
Embedded Linux Conference 2016

Your newer ARM64 SoC
Linux check list!
Gregory CLEMENT
gregory@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Your newer ARM64 SoC Linux check list!

What is new in the ARM linux kernel since our
last check list ?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Gregory CLEMENT

▶ Embedded Linux engineer and trainer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Contributing to kernel support for the Armada 370,

375, 38x, 39x and Armada XP ARM SoCs and Armada
3700 ARM64 SoCs from Marvell.

▶ Co-maintainer of mvebu sub-architecture (SoCs from
Marvell Engineering Business Unit)

▶ Living near Lyon, France

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Background

▶ December 2012, initial support for
ARM 64-bits merged in the kernel 3.7.

▶ No real hardware at this stage.
▶ Support for first arm64 SoC in 3.11

(June 2013).
▶ Support for second arm64 SoC in 3.18

(December 2014 through arm-soc).

commit 81f56e5375e84689b891e0e6c5a02ec12a1f18d9
Merge: 6c09931b3f98 27aa55c5e512
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Mon Oct 1 11:51:57 2012 -0700

Pull arm64 support from Catalin Marinas:
"Linux support for the 64-bit ARM architecture (AArch64)

Features currently supported:
- 39-bit address space for user and kernel (each)
- 4KB and 64KB page configurations
- Compat (32-bit) user applications (ARMv7, EABI only)
- Flattened Device Tree (mandated for all AArch64 platforms)
- ARM generic timers"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Why?

▶ New architecture usually comes with new requirements and a new development
process.

▶ However arm64 is still an ARM architecture.
▶ This talk is an attempt to summarize some of the differences and similarities

with ARM 32-bits, and provide guidelines for developers willing to add support
for new ARM 64-bits SoCs in the mainline Linux kernel.
▶ but it might be useful for people porting Linux on new boards as well.

▶ Part of the talk will be based on Thomas Petazzoni talk at ELC 2013: ”Your new
ARM SoC Linux support check-list!” but focusing on arm64 and updated for the
common part.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



ARM 32-bits vs ARM 64-bits

▶ ARM 32-bits in kernel: from ARMv4 to ARMv7.
▶ ARM 64-bits: one mode of the ARMv8.
▶ 64-bits mode of ARMv8 is called AARCH64 (gcc).
▶ ARM64 comes with virtualization instructions and other improvements.
▶ New Linux kernel architecture not merged with ARM 32-bits:

▶ Assembly code is different.
▶ System call interface: uses a new ABI.
▶ Platform support already moved in the drivers.
▶ Basic infrastructure should move too.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Know who are the maintainers

▶ Catalin Marinas and Will Deacon are the maintainers for the core ARM 64
support.

▶ Arnd Bergmann and Olof Johansson are the arm-soc maintainers. All the
arm64 (and still arm) SoC code must go through them. They ensure consistency
between how the various SoC families handle similar problems.

▶ Also need to interact with the subsystem maintainers:
▶ drivers/clocksource, Daniel Lezcano, Thomas Gleixner.
▶ drivers/irqchip, Thomas Gleixner, Jason Cooper, Marc Zyngier.
▶ drivers/pinctrl, Linus Walleij.
▶ drivers/gpio, Linus Walleij, Alexandre Courbot.
▶ drivers/clk, Stephen Boyd, Mike Turquette.

▶ Primary mailing list: linux-arm-kernel@lists.infradead.org

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Where is the code, when to submit?

No change since last talk for arm.
▶ The arm-soc Git tree is at https:

//git.kernel.org/?p=linux/kernel/git/arm/arm-soc.git;a=summary.
▶ Watch the for-next branch that contains what will be submitted by the ARM SoC

maintainers during the next merge window.
▶ Generally, the ARM SoC maintainers want to have integrated all the code from

the different ARM sub-architectures a few (two?) weeks before Linus opens the
merge window.

▶ If you submit your code during the Linus merge window, there is no way it will get
integrated at this point: it will have to wait for the next merge window.

▶ Usual Linux contribution guidelines apply: people will make comments on your
code, take them into account, repost. Find the good balance between patience
and perseverance.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 

https://git.kernel.org/?p=linux/kernel/git/arm/arm-soc.git;a=summary
https://git.kernel.org/?p=linux/kernel/git/arm/arm-soc.git;a=summary


Existing code?

▶ You have existing Linux kernel code to support your SoC?
▶ There are 50% chances that you should throw it away completely.

▶ SoC support code written by SoC vendors used to not comply with the Linux coding
rules, the Linux infrastructures, to have major design issues, to be ugly, etc.

▶ arm64 is still pretty new and SoC vendors didn’t have time to be too creative.
▶ For arm some SoC vendors have reduced the gap between their internal tree and the

mainline kernel.
▶ However some of them still rely on sources based on the old fashion kernel.

