Using the U-Boot Extension Board Manager – BeagleBone Boards Example

This article follows two earlier blog posts about Device Tree overlays:

Introduction

As explained in the first two blog posts, the BeagleBone boards are supported by a wide number of extension boards, called capes.

When such a cape is plugged in, the description of the devices connected to the board should be updated accordingly. As the available hardware is described by a Device Tree, the added devices on the cape should be described using a Device Tree Overlay, as described in the first blog post.

As explained in this post too, the bootloader is today’s standard place for loading Device Tree Overlays on top of the board’s Device Tree. Once you know which capes are plugged in, you can load them in U-Boot and boot Linux as in the following example:

load mmc 0:1 0x81000000 zImage
load mmc 0:1 0x82000000 am335x-boneblack.dtb
fdt addr 0x82000000
fdt resize 8192
load mmc 0:1 0x83000000 overlays/BBORG_RELAY-00A2.dtbo
fdt apply 0x83000000
bootz 0x81000000 - 0x82000000

This mechanism works fine, but every time you plug in a different cape, you have to tweak this sequence of commands to load the right overlay (the .dtbo file). This would be great if each cape could be detected automatically and so could be the corresponding overlays.

Actually, all this is possible and already supported in mainline U-Boot starting from version 2021.07. That’s what this article is about.

BeagleBone Black with multiple capes - Relay Cape on top.
BeagleBone Black with multiple capes – We want to detect them automatically!

Accessing cape information

Each cape has to contain an I2C EEPROM describing itself, according to the Cape EEPROM Contents specification.

To identify which capes are plugged in, all you have to do is read the connected EEPROMs. You can test by yourself by booting a BeagleBone with a Debian image, and dumping the EEPROM contents as in the following example:

hexdump -C /sys/bus/i2c/devices/2-0054/eeprom 
00000000  aa 55 33 ee 41 31 52 65  6c 61 79 20 43 61 70 65  |.U3.A1Relay Cape|
00000010  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000020  00 00 00 00 00 00 30 30  41 32 42 65 61 67 6c 65  |......00A2Beagle|
00000030  42 6f 61 72 64 2e 6f 72  67 00 42 42 4f 52 47 5f  |Board.org.BBORG_|
00000040  52 45 4c 41 59 00 00 00  00 00 00 00 47 48 49 31  |RELAY.......GHI1|
00000050  38 32 37 30 34 37 32 00  ff ff ff ff ff ff ff ff  |8270472.........|
00000060  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................|
*
...

Of course, the above kind of command only works if the corresponding Device Tree Overlays are loaded. Otherwise, the Linux kernel won’t know that the I2C EEPROMs are available.

The U-Boot extension manager

In the latest Debian images proposed by BeagleBoard.org at the time of this writing, there is already a mechanism to detect the plugged capes based on the information on their I2C EEPROM. However, that was a custom mechanism, and BeagleBoard.org contracted Bootlin to implement a more generic mechanism in the official version of U-Boot.

This generic mechanism was implemented by my colleague Köry Maincent and added to U-Boot (since version 2021.07) by this commit.

Let’s test this mechanism by building and booting our own image. The following instructions apply to the BeagleBone Black board.

SD card preparation

Using cfdisk or a similar tool, prepare a micro-SD card with at least one partition which you mark as “Bootable”. Then format it with the FAT32 filesystem:

sudo mkfs.vfat -F 32 -n boot /dev/mmcblk0p1

Now, remove and plug the micro-SD card back in again. It should automatically be mounted on /media/$USER/boot.

Compiling U-Boot

We first need to install a cross-compiling toolchain if you don’t have one yet. Here’s how to do this on Ubuntu:

sudo apt install gcc-arm-linux-gnueabihf
export CROSS_COMPILE=arm-linux-gnueabihf-

Now, let’s use the latest version of U-Boot at the time of this writing.

git clone git://git.denx.de/u-boot.git
cd u-boot
git checkout v2022.04
make am335x_evm_defconfig
make menuconfig

In the configuration interface, add the new extension command by setting CONFIG_CMD_EXTENSION=y. You can then compile U-Boot:

make
cp MLO u-boot.img /media/mike/boot

Compiling Linux and Device Tree Overlays

Now, let’s compile the latest 5.10 Linux kernel supported by BeagleBoard.org.

First, download the root filesystem (generated by Buildroot, with this configuration file) which we will include in the Linux kernel as an initramfs.

Then, let’s get the kernel sources and configure them:

git clone https://github.com/beagleboard/linux.git
cd linux
git checkout 5.10.100-ti-r40
export CROSS_COMPILE=arm-linux-gnueabihf-
export ARCH=arm
make omap2plus_defconfig
make menuconfig

In the configuration interface, enable compiling the Device Tree Overlays with CONFIG_OF_OVERLAY=y. Also set CONFIG_INITRAMFS_SOURCE="../rootfs.cpio". You can now compile the kernel and the Device Trees, and deploy them to the micro-SD card:

make
cp arch/arm/boot/zImage /media/$USER/boot/
cp arch/arm/boot/dts/am335x-boneblack.dtb /media/$USER/boot/
mkdir /media/$USER/boot/overlays
cp arch/arm/boot/dts/overlays/*.dtbo /media/$USER/boot/overlays/
sudo umount /media/$USER/boot

Configuring U-Boot and using the “extension” command

Now insert the micro-SD card in the BeagleBone Black. Connect the capes that you own. Then power on the board while holding the USR button (close to the USB host port).

