SFP modules on a board running Linux

We recently worked on Linux support for a custom hardware platform based on the Texas Instruments AM335x system-on-chip, with a somewhat special networking setup: each of the two ports of the AM335x Ethernet MAC was connected to a Microchip VSC8572 Ethernet PHY, which itself allowed to access an SFP cage. In addition, the I2C buses connected to the SFP cages, which are used at runtime to communicate with the inserted SFP modules, instead of being connected to an I2C controller of the system-on-chip as they usually are, where connected to the I2C controller embedded in the VSC8572 PHYs.

The below diagram depicts the overall hardware layout:

Our goal was to use Linux and to offer runtime dynamic reconfiguration of the networking links based the SFP module plugged in. To achieve this we used, and extended, a combination of Linux kernel internal frameworks such as Phylink or the SFP bus support; and of networking device drivers. In this blog post, we’ll share some background information about these technologies, the challenges we faced and our current status.

Introduction to the SFP interface

SFP moduleThe small form-factor pluggable (SFP) is a hot-pluggable network interface module. Its electrical interface and its form-factor are well specified, which allows industry players to build platforms that can host SFP modules, and be sure that they will be able to use any available SFP module on the market. It is commonly used in the networking industry as it allows connecting various types of transceivers to a fixed interface.

A SFP cage provides in addition to data signals a number of control signals:

  • a Tx_Fault pin, for transmitter fault indication
  • a Tx_Disable pin, for disabling optical output
  • a MOD_Abs pin, to detect the absence of a module
  • an Rx_LOS pin, to denote a receiver loss of signal
  • a 2-wire data and clock lines, used to communicate with the modules

Modules plugged into SFP cages can be direct attached cables, in which case they do not have any built-in transceiver, or they can include a transceiver (i.e an embedded PHY), which transforms the signal into another format. This means that in our setup, there can be two PHYs between the Ethernet MAC and the physical medium: the Microchip VSC8572 PHY and the PHY embedded into the SFP module that is plugged in.

All SFP modules embed an EEPROM, accessible at a standardized I2C address and with a standardized format, which allows the host system to discover which SFP modules are connected what are their capabilities. In addition, if the SFP modules contains an embedded PHY, it is also accessible through the same I2C bus.

Challenges

We had to overcome a few challenges to get this setup working, using a mainline Linux kernel.

As we discussed earlier, having SFP modules meant the whole MAC-PHY-SFP link has to be reconfigured at runtime, as the PHY in the SFP module is hot-pluggable. To solve this issue a framework called Phylink, was introduced in mid-2017 to represent networking links and allowing their component to share states and to be reconfigured at runtime. For us, this meant we had to first convert the CPSW MAC driver to use this phylink framework. For a detailed explanation of what composes Ethernet links and why Phylink is needed, we gave a talk at the Embedded Linux Conference Europe in 2018. While we were working on this and after we first moved the CPSW MAC driver to use Phylink, this driver was rewritten and a new CPSW MAC driver was sent upstream (CONFIG_TI_CPSW vs CONFIG_TI_CPSW_SWITCHDEV). We are still using the old driver for now, and this is why we did not send our patches upstream as we think it does not make sense to convert a driver which is now deprecated.

A second challenge was to integrate the 2-wire capability of the VSC8572 PHY into the networking PHY and SFP common code, as our SFP modules I2C bus is connected to the PHY and not an I2C controller from the system-on-chip. We decided to expose this PHY 2-wire capability as an SMBus controller, as the functionality offered by the PHY does not make it a fully I2C compliant controller.

Outcome

The challenges described above made the project quite complex overall, but we were able to get SFP modules working, and to dynamically switch modes depending on the capabilities of the one currently plugged-in. We tested with both direct attached cables and a wide variety of SFP modules of different speeds and functionality. At the moment only a few patches were sent upstream, but we’ll contribute more over time.

For an overview of some of the patches we made and used, we pushed a branch on Github (be aware those patches aren’t upstream yet and they will need some further work to be acceptable upstream). Here is the details of the patches:

In terms of Device Tree representation, we first have a description of the two SFP cages. They describe the different GPIOs used for the control signals, as well as the I2C bus that goes to each SFP cage. Note that the gpio_sfp is a GPIO expander, itself on I2C, rather than directly GPIOs of the system-on-chip.