▶ Of course, existing code is useful as a reference to know how the hardware works.
But the code to be submitted should still often be written from scratch.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Step 1: start minimal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Device Tree

▶ The purpose of the Device Tree is to move a significant part of the hardware
description into a data structure that is no longer part of the kernel binary itself.

▶ This data structure, the Device Tree Source is compiled into a binary Device
Tree Blob

▶ The Device Tree Blob is loaded into memory by the bootloader, and passed to
the kernel.

▶ Usage of the Device Tree is mandatory for all new ARM SoCs. No way around it.
▶ For arm64 it is the only part of the port which goes under the arch/arm64

directory.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Writing your Device Tree

▶ Add one <soc>.dtsi file in arch/arm64/boot/dts/<vendor>/ that describes
the devices in your SoC.
▶ You can also have multiple <soc>.dtsi files including each other with the

/include/ directive, if you have an SoC family with multiple SoCs having common
things, but also specific things.

▶ The .dtsi files are also used to keep big amount of data like the pinctrl.
▶ Add one <board>.dts file in arch/arm64/boot/dts/<vendor>/ for each of the

boards you support. It should /include/ the appropriate .dtsi file.
▶ Add a dtb-$(CONFIG_ARCH_<yourarch>) line in

arch/arm64/boot/dts/<vendor>/Makefile for all your board .dts files so
that all the .dtbs are automatically built.

▶ The main difference with arch/arm, is the use of a directory by vendor. For ARM
32-bits, all the device tree files are located in arch/arm/boot/dts/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Example on Armada 3700 support

armada-37xx.dtsi
▶ armada-371x.dtsi
▶ armada-372x.dtsi

▶ Board armada-3720-db.dts
▶ Board armada-3720-espressobin.dts

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



vulcan.dtsi

#include <dt-bindings/interrupt-controller/arm-gic.h>

/ {
model = "Broadcom Vulcan";
compatible = "brcm,vulcan-soc";
interrupt-parent = <&gic>;
#address-cells = <2>;
#size-cells = <2>;

/* just 4 cpus now, 128 needed in full config */
cpus {

#address-cells = <0x2>;
#size-cells = <0x0>;

cpu@0 {
device_type = "cpu";
compatible = "brcm,vulcan", "arm,armv8";
reg = <0x0 0x0>;
enable-method = "psci";

};
[...]

};

psci {
compatible = "arm,psci-0.2";
method = "smc";

};

gic: interrupt-controller@400080000 {
compatible = "arm,gic-v3";
#interrupt-cells = <3>;
#address-cells = <2>;
#size-cells = <2>;

[...]
};

timer {
compatible = "arm,armv8-timer";
interrupts = <GIC_PPI 13 IRQ_TYPE_LEVEL_HIGH>,

<GIC_PPI 14 IRQ_TYPE_LEVEL_HIGH>,
<GIC_PPI 11 IRQ_TYPE_LEVEL_HIGH>,
<GIC_PPI 10 IRQ_TYPE_LEVEL_HIGH>;

};
[...]

soc {
compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <2>;
ranges;

uart0: serial@402020000 {
compatible = "arm,pl011", "arm,primecell";
reg = <0x04 0x02020000 0x0 0x1000>;
interrupt-parent = <&gic>;
interrupts = <GIC_SPI 49 IRQ_TYPE_LEVEL_HIGH>;

[...]
};

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



vulcan-eval.dts

#include "vulcan.dtsi"

/ {
model = "Broadcom Vulcan Eval Platform";
compatible = "brcm,vulcan-eval", "brcm,vulcan-soc";

memory {
device_type = "memory";
reg = <0x00000000 0x80000000 0x0 0x80000000>, /* 2G @ 2G */

<0x00000008 0x80000000 0x0 0x80000000>; /* 2G @ 34G */
};

aliases {
serial0 = &uart0;

};

chosen {
stdout-path = "serial0:115200n8";

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



No arch/arm64/mach-<yourarch> for arm64

▶ ARCH_<yourarch> option, as well as sub-options for each SoC is now directly in
the arch/arm64/Kconfig.platforms file

▶ No more C files specific to an SoC family under arch/arm64.
▶ The SoC features should be handled by the drivers.
▶ If the feature of the SoC can’t fit an existing class driver, then the code could go to

drivers/soc/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



arch/arm64/Kconfig.platform

config ARCH_MYSOC
bool "Wonderful SoC"
select CLKSRC_OF
select GENERIC_IRQ_CHIP
select GPIOLIB
select MYSOC_CLK
select PINCTRL
select PINCTRL_MYSOC

▶ Less CONFIG_ symbols that used to be needed for ARM.
▶ Many symbols are now set by default with ARM64.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Earlycon support

▶ The first thing to have is obviously a mean to get early messages from the kernel.
▶ For arm, earlyprintk used to be the way to achieve this.