On the serial line, you should see U-Boot 2022.04 starting. Interrupt the countdown by pressing any key, to access the U-Boot prompt:

U-Boot SPL 2022.04 (Apr 06 2022 - 15:04:53 +0200)
Trying to boot from MMC1


U-Boot 2022.04 (Apr 06 2022 - 15:04:53 +0200)

CPU  : AM335X-GP rev 2.1
Model: TI AM335x BeagleBone Black
DRAM:  512 MiB
Core:  150 devices, 14 uclasses, devicetree: separate
WDT:   Started wdt@44e35000 with servicing (60s timeout)
NAND:  0 MiB
MMC:   OMAP SD/MMC: 0, OMAP SD/MMC: 1
Loading Environment from FAT... Unable to read "uboot.env" from mmc0:1... 
 not set. Validating first E-fuse MAC
Net:   eth2: ethernet@4a100000, eth3: usb_ether
Hit any key to stop autoboot:  0 
=> 

Let’s try the extension manager now. First, we load the kernel image and Device Tree Binary (DTB) for the board:

=> fatload mmc 0:1 0x81000000 zImage
6219488 bytes read in 408 ms (14.5 MiB/s)
=> fatload mmc 0:1 0x82000000 am335x-boneblack.dtb
64939 bytes read in 10 ms (6.2 MiB/s)

Then, we set the RAM address where each Device Tree Overlay will be loaded:

=> setenv extension_overlay_addr 0x88080000

And define the command to load the overlays:

setenv extension_overlay_cmd 'echo loading ${extension_overlay_name}; fatload mmc 0:1 ${extension_overlay_addr} overlays/${extension_overlay_name}'
saveenv

Then, let U-Boot know where the DTB was loaded:

fdt addr 0x82000000

You can then scan for extension boards:

=> extension scan
BeagleBone Cape: Relay Cape (0x54)
BeagleBone Cape: BB-CAPE-DISP-CT43 (0x55)
BeagleBone Cape: Industrial Comms Cape (0x56)
Found 3 extension board(s).

Optionally, you can get a full listing after extension scan:

=> extension list
Extension 0: Relay Cape
	Manufacturer: 		BeagleBoard.org
	Version: 		00A2
	Devicetree overlay: 	BBORG_RELAY-00A2.dtbo
	Other information: 	
Extension 1: BB-CAPE-DISP-CT43
	Manufacturer: 		Embest
	Version: 		00A0
	Devicetree overlay: 	BB-CAPE-DISP-CT4-00A0.dtbo
	Other information: 	
Extension 2: Industrial Comms Cape
	Manufacturer: 		BeagleBoard.org
	Version: 		00A2
	Devicetree overlay: 	BBORG_COMMS-00A2.dtbo
	Other information: 	

Taking the relay cape as an example, you can see that the name of the Device Tree overlay was derived from the description in its EEPROM, which we dumped earlier.

Now, everything’s ready to load the overlay for the first cape (number 0):

=> extension apply 0                                                                                                                                  
loading BBORG_RELAY-00A2.dtbo
1716 bytes read in 5 ms (335 KiB/s)

Or for all capes:

=> extension apply all
loading BBORG_RELAY-00A2.dtbo
1716 bytes read in 5 ms (335 KiB/s)
loading BB-CAPE-DISP-CT4-00A0.dtbo
5372 bytes read in 5 ms (1 MiB/s)
loading BBORG_COMMS-00A2.dtbo
1492 bytes read in 4 ms (364.3 KiB/s)

We are now ready to set a generic command that will automatically load all the overlays for the supported capes, whatever they are, and then boot the Linux kernel:

setenv bootargs console==ttyS0,115200n8
setenv bootcmd 'fatload mmc 0:1 0x81000000 zImage; fatload mmc 0:1 0x82000000 am335x-boneblack.dtb; fdt addr 0x82000000; extension scan; extension apply all; bootz 0x81000000 - 0x82000000'
saveenv

Reboot your board and you should see:

6228224 bytes read in 526 ms (11.3 MiB/s)
93357 bytes read in 10 ms (8.9 MiB/s)
BeagleBone Cape: Relay Cape (0x54)
BeagleBone Cape: BB-CAPE-DISP-CT43 (0x55)
BeagleBone Cape: Industrial Comms Cape (0x56)
Found 3 extension board(s).
loading BBORG_RELAY-00A2.dtbo
1716 bytes read in 5 ms (335 KiB/s)
loading BB-CAPE-DISP-CT4-00A0.dtbo
5372 bytes read in 5 ms (1 MiB/s)
loading BBORG_COMMS-00A2.dtbo
1492 bytes read in 4 ms (364.3 KiB/s)
Kernel image @ 0x81000000 [ 0x000000 - 0x5f0900 ]
## Flattened Device Tree blob at 82000000
   Booting using the fdt blob at 0x82000000
   Loading Device Tree to 8ffe4000, end 8fffffff ... OK

Starting kernel ...

[    0.000000] Booting Linux on physical CPU 0x0
[    0.000000] Linux version 5.10.100 (mike@mike-laptop) (arm-linux-gnueabihf-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #8 SMP Wed Apr 6 16:25:24 CEST 2022
...

To double check that the overlays were taken into account, you can log in a the root user (no password) and type this command:

# ls  /proc/device-tree/chosen/overlays/
BB-CAPE-DISP-CT4-00A0.kernel  BBORG_RELAY-00A2.kernel
BBORG_COMMS-00A2.kernel       name

Note: all the files used here, including the resulting U-Boot environment file, are available in this archive. All you have to do is extract the archive in a FAT partition with the bootable flag, and then you’ll be ready to boot your board with it, without any manipulation to perform in U-Boot.

How to add support for a new board

To prove that the new extension board manager in U-Boot was generic, Köry Maincent used it to support three different types of boards:

  • BeagleBone boards based on the AM3358 SoC from TI
  • The BeagleBone AI board, based on the AM5729 SoC from TI
  • The CHIP computer, based on the Allwinner R8 CPU, and its DIP extension boards.

To support a new board and its extension boards, the main thing to implement is the extension_board_scan() function for your board.

A good example to check is this commit from Köry which introduced cape detection capabilities for the TI CPUs and this second commit that enabled the mechanism on AM57xx (BeagleBone AI). A good ideas is also to check the latest version of board/ti/common/cape_detect.c in U-Boot’s sources.

Summary

The U-Boot Extension Board Manager is a feature in U-Boot which allows to automatically detect extension boards, provided the hardware makes such a detection possible, and automatically load and apply the corresponding Device Tree overlays. It was contributed by Köry Maincent from Bootlin, thanks to funding from BeagleBoard.org.

At the time of this writing, this functionality is supported on the BeagleBone boards (AM335x and AM57xx), on the CHIP computer (Allwinner R8), and since more recently, on Compulab’s IOT-GATE-iMX8 gateways.

With the combination of this blog post and the former two (see the links at the beginning), it should be clear how a specification can be written to use a combination of Device Tree symbols, Udev rules and extension board identifiers to make expansion header hardware “just work” when plugged in to various boards with compatible headers. BeagleBoard.org would be proud if our example inspired other community board maintainers.