/ {
       sfp_eth0: sfp-eth0 {
               compatible = "sff,sfp";
               i2c-bus = <&phy0>;
               los-gpios = <&gpio_sfp 3 GPIO_ACTIVE_HIGH>;
               mod-def0-gpios = <&gpio_sfp 4 GPIO_ACTIVE_LOW>;
               tx-disable-gpios = <&gpio_sfp 5 GPIO_ACTIVE_HIGH>;
               tx-fault-gpios = <&gpio_sfp 6 GPIO_ACTIVE_HIGH>;
       };

       sfp_eth1: sfp-eth1 {
               compatible = "sff,sfp";
               i2c-bus = <&phy1>;
               los-gpios = <&gpio_sfp 10 GPIO_ACTIVE_HIGH>;
               mod-def0-gpios = <&gpio_sfp 11 GPIO_ACTIVE_LOW>;
               tx-disable-gpios = <&gpio_sfp 13 GPIO_ACTIVE_HIGH>;
               tx-fault-gpios  = <&gpio_sfp 12 GPIO_ACTIVE_HIGH>;
       };
};

Then the MAC is described as follows:

&mac {
      pinctrl-names = "default";
       pinctrl-0 = <&cpsw_default>;
       status = "okay";
       dual_emac;
};

&cpsw_emac0 {
       status = "okay";
       phy = <&phy0>;
       phy-mode = "rgmii-id";
       dual_emac_res_vlan = <1>;
};

&cpsw_emac1 {
       status = "okay";
       phy = <&phy1>;
       phy-mode = "rgmii-id";
       dual_emac_res_vlan = <2>;
};

So we have both ports of the MAC enabled with a RGMII interface to the PHY. And finally the MDIO bus of the system-on-chip is described as follows. We have two sub-nodes, one for each VSC8572 PHY, respectively at address 0x0 and 0x1 on the CPSW MDIO bus. Each PHY is connected to its respective SFP cage node (sfp_eth0 and sfp_eth1) and provides access to the SFP EEPROM as regular EEPROMs.

&davinci_mdio {
       pinctrl-names = "default";
       pinctrl-0 = <&davinci_mdio_default>;
       status = "okay";

       phy0: ethernet-phy@0 {
               #address-cells = <1>;
               #size-cells = <0>;

               reg = <0>;
               fiber-mode;
               vsc8584,los-active-low;
               sfp = <&sfp_eth0>;

               sfp0_eeprom: eeprom@50 {
                       compatible = "atmel,24c02";
                       reg = <0x50>;
                       read-only;
               };

               sfp0_eeprom_ext: eeprom@51 {
                       compatible = "atmel,24c02";
                       reg = <0x51>;
                       read-only;
               };
       };

       phy1: ethernet-phy@1 {
               #address-cells = <1>;
               #size-cells = <0>;

               reg = <1>;
               fiber-mode;
               vsc8584,los-active-low;
               sfp = <&sfp_eth1>;

               sfp1_eeprom: eeprom@50 {
                       compatible = "atmel,24c02";
                       reg = <0x50>;
                       read-only;
               };

               sfp1_eeprom_ext: eeprom@51 {
                       compatible = "atmel,24c02";
                       reg = <0x51>;
                       read-only;
               };
       };
};

Conclusion

While we are still working on pushing all of this work upstream, we’re happy to have been able to work on these topics. Do not hesitate to reach out of to us if you have projects that involve Linux and SFP modules!

Issues with changing Ethernet device names

Beagle boardNo eth0 interface in your system!

If you are using Ubuntu or Debian on ARM, as I am doing at the moment, you may be surprised to see that your system has an eth1 interface (or even eth5), but no eth0!.

This also happens on x86, of course, and probably with other distributions. I faced and understood this problem when I migrated a KVM virtual machine from a regular network interface card to a virtio one. eth0 was gone, and because my network settings were bound to this interface, I couldn’t connect to my virtual machine anymore.

In recent releases of Ubuntu, this happens because of some udev rules, which try to make sure that each network card always gets bound to the same ethx device. So, every time the system see a new network card, the /etc/udev/rules.d/70-persistent-net.rules file gets updated as follows:

# This file was automatically generated by the /lib/udev/write_net_rules
# program, run by the persistent-net-generator.rules rules file.
#
# You can modify it, as long as you keep each rule on a single
# line, and change only the value of the NAME= key.

# PCI device 0x14e4:0x167a (tg3)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:18:8b:87:52:12", ATTR{type}=="1",
KERNEL=="eth*", NAME="eth0"

# USB device 0x:0x (asix)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:25:00:eb:eb:26", ATTR{type}=="1", KERNEL=="eth*",  NAME="eth1"

This can happen if you replace a USB to Ethernet dongle by another one with a different MAC address, or if you reuse a filesystem built on another board. Even if the board and Ethernet device are the same, you will get eth1 instead of eth0. This can be annoying if you configured your network through /etc/network/interfaces or if you bring up your network with your own scripts.

A clean solution for this problem is simply to remove the /etc/udev/rules.d/70-persistent-net.rules file. The next time you boot, you will get back to a normal eth0 network device.

I checked that these persistent net naming rules are not part of udev releases. In other distributions, you could have udev without such rules.