Slides and videos from the Embedded Linux Conference Europe 2016

Last month, the entire Bootlin engineering team attended the Embedded Linux Conference Europe in Berlin. The slides and videos of the talks have been posted, including the ones from the seven talks given by Bootlin engineers:

  • Alexandre Belloni presented on ASoC: Supporting Audio on an Embedded Board, slides and video.
  • Boris Brezillon presented on Modernizing the NAND framework, the big picture, slides and video.
  • Boris Brezillon, together with Richard Weinberger from sigma star, presented on Running UBI/UBIFS on MLC NAND, slides and video.
  • Grégory Clement presented on Your newer ARM64 SoC Linux check list, slides and video.
  • Thomas Petazzoni presented on Anatomy of cross-compilation toolchains, slides and video.
  • Maxime Ripard presented on Supporting the camera interface on the C.H.I.P, slides and video.
  • Quentin Schulz and Antoine Ténart presented on Building a board farm: continuous integration and remote control, slides and video.

Bootlin at the X.org Developer Conference 2016

The X.org Foundation hosts every year around september the X.org Developer Conference, which, unlike its name states, is not limited to X.org developers, but gathers all the Linux graphics stack developers, including X.org, Mesa, wayland, and other graphics stacks like ChromeOS, Android or Tizen.

This year’s edition was held last week in the University of Haaga-Helia, in Helsinki. At Bootlin, we’ve had more and more developments on the graphic stack recently through the work we do on Atmel and NextThing Co’s C.H.I.P., so it made sense to attend.

XDC 2016 conference

There’s been a lot of very interesting talks during those three days, as can be seen in the conference schedule, but we especially liked a few of those:

DRM HWComposer – SlidesVideo

The opening talk was made by two Google engineers from the ChromeOS team, Sean Paul and Zach Reizner. They talked about the work they did on the drm_hwcomposer they wrote for the Pixel C, on Android.

The hwcomposer is one of the HAL in Android that interfaces between Surface Flinger, the display manager, and the underlying display driver. It aims at providing hardware composition features, so that Android can leverage the capacities of the display engine to perform compositions (through planes and sprites), without having to use the CPU or the GPU to do this work.

The drm_hwcomposer started out as yet another hwcomposer library implementation for the tegra-drm driver in Linux. While they implemented it, it turned into some generic enough implementation that should be useful for all the DRM drivers out there, and they even introduced some particularly nice features, to split the final screen content into several planes based on the actual displayed content rather than on windows like it’s usually done.

Their work also helped to point out a few flaws in the hwcomposer API, that will eventually be fixed in a new revision of that API.

ARC++ SlidesVideo

The next talk was once again from a ChromeOS engineer, David Reveman, who came to show his work on ARC++, the component in ChromeOS that allows to run Android applications. He was obviously mostly talking about the display side.

In order to achieve that, he had to implement an hwcomposer that would just act as a proxy between SurfaceFlinger and Wayland that is used on the ChromeOS side. The GL rendering is still direct though, and each Android application will talk directly to the GPU, as usual. Only the composition will be forwarded to the ChromeOS side.

In order to minimize that composition process, whenever possible, ARC++ tries to back each application with an overlay so that the composition would happen directly in hardware.

This also led to some interesting challenges, especially since some of the assumptions of both systems are in contradiction. For example, any application can be resized in ChromeOS, while it’s not really a thing in Android where all the applications run full screen.

HDR Displays in Linux – SlidesVideo

The next talk we found interesting was Andy Ritger from nVidia explaining how the HDR displays were supposed to be handled in Linux.

He first started by explaining what HDR is exactly. While the HDR is just about having a wider range of luminance than on a regular display, you often also get a wider gamut with HDR capable displays. This means that on those screens you can display a wider range of colors, and with a better range and precision in their intensity. And
while the applications have been able to generate HDR content for more than 10 years, the rest of the display stack wasn’t really ready, meaning that you had convert the HDR colors to colors that your monitor was able to display, using a technique called tone mapping.

He then explained than the standard, non-HDR colorspace, sRGB, is not a linear colorspace. This means than by doubling the encoded luminance of a color, you will not get a color twice brighter on your display. This was meant this way because the human eye is much more sensitive to the various shades of colors when they are dark than when they are bright. Which essentially means that the darker the color is, the more precision you want to get.

However, the luminance “resolution” on the HDR display is so good that you actually don’t need that anymore, and you can have a linear colorspace, which is in our case SCRGB.

But drawing blindly in all your applications in SCRGB is obviously not a good solution either. You have to make sure that your screen supports it (which is exposed through its EDIDs), but also that you actually tell your screeen to switch to it (through the infoframes). And that requires some support in the kernel drivers.

The Anatomy of a Vulkan Driver – SlidesVideo

This talk by Jason Ekstrand was some kind of a war story of the bring up Intel did of a Vulkan implementation on their GPU.