References

Bootlin would like to thank BeagleBoard.org for funding the development and deployment of this infrastructure in mainline U-Boot, and the creation of these three blog posts on Device Tree overlays.

Linux 5.18 released, Bootlin contributions inside

Linux 5.18 has been released a bit over a week ago. As usual, we recommend the resources provided by LWN.net (part 1 and part 2) and KernelNewbies.org to get an overall view of the major features and improvements of this Linux kernel release.

Bootlin engineers have collectively contributed 80 patches to this Linux kernel release, making us the 28th contributing company according to these statistics.

  • Alexandre Belloni, as the RTC subsystem maintainer, continued to improve the overall subsystem, and migrate drivers to new features and mechanisms introduced in the core RTC subsystem
  • Clément Léger contributed a new RTC driver that allows to use the RTC exposed by the OP-TEE Trusted Execution Environment, as well as a few other fixes
  • Hervé Codina and Luca Ceresoli contributed some fixes: Hervé to the dw-edma dmaengine driver, and Luca to the Rockchip RK3308 pinctrl driver
  • Miquèl Raynal, as the MTD subsystem co-maintainer, contributed the remainder of his work to generalize the support of ECC handling, and allow both parallel and SPI NAND to use either software ECC, on-die ECC, or ECC done by a dedicated controller. Included in this work is a new driver for the Macronix external ECC engine, in drivers/mtd/nand/ecc-mxic.c
  • Miquèl Raynal also made a few contributions to the 802.15.4 part of the networking stack, and we have more contributions in this area coming up.
  • Paul Kocialkowski contributed a small fix to Allwinner Device Tree files, and another attempt at fixing an issue with the display panel detection/probing in the DRM subsystem

Bootlin at Live Embedded Event, 3rd edition

Live Embedded EventTomorrow, on May 18, the third edition of Live Embedded Event will take place. Live Embedded Event is a free and fully online conference, dedicated to embedded topics at large. One can register directly online to receive a link to attend the conference.

Bootlin will be participating to this third edition, with 3 talks from 3 different Bootlin engineers:

  • Michael Opdenacker on LLVM tools for the Linux kernel, at 12:00 UTC+2 in Track 3. Details: Recent versions of Linux can be compiled with LLVM’s Clang C language compiler, in addition to Gcc, at least on today’s most popular CPU architectures. This presentation will show you how. Cross-compiling works differently with Clang: no architecture-specific cross-compiling toolchain is required. We will compare the Clang and Gcc compiled kernels, in terms of size and boot time. More generally, we will discuss the concrete benefits brought by being able to compile the kernel with this alternative compiler, in particular the LLVM specific kernel Makefile targets: clang-tidy and clang-analyzer.
  • Grégory Clement on AMP on Cortex A9 with Linux and OpenAMP, at 15:30 UTC+2 in Track 2. Details: While, usually, the Cortex A9 cores are used in SMP, one could want use one of the core to run an other OS. In this case the system becomes AMP. Typically, it allows running a dedicated real time OS on a core. This presentation will show the step that allow having this support using open sources stacks. First we will see what OpenAMP is, then how the Linux kernel can communicate with external OS using remote proc message, and finally what to adapt in the Linux kernel and OpenAMP in order to support the usage of a Cortex A9. This was experimented on an i.MX6 but the solution presented has the advantage to be easily adapted on any SoC using Cortex A9.
  • Thomas Perrot on PKCS#11 with OP-TEE at 15:00 UTC+2 in Track 2. Details:
    PKCS#11 is a standard API that allows to manage cryptographic tokens, regardless of the platform such as Hardware Security Modules, Trusted Plaform Modules or smart cards. Moreover, modern processors offer a secure area, named Trusted Execution Environment (TEE) that allows the isolation of some operations, datas and devices to guarantee their integrity and confidentiality. OP-TEE is an open source implementation of Trusted Execution Environment that runs in parallel with the operating system, as a companion. In this talk, we will first introduce PKCS#11, then OP-TEE, and finally look at how PKCS#11 operations can be performed through OP-TEE, and what are the benefits. Our presentation will be illustrated with examples based on the NXP i.MX8QXP platform, but should be applicable to other platforms that have OP-TEE support.

Join us at Live Embedded Event, and discover our talks as well as the many other talks from other speakers!

Bootlin at Embedded Recipes and Kernel Recipes 2022, Paris

After 2 editions cancelled due to the pandemic, the famous Embedded Recipes and Kernel Recipes conferences are back: they will take place end of May and beginning of June in Paris!

Bootlin will be present at this event, with several engineers from the team participating:

We look forward to meeting you at this event! If you want to discuss business or career opportunities with Bootlin, do not hesitate to meet Paul, Michael, Kamel or Grégory during Embedded and/or Kernel Recipes!

Bootlin at the Embedded Linux Conference North America 2022

Bootlin CEO Thomas Petazzoni and COO Alexandre Belloni will both be attending the next Embedded Linux Conference North America, on June 21-24 in Austin, Texas.

In addition, both Thomas and Alexandre will be speaking at the event:

  • Thomas Petazzoni will give a talk Buildroot: what’s new?, providing an update on the improvements and new features in the Buildroot build system that have been integrated over the past two years
  • Alexandre Belloni will give a talk Yocto Project Autobuilders and the SWAT Team, during which he will explain what’s happening behind in the scenes in the Yocto Project to review and validate contributions before they are integrated.

Thomas and Alexandre will also naturally be available during the event to discuss business or career opportunities, so do not hesitate to get in touch if you’re interested.

Finally, prior to the event, Thomas Petazzoni will be in the Bay Area on June 13-15, also available for meetings or discussions.

