validation and submission
» Tasks scheduling with the DRM scheduler

» Most of the heavy lifting is left to userspace (only 1/O in kernel)

> Proprietary implementations use their custom interfaces
found in downstream kernels or out-of-tree drivers

Generic APIs are used for programs to leverage the GPU:
» OpenGL for rendering with desktop GPUs: @GL
» Compromise between complexity and control @
» Stateful and context-based programming model
» Using GLSL (GL shading language) for shader sources
» OpenGL ES for rendering with embedded GPUs @GL‘ES
» EGL for interfacing OpenGL with the display stack
» Provides scanout buffers and sync

» Supports X11, Wayland, Android and more

> Replaces the legacy GLX for X11 EG Lm
» Vulkan for advanced GPU usage:

» Low-level APl with direct programming and memory management

» Uses its own display stack integration: Vulkan WSI
» Supports more than rendering (e.g. compute) (vu\l i(an

» Uses a pre-built shader format: SPIR-V

» Mesa 3D is the reference free software rendering library:

>
>

>

>

| 4
>

Supports OpenGL, OpenGL ES and Vulkan APIs (also Direct 3D 9)
Supports GPUs that have a DRM render driver:

radeon, amdgpu, nouveau, etnaviv, vc4/v3d, lima, panfrost
Implements software rendering fallbacks:
softpipe, swr, 1lvmpipe, lavapipe

Implements shader compilation with intermediate representations (IRs)
Also supports GPU video decoding through VDPAU, VAAPT or OMX

Also supports compute via OpenCL (clover driver)

» Proprietary libraries have their own secret implementations

» General drawing/rasterization:
» cairo: widely-used drawing library
» Skia: Google's drawing library

» Font rendering:

» FreeType: historical vector font rendering library
» HarfBuzz: recent vector font rendering library

» User interface rendering:

» Full widget toolkits: GTK, Qt, EFL and more
» Immediate-mode GUIs: Dear ImGui, nuklear
» Animations: Clutter

» Mostly CPU-based implementations
» Sometimes leverage GPU rendering through 3D APls and shaders

» Processing can be implemented:
» Using optimized CPU-based algorithms
» Using specific SIMD CPU instructions (NEON, SSE, AVX)
» Using GPU rendering through 3D APIs and shaders

» Various libraries exist:
» FFmpeg's libswscale for pixel format conversion and scaling
» Pixman for various pixel operations
» ARM'’s NelO for NEON-accelerated pixel operations
» FFTW for fast Fourier transforms
» G’MIC image processing framework

Glamor

. Wutter, Kwin, Enlightenment

Wayland Window
Management (WV

O ————
Lt w1

ibinput

pointar acceleration devics discovery.

Ternel mode

USB, PS/2, . Display controller

Vulkan / Tenaring
OpenGL 4.5 /
OpenGL ES 3.2 Vulkan /
OpenGL 4.6 /
OpenGL ES 3.2

AMDGPU-PRO Only

CPU & main memory
GPU & graphic memory

» Copying buffers between (hardware) components is a major bottleneck
» Specific APIs are used to share references (file descriptors) between applications:

» Shared memory (SHMem) for system memory pages
» DMA-BUF memory for device-allocated memory

» Synchronization between hardware devices is possible with fences:
» A graphics pipeline is configured with fence references (file descriptors)
» Fences are signaled when a device is done

» The next device in the chain is then triggered by the kernel
» No userspace roundtrip is necessary

Questions? Suggestions? Comments?

Paul Kocialkowski

paul®@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

https://bootlin.com/pub/conferences/