He first started by saying that it was actually a not so long project, especially when you consider that they wrote it from scratch, since it took roughly 3 full-time engineers 8 months to come up with a fully compliant and open source stack.

He then explained why Vulkan was needed. While OpenGL did amazingly well to cope with the hardware evolutions, it was still designed over 20 years ago, This proved to have some core characteristics that are not really relevant any more, and are holding the application developers back. For example, he mentioned that at its core, OpenGL is based on a singleton-based state machine, that obviously doesn’t scale well anymore on our SMP systems. He also mentioned that it was too abstracted, and people just wanted a lower level API, or that you might want to render things off screen without X or any context.

This was fixed in Vulkan by effectively removing the state machine, which allows it to scale, push things like the error checking or the synchronization directly to the applications, making the implementation much simpler and less layered which also simplifies the development and debugging.

He then went on to discuss how we could share the code that was still shared between the two implementations, like implementing OpenGL on top of Vulkan (which was discarded), having some kind of lighter intermediate language in Mesa to replace Gallium or just sharing through a library the common bits and making both the OpenGL and Vulkan libraries use that.

Motivating preemptive GPU scheduling for real-time systems – SlidesVideo

The last talk that we want to mention is the talk on preemptive scheduling by Roy Spliet, from the University of Cambridge.

More and more industries, and especially the automotive industry, offload some computations to the GPU for example to implement computer vision. This is then used in a car to implement the autonomous driving to make the car recognize signs or stay in its lane. And obviously, this kind of computations are supposed to be handled in a real time
system, since you probably don’t want your shiny user interface for the heating to make your car crash in the car before it because its rendering was taking too long.

He first started to explain what real time means, and what the usual metrics are, which should to no surprise to people used to “CPU based” real time systems: latency, deadline, execution time, and so on.

He then showed a bunch of benchmarks he used to test his preemptive scheduler, in a workload that was basically running OpenArena while running some computations, on various nouveau based platforms (both desktop-grade GPUs, and embedded SoCs).

This led to some expected conclusions, like the fact that a preemptive scheduler is indeed adding some overhead, but is on average worth it, while some have been quite interesting. He was for example observing some worst case latencies that were quite rare (0.3%), but were actually interferences from the display engine filling up its empty FIFOs, and creating some contention on the memory bus.

Conclusion

Overall, this has been a great experience. The organisation was flawless, and the one-track-only format allows you to meet easily both the speakers and attendees. The content was also highly technical, as you might expect, which made us learn a lot and led us to think about some interesting developments we could do on our various projects in the future, such as NextThing Co’s CHIP.

Bootlin at the Kernel Recipes conference

Kernel RecipesThe 2016 edition of the Kernel Recipes conference will take place from September 28th to 30th in Paris. With talks from kernel developers Jonathan Corbet, Greg Kroah-Hartmann, Daniel Vetter, Laurent Pinchart, Tejun Heo, Steven Rosdedt, Kevin Hilman, Hans Verkuil and many others, the schedule looks definitely very appealing, and indeed the event is now full.

Thomas Petazzoni, Bootlin CTO, will be attending this event. If you’re interested in discussing business or career opportunities with Bootlin, this event will be a great place to meet together.

Bootlin at the X Developer Conference

The next X.org Developer Conference will take place on September 21 to September 23 in Helsinki, Finland. This is a major event for Linux developers working in the graphics/display areas, not only at the X.org level, but also at the kernel level, in Mesa, and other related projects.

Bootlin engineer Maxime Ripard will be attending this conference, with 80+ other engineers from Intel, Google, NVidia, Texas Instruments, AMD, RedHat, etc.

Maxime is the author of the DRM/KMS driver in the upstream Linux kernel for the Allwinner SoCs, which provides display support for numerous Allwinner platforms, especially Nextthing’s CHIP (with parallel LCD support, HDMI support, VGA support and composite video support). Maxime has also worked on making the 3D acceleration work on this platform with a mainline kernel, by adapting the Mali kernel driver. Most recently, Maxime has been involved in Video4Linux development, writing a driver for the camera interface of Allwinner SoCs, and supervising Florent Revest work on the Allwinner VPU that we published a few days ago.

Bootlin at the Embedded Linux Conference Europe

The next Embedded Linux Conference Europe will take place from October 11 to October 13 in Berlin, Germany. As usual, the entire Bootlin engineering team will participate, which means this time 10 participants from Bootlin!

Embedded Linux Conference Europe 2016

The schedule for the conference has been published recently, and a number of our talk proposals have been accepted, so we will present on the following topics:

Like every year, we’re looking forward to attending this conference, and meeting all the nice folks of the Embedded Linux community!

“Understanding D-Bus” talk at the Toulouse Embedded Linux Meetup

A few months ago, in May, Bootlin engineer Mylène Josserand presented a talk titled Understanding D-Bus at the Toulouse Embedded Linux and Android meetup.