Bootlin contributions to OP-TEE 3.17

OP-TEE logoAs we mentioned in our last blog post about OP-TEE 3.16, Bootlin planned to and contributed some interesting features in the recently released OP-TEE 3.17 ! Here is a short presentation of our contributions to this release:

Summary

During this release cycle, Bootlin contributed the following features:

  • Watchdog support
    • Generic watchdog API
    • OP-TEE Watchdog service compatible with arm,smc-wdt Linux driver
    • Microchip SAMA5D2 watchdog driver
  • RTC support
    • Generic RTC API
    • OP-TEE RTC PTA to expose RTC to Linux
    • Microchip SAMA5D2 RTC driver
    • Linux driver for OP-TEE RTC
  • Microchip SAMA5D2 suspend support
    • Support for ULP0, ULP1, ULP0 Fast and backup modes of the SAMA5D2 processor
    • PSCI support
    • Fix Cortex-A5 suspend support in OP-TEE
  • Microchip SAMA5D2 interrupt controller support
Watchdog

As part of our work on Microchip SAMA5D2 support in OP-TEE, we wanted to have support for the SAMA5D2 watchdog. Doing so without exposing the watchdog to Linux would have been useless and thus, we implemented and contributed a new generic watchdog API to OP-TEE. This interface allows registering a watchdog against the system and exposing it to Linux through a specific SMC handler that interfaces with the Linux arm,smc-wdt compatible driver (see drivers/watchdog/arm_smc_wdt.c in the Linux kernel code). Our generic watchdog API is obviously used by the new watchdog driver for Microchip SAMA5D2, but was also quickly leveraged by ST who contributed a new watchdog driver for stm32mp1 based on this new watchdog API.

RTC

On Microchip SAMA5D2, the RTC is part of the system controller which needs to be secured since it contains critical features. Once in the secure world, the RTC is not available to the normal world. In order to expose this RTC device to the normal world (and particularly for Linux RTC subsystem), a new Pseudo Trusted Application (PTA) was added. This PTA communicates with a Linux OP-TEE compatible RTC driver and allows to get/set the date and time. This driver is generic and will allow any vendor which adds RTC support to OP-TEE to expose it transparently to Linux.

Contribution details

A total of 29 commits were contributed for OP-TEE 3.17:

Next steps

Bootlin still have some features planned to be contributed to OP-TEE:

  • Pinctrl support
    • Microchip SAMA5D2 PIO driver
    • Pinmuxing API for providers and consumers
    • Device-tree pinmux parsing
  • SCMI clock support based on the clk framework

Do not hesitate to contact us if you need help and support to integrate or deploy OP-TEE on your platform, either Microchip platforms, but also other ARM32 or ARM64 platforms.

Device Tree: Supporting Similar Boards – The BeagleBone Example

This article is also available on the BeagleBoard.org blog.

Most of the BeagleBone boards from BeagleBoard.org share the same form factor, have the same headers and therefore can accept the same extension boards, also known as capes in the BeagleBoard world.

Of course, a careful PCB design was necessary to make this possible.

This must have been relatively easy with the early models (BeagleBone Black, Black Wireless, Green, Green Wireless, Black Industrial and Enhanced) which are based on the same Sitara AM3358 System on Chip (SoC) from Texas Instruments. However, the more recent creation of the BeagleBone AI board and keeping compatibility with existing capes must have been a little more complicated, as this board is based on a completely different SoC from Texas Instruments, the Sitara AM5729.

BeagleBone AI board
BeagleBone AI

BeagleBone Green board
BeagleBone Green

BeagleBone Black board
BeagleBone Black


Once the PCB design challenge was completed, the BeagleBoard.org crew set itself another challenge: implement software that supports each BeagleBone cape in the same way, whatever the board, in particular:

  • To have unique identifiers for devices in Linux, so that there is a stable name for Linux devices, even if at the hardware level they are connected differently, depending on whether the base board has a Sitara AM3358 and Sitara AM5729 SoC.
  • To have DT overlays for capes that are applicable to all base boards, even if peripherals are connected to different buses of the SoCs.

This article will explore the software solutions implemented by BeagleBoard.org. Their ideas can of course be reused by other projects with similar needs.

The need for a cape standard

A good summary can be found on Deepak Khatri’s Google Summer of Code 2020 page:

The idea of this project was to make the same user space examples work with both BeagleBone Black and BeagleBone AI, using the same references to drivers for peripherals assigned to the same pins between BeagleBone Black and BeagleBone AI. Also, Same DT overlays should work (whenever possible) for both BBB and BBAI, with updated U-Boot cape manager DT overlays will be automatically loaded during boot.

Software setup

The below instructions are for people owning the BeagleBone AI board and any other BeagleBone board, and interested in exploring the devices on their boards by themselves.

First, get the latest console images from https://beagleboard.org/latest-images:

Uncompress each image, insert a micro-SD card in the card read in your PC, and then flash the corresponding card. Here are example commands, assuming that the micro-SD card is represented by the /dev/mmcblk0 device:

unxz bone-debian-10.3-console-armhf-2020-04-06-1gb.img.xz
sudo dd if=bone-debian-10.3-console-armhf-2020-04-06-1gb.img.xz of=/dev/mmcblk0 status=progress

Connect the serial line of each board to your computer and then boot each board with it:

  • For BeagleBone AI: its sufficient to have the micro-SD card inserted.
  • On other BeagleBone boards, you may need to hold a button when you power up the board, to make it boot from the micro-SD card instead of from the internal eMMC. On the BeagleBone Black boards, for examples, that’s the USER button next to the USB host port. Note that you won’t need to do this again when you reset the board. The board will continue to boot from the external micro-SD card until it’s powered off.

You can connect with the default user, or connect as user root with password root.

Then, connect each board to the Internet, and get the latest package updates:

sudo apt update
sudo apt dist-upgrade

It’s then time to upgrade the kernel to the latest version supported by BeagleBoard. To do so, you’ll have to manually update the /opt/scripts/tools/update_kernel.sh file. In this file, go to the # parse commandline options section and add the below lines:

        --lts-5_10-kernel|--lts-5_10)
                kernel="LTS510"
                ;;

You can can then upgrade to the latest 5.10 kernel:

sudo /opt/scripts/tools/update_kernel.sh --ti-channel --lts-5_10

Reboot your board and with the uname -r command, check that you are now running Linux 5.10.

Unifying hardware on AM5729 and AM3358

Let’s start by comparing I2C buses.

