%

Supporting the Camera
Interface on the C.H.I.P

Maxime Ripard
maxime®@bootlin.com

bootlin

©

embedded Linux and kernel engineering




» Embedded Linux engineer and trainer at Bootlin
» Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, consulting, etc.
» Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and
Buildroot training, with materials freely available under a Creative Commons license.

> http://bootlin.com

» Contributions

» Co-maintainer for the sunXi SoCs from Allwinner
» Contributor to a couple of other open-source projects, Buildroot, U-Boot, Barebox

» Living in Toulouse, south west of France


http://bootlin.com

Introduction



9% SBC

Based on an Allwinner R8 (equivalent to A13)

1GHz Cortex-A8 CPU

Mali 400 GPU

Plenty of GPIOs to bitbang stuff (and real controllers too!)

Running mainline-ish Linux kernel (4.4 at the moment)

vVvyVvVvyypy



> A significant part of the work already done

» But key features for a desktop-like application were missing
» NAND support
» Display, GPU
» Audio, Camera, VPU

» Plus board specific developments

» WiFi regulators
» DIP



Video Capture in Linux



» Introduced in 2002, in 2.5.46
» Supports a wide range of devices
» Video Capture (Camera, tuners)
» Memory to memory devices (Hardware codecs, scalers, deinterlacers)

> Radio receivers and transceivers
> SDR



Camera Bus

RAM < Controller Camera

A

12C



» There's a wide range of video formats...

» ... And even weird variations of them

» Most of the time, the controller and the sensor don't support the same set of
formats

» Some negotiation needs to happen between the controller and the camera to
agree on a common format.



> You also need to implement the streaming hooks
» Addresses two things:

» Memory Management: Buffer allocation, queuing and dequeuing
» Streaming control

> With the formats, the only really needed operations



User

Other device

Controller

Camera Bus

Allocated by the
driver

Camera

12C




v

Generic implementation of that streaming API
Relies on a smaller, simpler set of callbacks to implement

Different videobuf implementations, depending on your setup (backed by vmalloc,
scatter gather DMA or contiguous DMA)
Also has a notion of streaming modes, which control the source of the buffers,
among

» The driver

> The user-space (if the device supports it)

> Some other device (through DMA-BUF)
The new callbacks are only there to tell videobuf the size and number of buffers to
allocate, insert new buffers in a DMA chain, or start and stop the streaming



» Your device might need additional set up for things like
» White balance
» Saturation
» Brightness
> etc.

» By default, no controls are implemented, but the driver needs to declare them
during probe, and handle them in a dedicated callback.



» You'll usually have two drivers:

» One for the controller, usually in drivers/media/platform
> And one for the camera, in drivers/media/i2c

> By default, exposed to the userspace as one single device /dev/videoX
» You need some synchronization between the two: v4l2-async
» Very similar to what is found in ASoC or DRM

» Basically a two-stage probe



Set format:

v

Set controls

!

Allocate buffers

v

Queue Buffers Start Streaming

|

Flip Buffers 4—|(— Interrupt

Stop Streaming

Dequeue Buffers




» Some formats require multi-plane support

» Depending on the format, it might need 1 to 3 buffers
» Supported in v4l through a different capture type

» The callbacks are different too, but very similar

» You basically just have to deal with more buffers



Controller

Controller

Camera Bus

A

Camera

12C



v

When the pipeline gets more complicated, the amount of controls to expose in the
video device starts to be impossible to deal with

The media controller API allows to expose one device file per component in the
pipeline
Each of them can be accessed independently, for example with media-ctl

It might even simplify your driver, because all the format negotiation will not be
relevant anymore.



» v4l|2-compliance is awesome

» v4|2-info

P> yavta

» Any v4l enabled application (Cheese?)



Future developments

Maxime Ripard
maxime®@bootlin.com

@© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

bootlin

embedded Linux and kernel engineering




» Our camera and display engines can work in the same format (but no driver
support for it yet in the DRM driver)

» The display engine is even able to re-scale the video coming from the camera (but
there's no driver support for it yet).

» Finding which component in userspace could do that. Gstreamer? Something a la
ALSA cards configuration files?



» We have some work on-going to support the VPU on the Allwinner SoCs
» Reverse engineering

» Decoding works for some codecs and image formats

» Encoding is not really understood right now

» Figure it out and support encoding through the VPU



Questions? Suggestions? Comments?

Maxime Ripard

maxime®@bootlin.com

Slides under CC-BY-SA 3.0

http://bootlin.com/pub/conferences/2016/elce/ripard-v4l


http://bootlin.com/pub/conferences/2016/elce/ripard-v4l