In this talk, Mylène shared her experience working with D-Bus, especially in conjunction with the OFono and Connman projects, to support modem and 3G connections on embedded Linux systems.

Understanding D-Bus

We are now publishing the slides of Mylène’s talk, they are available in PDF format.

Slides from the Embedded Linux Conference

Two weeks ago, the entire Bootlin engineering team (9 persons) attended the Embedded Linux Conference in San Diego. We had some really good time there, with lots of interesting talks and useful meetings and discussions.

Tim Bird opening the conferenceDiscussion between Linus Torvalds and Dirk Hohndel

In addition to attending the event, we also participated by giving 5 different talks on various topics, for which we are publishing the slides:

Boris Brezillon, the new NAND Linux subsystem maintainer, presented on Modernizing the NAND framework: The big picture.

Boris Brezillon's talk on the NAND subsystem

Antoine Ténart presented on Using DT overlays to support the C.H.I.P’s capes.

Antoine Tenart's talk on using DT overlays for the CHIP

Maxime Ripard, maintainer of the Allwinner platform support in Linux, presented on Bringing display and 3D to the C.H.I.P computer.

Maxime Ripard's talk on display and 3D for the CHIP

Alexandre Belloni and Thomas Petazzoni presented Buildroot vs. OpenEmbedded/Yocto Project: a four hands discussion.

Belloni and Petazzoni's talk on OpenEmbedded vs. Buildroot

Thomas Petazzoni presented GNU Autotools: a tutorial.

Petazzoni's tutorial on the autotools

All the other slides from the conference are available from the event page as well as from eLinux.org Wiki. All conferences have been recorded, and the videos will hopefully be posted soon by the Linux Foundation.

Slides from Collaboration Summit talk on Linux kernel upstreaming

As we announced in a previous blog post, Bootlin CTO Thomas Petazzoni gave a talk at the Collaboration Summit 2016 covering the topic of “Upstreaming hardware support in the Linux kernel: why and how?“.

The slides of the talk are now available in PDF format.

Upstreaming hardware support in the Linux kernel: why and how?

Upstreaming hardware support in the Linux kernel: why and how?

Upstreaming hardware support in the Linux kernel: why and how?

Through this talk, we identified a number of major reasons that should encourage hardware vendors to contribute the support for their hardware to the upstream Linux kernel, and some hints on how to achieve that. Of course, within a 25 minutes time slot, it was not possible to get into the details, but hopefully the general hints we have shared, based on our significant Linux kernel upstreaming experience, have been useful for the audience.

Unfortunately, none of the talks at the Collaboration Summit were recorded, so no video will be available for this talk.

“Porting Linux on ARM” seminar road show in France

CaptronicIn December 2015, Bootlin engineer Alexandre Belloni gave a half-day seminar “Porting Linux on ARM” in Toulouse (France) in partnership with french organization Captronic. We published the materials used for the seminar shortly after the event.

We are happy to announce that this seminar will be given in four different cities in France over the next few months:

  • In Montpellier, on April 14th from 2 PM to 6 PM. See this page for details.
  • In Clermont-Ferrand, on April 27th from 2 PM to 6 PM. See this page for details.
  • In Brive, on April 28th from 9 AM to 1 PM. See this page for details.
  • Near Chambéry, on May 25th from 9:30 AM to 5/30 PM. See this page for details.
  • Near Bordeaux, on June 2nd from 2 PM to 6 PM. See this page for details.
  • Near Nancy, on June 16th from 2 PM to 6 PM. See this page for details.

The seminar is delivered in French, and the event is free after registration. The speaker, Alexandre Belloni, has worked on porting botloaders and the Linux kernel on a number of ARM platforms (Atmel, Freescale, Texas Instruments and more) and is the Linux kernel co-maintainer for the RTC subsystem and the support of the Atmel ARM processors.

Bootlin at the Embedded Linux Conference 2016

Like every year for about 10 years, the entire Bootlin engineering team will participate to the next Embedded Linux Conference, taking place on April 4-6 in San Diego, California. For us, participating to such conferences is very important, as it allows to remain up to date with the latest developments in the embedded Linux world, create contacts with other members of the embedded Linux community, and meet the community members we already know and work with on a daily basis via the mailing lists or IRC.

Embedded Linux Conference 2016

Over the years, our engineering team has grown, and with the arrival of two more engineers on March 14, our engineering team now gathers 9 persons, all of whom are going to participate to the Embedded Linux Conference.

As usual, in addition to attending, we also proposed a number of talks, and some of them have been accepted and are visible in the conference schedule:

As usual, our talks are centered around our areas of expertise: hardware support in the Linux kernel, especially for ARM platforms, and build system related topics (Buildroot, Yocto, autotools).

We are looking forward to attending this event, and see many other talks from various speakers: the proposed schedule contains a wide range of topics, many of which look really interesting!