Available I2C buses

The BeagleBone 101 document has the original P9 and P8 headers specification for I2C for the BeagleBone Black:

BeagleBone Black P9 and P8 connectors for I2C
BeagleBone Black P9 and P8 connectors for I2C

This is confirmed by the BeagleBone Black System Reference Manual. Now, let’s check the BeagleBone AI Reference Manual, which confirms that I2C buses are available at the same P9 connector pins:

BeagleBone Black BeagleBone AI SCL SDA
I2C1 I2C5 P9_17 P9_18
I2C2 I2C4 P9_19 P9_20
I2C2 N/A P9_21 P9_22
I2C1 I2C3 P9_24 P9_26

Note that on the BeagleBone Black, I2C1 and I2C2 are available at two different locations.

So, for both types of boards, we have at least I2C buses on P9_17/18, P9_19/20 and P9_24/26. However, that’s complicated because these pins don’t correspond to the same I2C buses. Therefore, users have to know that P9_19/20 correspond to I2C2 on BeagleBone Black and to I2C4 on BeagleBone AI.

The devices in /dev/ reflect such differences.

Here’s what we have on the BeagleBone AI:

root@beaglebone:~# ls -la /dev/i2c-*
crw------- 1 root root 89, 0 Mar 23 15:00 /dev/i2c-0
crw------- 1 root root 89, 3 Mar 23 15:00 /dev/i2c-3

Note that here with the AM5729 SoC, the first I2C bus is I2C1. Hence, /dev/i2c-0 corresponds to I2C1 (which is another I2C bus available on the SoC but not available through the cape headers) and /dev/i2c-3 corresponds to I2C4. Also note that I2C5 is not exposed in the default configuration that we have here, most probably because the corresponding header pins are used for other purposes.

And now let’s look at what we have on the BeagleBone Black:

root@beaglebone:~# ls -la /dev/i2c-*
crw------- 1 root root 89, 0 Mar 23 16:16 /dev/i2c-0
crw------- 1 root root 89, 1 Mar 23 16:17 /dev/i2c-1
crw------- 1 root root 89, 2 Mar 23 16:17 /dev/i2c-2

Here with the AM3358 SoC, /dev/i2c-0 corresponds to I2C0, /dev/ic2-1 to I2C1 and /dev/ic2-2 to I2C2.

So, on a running system, how to know which I2C bus device corresponds to the P9_19/20 header pins?

Unified access to I2C pins

The I2C section of the BeagleBone Cape Interface Specification, attempts to define equivalent /dev/bone/i2c/[i] bus device symbolic links across the supported CPUs, which correspond to the same cape header pins.

Such symbolic links are specified through the Device Tree description of such buses.

First, let’s have a look at the Device Tree for the BeagleBone AI (arch/arm/boot/dts/am5729-beagleboneai.dts):

&i2c4 {
	status = "okay";
	clock-frequency = <100000>;
	symlink = "bone/i2c/2";
};

Let’s have a look at the corresponding Device Tree for the AM3358 based BeagleBone boards: (arch/arm/boot/dts/am335x-bone-common-univ.dtsi):

&i2c2 {
	status = "okay";
	pinctrl-names = "default";
	pinctrl-0 = <>;

	clock-frequency = <100000>;
	symlink = "bone/i2c/2";
};

You can see that both devices, though they correspond to different devices, share the same symlink property, which is used to create a symbolic link in /dev/bone/i2c/ to the actual bus device file.

Let’s see such symbolic links on the BeagleBone AI:

root@beaglebone:~# ls -la /dev/bone/i2c/
total 0
drwxr-xr-x 2 root root 80 Jan  1  2000 .
drwxr-xr-x 4 root root 80 Jan  1  2000 ..
lrwxrwxrwx 1 root root 11 Mar 23 15:00 0 -> ../../i2c-0
lrwxrwxrwx 1 root root 11 Mar 23 15:00 2 -> ../../i2c-3

And on the BeagleBone Black:

root@beaglebone:~# ls -la /dev/bone/i2c/
total 0
drwxr-xr-x 2 root root 100 Mar 23 16:16 .
drwxr-xr-x 5 root root 100 Mar 23 16:16 ..
lrwxrwxrwx 1 root root  11 Mar 23 16:16 0 -> ../../i2c-0
lrwxrwxrwx 1 root root  11 Mar 23 16:17 1 -> ../../i2c-1
lrwxrwxrwx 1 root root  11 Mar 23 16:17 2 -> ../../i2c-2

You can see that at least /dev/bone/i2c/0 and /dev/bone/i2c/2 are shared between both types of boards. Userspace code examples can then support different boards by referring to such device file links, for example by using the I2C tools commands.

The symbolic links are created from the Device Tree sources not by the Linux kernel, but by the udev device manager, thanks to the following rule found in /etc/udev/rules.d/10-of-symlink.rules in the BeagleBoard Debian distribution:

# allow declaring a symlink for a device in DT

ATTR{device/of_node/symlink}!="", \
        ENV{OF_SYMLINK}="%s{device/of_node/symlink}"

ENV{OF_SYMLINK}!="", ENV{DEVNAME}!="", \
        SYMLINK+="%E{OF_SYMLINK}", \
        TAG+="systemd", ENV{SYSTEMD_ALIAS}+="/dev/%E{OF_SYMLINK}"

Accessing other devices

Other devices are available in the same way through symbolic links in /dev/bone/, for example UART (serial port) devices.

Let’s check on the BeagleBone AI (run sudo apt install tree first):

root@beaglebone:~# tree /dev/bone/
/dev/bone/
├── i2c
│   ├── 0 -> ../../i2c-0
│   └── 2 -> ../../i2c-3
└── uart
    └── 0 -> ../../ttyS0

2 directories, 3 files

On the BeagleBone Black:

root@beaglebone:~# tree /dev/bone/
/dev/bone/
├── i2c
│   ├── 0 -> ../../i2c-0
│   ├── 1 -> ../../i2c-1
│   └── 2 -> ../../i2c-2
├── spi
│   ├── 0.0 -> ../../spidev0.0
│   ├── 0.1 -> ../../spidev0.1
│   ├── 1.0 -> ../../spidev1.0
│   └── 1.1 -> ../../spidev1.1
└── uart
    ├── 0 -> ../../ttyS0
    ├── 1 -> ../../ttyS1
    ├── 2 -> ../../ttyS2
    ├── 3 -> ../../ttyS3
    ├── 4 -> ../../ttyS4
    └── 5 -> ../../ttyS5

3 directories, 13 files

Accessing header pins

Another challenge is with userspace software examples directly refer to header pins by their names. Here is a BoneScript push button demo, for example:

var b = require('bonescript');
b.pinMode('P8_19', b.INPUT);
b.pinMode('P8_13', b.OUTPUT);
setInterval(check,100);

function check(){
b.digitalRead('P8_19', checkButton);
}

function checkButton(x) {
  if(x.value == 1){
    b.digitalWrite('P8_13', b.HIGH);
  }
  else{
    b.digitalWrite('P8_13', b.LOW);
  }
}                

For AM3358 BeagleBone boards, the am335x-bone-common-univ.dtsi file already associates the P8_19 name to a specific GPIO:

P8_19 {
	gpio-name = "P8_19";
	gpio = <&gpio0 22 0>;
	input;
	dir-changeable;
};

Such definitions are processed by the drivers/gpio/gpio-of-helper.c driver.

However, this driver is specific to the BeagleBoard.org kernel, and the Device Tree for Beagle Bone AI doesn’t use it yet, so this aspect is still work in progress. The main goal remains though: define generic names for header pins, which map to specific GPIOs on different boards.

Universal Device Tree Overlays for Capes

Another challenge is to implement Device Tree Overlays for BeagleBone capes.

The goal as stated in the beginning is to use the same Device Tree overlays on both types of SoCs. While as of today it doesn’t seem possible to generate compiled Device Tree Overlays (DTBO) which would support both SoCs at the same time, the BeagleBoard.org engineers have come up with a solution to achieve this at source level. This means that, for each cape to support, the Device Tree Overlay binaries for the supported SoCs can be produced from a unique source file.

While this hasn’t been deployed yet in the 5.10 BeagleBoard kernel, such source code is already available in Deepak Khatri’s own tree.

For example this CAN1 overlay (BONE-CAN1.dts):

/*
 * Copyright (C) 2020 Deepak Khatri 
 *
 * Virtual cape for /dev/bone/can/1
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/dts-v1/;
/plugin/;

/*
* Helper to show loaded overlays under: /proc/device-tree/chosen/overlays/
*/
&{/chosen} {
    overlays {
        BONE-CAN1 = __TIMESTAMP__;
    };
};

/*
 * Update the default pinmux of the pins.
 * See these files for the phandles (&P9_* & &P8_*)
 * https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/compatibility/src/arm/am335x-bone-common-univ.dtsi
 * https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/compatibility/src/arm/am572x-bone-common-univ.dtsi
 */
&ocp {
    P9_24_pinmux { pinctrl-0 = <&P9_24_can_pin>;};  /* can rx */
    P9_26_pinmux { pinctrl-0 = <&P9_26_can_pin>;};  /* can tx */
};

/*
 * See these files for the phandles (&bone_*) and other bone bus nodes
 * https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/compatibility/src/arm/bbai-bone-buses.dtsi
 * https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/compatibility/src/arm/bbb-bone-buses.dtsi
 */
&bone_can_1 {
    status = "okay";
};

The &ocp code applies the pin muxing definitions for CAN on P9_24 (&P9_24_can_pin) and P9_26 (&P9_26_can_pin), which of course are different on AM3358 and AM5729.

Here are these definitions for AM3358 (am335x-bone-common-univ.dtsi):

P9_24_can_pin: pinmux_P9_24_can_pin { pinctrl-single,pins = <
       AM33XX_IOPAD(0x0984, PIN_INPUT_PULLUP | MUX_MODE2) >; };		/* uart1_txd.dcan1_rx */
...
P9_26_can_pin: pinmux_P9_26_can_pin { pinctrl-single,pins = <
       AM33XX_IOPAD(0x0980, PIN_OUTPUT_PULLUP | MUX_MODE2) >; };	/* uart1_rxd.dcan1_tx */

And those for AM5729 (am572x-bone-common-univ.dtsi):

P9_24_can_pin: pinmux_P9_24_can_pin { pinctrl-single,pins = <
        DRA7XX_CORE_IOPAD(0x368C, PIN_INPUT_PULLUP | MUX_MODE2) >; };	/* gpio6_15.dcan2_rx  */
...
P9_26_can_pin: pinmux_P9_26_can_pin { pinctrl-single,pins = <
	DRA7XX_CORE_IOPAD(0x3688, PIN_OUTPUT_PULLUP | MUX_MODE2) >; };	/* gpio6_14.dcan2_tx */

You can see that using a generic Device Tree phandle (&ref), you can use a definition which value depends on the Device Tree includes for each board.

The same idea was applied in enabling (status = "okay";) the CAN1 bus (&bone_can_1).

On AM3358, it is defined as (bbb-bone-buses.dtsi):

bone_can_1: &dcan1 {

};

And on AM5729, its definition is (bbai-bone-buses.dtsi):

bone_can_1: &dcan2 {

};

Conclusion

By adding a symlink property to the Device Tree sources, BeagleBoard.org has made it possible to make userspace code, in particular its code examples, support all the BeagleBone boards at the same time, even though the devices they drive have are numbered differently on different SoCs.

Such a technique may be reused by other projects interested in running the same software on boards based on different SoCs.

As far as GPIOs are concerned, the drivers/gpio/gpio-of-helper.c driver is specific to the BeagleBoard.org kernel and is unlikely to be accepted in the mainline kernel in its current state. However, there are other solutions, supported by the mainline kernel, to associate names to GPIOs and then to look up such GPIOs by name through libgpiod.

Last but not least, it’s possible to use the same Device Tree Overlay source code to support an extension board on similar boards, just by using common definitions having different values on each different platform. Any project can reuse this idea, which just uses standard Device Tree syntax.

References

Bootlin thanks BeagleBoard.org for funding the creation of this blog post. Note that another post is coming in the next weeks, about the extension board manager we added to U-Boot thanks to funding from BeagleBoard.org.

Linux 5.17 released: Bootlin contributions

Linux 5.17 has been released last Sunday. As usual, the best coverage of what is part of this release comes from LWN (part 1 and part 2), as well as KernelNewbies (unresponsive at the time of this writing) or CNX Software (for an ARM/RISC-V/MIPS focused description).

Bootlin contributed just 34 patches to this release, which isn’t a lot by the number of patches, but in fact includes a number of important new features. Also, we have many more contributions being discussed on the mailing lists or in preparation. For this 5.17 release here are the highlights of our contributions:

  • Alexandre Belloni, as the maintainer of the RTC subsystem, contributed one improvement to an RTC driver
  • Clément Léger improved the Microchip Ocelot Ethernet switch driver performance by implementing FDMA support. This allows network packets that are going from the switch to the CPU, or from the CPU to the switch to be received/sent in a much more efficient fashion than before. The Microchip Ocelot Ethernet switch driver was developed and upstreamed several years ago by Bootlin, see our previous blog post.
  • Clément Léger also contributed smaller fixes: a bug fix in the core software node code, and one PHY driver fix.
  • Hervé Codina implemented support for GPIO interrupts on the old ST Spear320 platform.
  • Maxime Chevallier contributed mqprio support to the Marvell Ethernet MAC mvneta driver, which was the topic of a previous blog post
  • Miquèl Raynal contributed a brand new NAND controller driver, for the NAND controller found in the Renesas RZ/N1 SoC. We expect to contribute to many more aspects of the Renesas RZ/N1 Linux kernel support in the next few months.
  • Miquèl Raynal contributed a few Device Tree changes enabling the ADC on the Texas Instruments AM473x platform, after contributing the driver changes a few releases ago.
  • Miquèl Raynal started contributing some improvements to the 802.15.4 Linux kernel stack, and we also have many more changes in the pipe for this Linux kernel subsystem.
  • Thomas Perrot added support for the Sierra EM919X modem to the existing MHI PCI driver.

Here is the full list of our contributions:

Multi-queue improvements in Linux kernel Ethernet driver mvneta

In the past months, the Linux kernel driver for the Ethernet MAC found in a number of Marvell SoCs, mvneta, has seen quite a few improvements. Lorenzo Bianconi brought support for XDP operations on non-linear buffers, a follow-up work on the already-great XDP support that offers very nice performances on that controller. Russell King contributed an improved, more generic and easier to maintain phylink support, to deal with the variety of embedded use-cases.

At that point, it’s getting difficult to squeeze more performances out of this controller. However, we still have some tricks we can use to improve some use-cases so in the past months, we’ve worked on implementing QoS features on mvneta, through the use of mqprio.

Multi-queue support

A simple Ethernet NIC (Network Interface Controller) could be described as a controller that handles some protocol-level aspect of the Ethernet standard, where the incoming and outgoing packets would be enqueued in a dedicated ring-buffer that serves as an interface between the controller and the kernel.

The buffer containing packets that needs to be sent is called the Transmit Queue, often written as txq. It’s fed by the kernel, where the NIC driver converts some struct sk_buff objects called skb, that represent packets trough their journey in the kernel, into buffers that are enqueued in the txq.

On the ingress side, the Receive Queue, written rxq, is fed by the MAC, and dequeued by the NIC driver, who creates skb containing the payload and attached metadata.

In the end, every incoming or outgoing packet is enqueued and dequeued in a typical first-in first-out fashion. When the queue is full, packets are dropped, everything is neat, simple and deterministic.

However, typical use-cases are never simple. Most modern NICs have several queues in TX and RX. On the receive side, it’s useful to have multiple queues for performance reasons. When receiving packets, we can spread the traffic across multiple queues (with RSS for example), and have one CPU core dedicated to each queue. More complex use-cases can be expressed, such as flow steering, that you can learn about in the kernel documentation.

On the transmit side, it’s a bit less obvious why we want to have multiple queues. If the CPU is the bottleneck in terms of performances, having multiple TX queues won’t help much. Still, there are ways to benefit from having multiple TX queues on a multi-cpu system with XPS.

However, when the line-rate is the bottleneck, having multiple queues gets useful. By sorting the outgoing traffic by priority and assign each priority to a TX queue, the NIC can then pick the next packet to send from the highest priority queue until it’s empty, and then move on to the next priority. That way, we implement what’s called QoS (Quality of Service), where we care about high-priority traffic making it through the controller.

QoS itself is useful for various reasons. Besides the obvious prioritization of high-value streams for not-so-neutral networking, we can also imagine tagging management traffic as high-priority, to guarantee the ability to remotely access a machine under heavy traffic.

Other applications can be in the realm of Time Sensitive Networking, where it’s important that time-sensitive traffic gets sent right-away, using the high-priority queues as shortcuts to bypass the low-priority over-crowded queues.

NICs can use more advanced algorithms to pick the queue to de-queue the packet from, in a process called arbitration, to give low-priority traffic a chance to get sent even when high-priority traffic takes most of the bandwidth.

Typical algorithms range from strict priority-based FIFO to more flexible Weighted Round-Robin arbitration, to allow at least a few low-priority packets to leave the NIC.

In the case of mvneta, we’re limited in terms of what we can do in the receive path. Most of the work we’ve done focused on the transmit side.

Traffic Priorisation and Arbitration

Multi-queue support on the TX path is a three-fold process.

First, we have to know which packets are high-priority and which aren’t, by assigning a value to the skb->priority field.

There are several ways of doing so, using iptables, nftables, tc, socket parameters through SO_PRIORITY, or switching parameters. This is outside of the scope of this article, we’ll assume that incoming packets are already prioritized through one of the above mechanisms.

Once the packet comes into the network stack as a skb, we need to assign it to a TX queue. That’s where tc-mqprio comes in play.

In that second step, we build a mapping between priorities and queues. This mapping is done through the use of an intermediate mapping, the Traffic Classes. A Traffic Class is a mapping between N priorities and M transmit queues. We therefore have 2 levels of mappings to configure :

  1. The priority to Traffic Class mapping (N to 1 mapping)
  2. The Traffic Class to TX queue mapping (1 to M mapping)

All of this is done in one single tc command. We’re not going to dive too much into the tc tool itself, but we’ll still see a bit how tc-mqprio works.

Here’s an example :

tc qdisc add dev eth0 parent root handle 100 mqprio num_tc 8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 1

Let’s break this down a bit.

Queuing Disciplines (QDiscs) are algorithms you use to select how and when you enqueue and dequeue traffic on a NIC. It benefits from great software support, but can also be offloaded to hardware, as we’ll see.

So the first part of the command is about attaching the mqprio QDisc to the network interface :

tc qdisc add dev eth0 parent root handle 100 mqprio

After that, we configure the traffic classes. Here, we create 8 traffic classes :

num_tc 8

And then we map each class to a priority. In this list, the n-th element corresponds to the class you want to assign to priority n. Here, we map the 8 first priorities to a dedicated class. Priorities that aren’t assigned a class are mapped to the class 0.

map 0 1 2 3 4 5 6 7

Finally, we map each class to a queue. Classes can only be assigned a contiguous set of queues, so the only parameters needed for the mapping are the number of queues assigned to the class (the number before the @), and the offset in the queue list (after the @). We specify one mapping per class, the m-th element in the list being the mapping for class number m. In the following example, we simply assign one queue per traffic class :

queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7

Under the hood, tc-mqprio will actually assign one QDisc per queue and map the Traffic Classes to these QDiscs, so that we can still hook other tc configurations on a per-queue basis.

Finally, we enable hardware offloading of the prioritization :

hw 1

The last part of the work consists in configuring the hardware itself to correctly prioritize each queue. That’s done by the NIC driver, which gets the configuration from the tc hooks.

If we take a look at the Hardware, we see that the queues are exposed to the kernel, which will enqueue packets into them. Each queue then has a Bandwidth Limiter, followed by the arbitration layer. Finally, we have one last global Rate limiter, and the path then continues to the egress blocks of the controller.

The arbiter configuration is easy, it’s just a matter of enabling the strict priority arbitration in a few registers.

Let’s summarize what the stack looks like :

Traffic shaping

Being able to prioritize outgoing traffic is good, but we can step-it up by allowing to limit the rate on each queue. That way, we can neatly organize and control how we want to use our bandwidth, not on a per-packet level but really on a bits/s basis.

Controlling the rate of individual flows or queues is called Traffic Shaping. When configuring a shaper, not only do we focus on the desired max rate, but also how we deal with traffic bursts. We can smooth them by tightly controlling how and when we send packets, or we can allow some burstiness by being more lenient on how often we enforce the rate limitation.

In the mvneta hardware, we have 2 levels of shaping : one level of per-queue shapers, and one per-port shaper. They can all be controlled semi-independently, some parameters being shared between all shapers.

With mqprio, the shapers are configured on a per-Traffic-Class basis. Since the hardware only allows per-queue shaping, we enforce in the driver that one traffic class is assigned to only one queue.

A final configuration with mqprio looks like this :

Most shapers use a variant of the Token Bucket Filter algorithm. The principle is the following :

Each queue has a Token Bucket, with a limited capacity. When a packet needs to be sent, one token per bit in the packet gets taken from the bucket. If the bucket is empty, transmission stops. The bucket then gets refilled at a configurable rate, with a configurable amount of tokens.

Configuring the TBF for each queue boils down to setting a few parameters :

– The Bucket Size, sometimes called burst, buffer or maxburst.

It should be big enough to accommodate for the shaping rate required, but not too big. If the bucket is too big and you have a very slow traffic going out, the bucket is going to fill up to its full size. When you suddenly have a lot of traffic to send, you’ll first have a huge burst, the time for the bucket to empty, before the traffic starts to actually get limited. Unlike the tc-tbf interface, tc-mqprio doesn’t allow to change the burst size, so it’s up to the driver to set it.

– The Refill Rate, sometimes called tick, defining how often you refill the bucket.
– The Refill Value, defining how many tokens you put back into the bucket at each refill.

These two, combined together, define the actual rate limitation. The approach taken to select the value is to select a fixed value for one of the parameters, and vary the other one to select the desired rate. In the case of mvneta, we chose to use a fixed refill rate, and change the refill value. This means that we have a limited resolution in the rates we can express. In our case, we have a 10kbps resolution, allowing us to cover any rate limitation between 10kbps and 5Gbps, with 10k increments.

– One final parameter is the minburst or MTU parameter, and controls the minimum amount of tokens required to allow packet transmission.
Since transmission stops when the bucket is empty, we can end-up with an empty bucket in the middle of a packet being transmitted.The link-partner may not be too happy about that, so it’s common to set the Maximum Transmission Unit as the minimum amount of tokens required to trigger transmission.

That way, we are sure that when we start sending a packet, we’ll always have enough tokens in the bucket to send the full packet. We can play a bit with this parameter if we want to buffer small packets and send them in a short burst when we have enough. In our case, we simply configured it as the MTU, which is good enough for most cases.

In the end, the gains are not necessarily measurable in terms of raw performances, but thanks to mqprio and traffic shaping, we can now have better control on the traffic that comes out of our interface.

An example of configuration would be :

# Shaping and priority configuration
tc qdisc add dev eth0 parent root handle 100 mqprio \
num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
hw 1 mode channel shaper bw_rlimit \
max_rate 1Gbit 500Mbit 250Mbit 125Mbit 50Mbit 25Mbit 25Mbit 25MBit

# Assign HTTP traffic a priority of 1, to limit it to 500Mbps
iptables -t mangle -A POSTROUTING -p tcp --dport 80 -j CLASSIFY \
--set-class 0:1

There are tons of other use-cases, for example limiting per-vlan speeds, or in contrary making sure that traffic on a specific vlan has the highest priority, and all of that mostly offloaded to the hardware itself !

Luca Ceresoli joins Bootlin team

Welcome on board!The entire team at Bootlin is extremely happy to welcome Luca Ceresoli, who started working with us on March 1, 2022. Based in Italy, Luca is the first employee of Bootlin based outside of France, and we plan to continue to expand our hiring in a similar way in the future.

Luca brings a vast amount of embedded and embedded Linux expertise to the Bootlin team. Luca has been working on embedded products since 2002, and embedded Linux products since 2008. He has helped design, develop and ship products based on a large number of embedded processors, developing complete BSPs, developing Linux kernel drivers, integrating complete systems using Buildroot or Yocto. Luca has also contributed to the Linux kernel, Buildroot, and several open-source projects, and has spoken several times at FOSDEM, the Embedded Linux Conference, and other events.

Luca’s arrival at Bootlin not only means that we have more capacity to help our customers with their embedded Linux projects, but also that we have more capacity to deliver training courses, and a new ability to deliver some of our training courses in Italian.

Once again, welcome on board Luca!