▶ Need to setup the UARTs address at SoCs level early during the boot.
▶ Usage of earlyprintk was not compatible with multiarch kernel.

▶ For arm64, earlycon is mandatory.
▶ At serial driver level.
▶ Part of console support.
▶ Declared in the driver by using EARLYCON_DECLARE and OF_EARLYCON_DECLARE

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



IRQ controller support

▶ If your platform uses the GIC v2 or v3 interrupt controllers, there are already
drivers in drivers/irqchip.

▶ Otherwise, implement a new one at the same location.
▶ It must support the SPARSE_IRQ and irqdomain mechanisms: no more fixed

number of IRQs NR_IRQS: an IRQ domain is dynamically allocated for each
interrupt controller.

▶ It must support the MULTI_IRQ_HANDLER mechanism, where your
DT_MACHINE_START structure references the IRQ controller handler through its
->handle_irq() field.

▶ In your DT_MACHINE_START structure, also call the initialization function of your
IRQ controller driver using the ->init_irq() field.

▶ Instantiated from your Device Tree .dtsi file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Timer driver

▶ Should be implemented in drivers/clocksource.
▶ It must register:

▶ A clocksource device, which using a free-running timer, provides a way for the kernel
to keep track of passing time. See clocksource_mmio_init() if your timer value
can be read from a simple memory-mapped register, or
clocksource_register_hz() for a more generic solution.

▶ A clockevents device, which allows the kernel to program a timer for one-shot or
periodic events notified by an interrupt. See
clockevents_config_and_register()

▶ The driver must have a Device Tree binding, and the device be instantiated from
your Device Tree .dtsi file.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Serial port driver

▶ These days, many arm and arm64 SoCs use either a 8250-compatible UART, or
the PL011 UART controller from ARM. In both cases, Linux already has a driver.
▶ Just need to instantiate devices in your .dtsi file, and mark those that are available

on a particular board with status = "okay" in the .dts file.
▶ If you have a custom UART controller, then get ready for more fun. You’ll have

to write a complete driver in drivers/tty/serial.
▶ A platform driver, with Device Tree binding, integrated with the uart and console

subsystems
▶ Do not forget to include the earlycon support.
▶ The maintainer is Greg Kroah-Hartmann.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



End of step 1

▶ At this point, your system should boot all the way to a shell
▶ You don’t have any storage device driver for now, but you can boot into a

minimal root filesystem embedded inside an initramfs.
▶ For arm64, the kernel does not decompress itself, so if there is no support in the

bootloader too, the kernel image can be pretty large: around 20MB.
▶ Time to submit your basic arm64 SoC support. Don’t wait to have all the drivers

and all the features: submit something minimal as soon as possible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Step 2: more core infrastructure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



The clock framework

▶ A proper clock framework has been added in kernel 3.4, released in May 2012.
▶ This framework:

▶ Implements the clk_get, clk_put, clk_prepare, clk_unprepare, clk_enable,
clk_disable, clk_get_rate, etc. API for usage by device drivers

▶ Implements some basic clock drivers (fixed rate, gatable, divider, fixed factor, etc.)
and allows the implementation of custom clock drivers using struct clk_hw and
struct clk_ops.

▶ Allows to declare the available clocks and their association to devices in the Device
Tree.

▶ Provides a debugfs representation of the clock tree.
▶ Is implemented in drivers/clk.
▶ See Documentation/clk.txt.
▶ See also http://bootlin.com/pub/conferences/2013/elce/common-clock-framework-

how-to-use-it/common-clock-framework-how-to-use-it.pdf
▶ The new trend is to only have one node in the device tree which will expose all the

clocks that can be consumed.
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Clock framework, the driver side

From drivers/serial/tty/amba-pl011.c.

pl011_startup()
{

[...]
clk_prepare_enable(uap->clk);
uap->port.uartclk = clk_get_rate(uap->clk);
[...]

}
pl011_shutdown()
{

[...]
clk_disable_unprepare(uap->clk);

}
pl011_probe()
{

[...]
uap->clk = clk_get(&dev->dev, NULL);
[...]

}
pl011_remove()
{

[...]
clk_put(uap->clk);
[...]

}

▶ The remove() part could be avoided
by using the managed API:
devm_clk_get()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Clock framework, declaration of clocks in DT

From arch/arm/boot/dts/sun6i-a31.dtsi

clocks {
#address-cells = <1>;
#size-cells = <1>;
ranges;

osc24M: osc24M {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <24000000>;

};

osc32k: clk@0 {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <32768>;
clock-output-names = "osc32k";

};

[...]
}
soc@01c00000 {
[...]

ccu: clock@01c20000 {
compatible = "allwinner,sun6i-a31-ccu";
reg = <0x01c20000 0x400>;
clocks = <&osc24M>, <&osc32k>;
clock-names = "hosc", "losc";
#clock-cells = <1>;
#reset-cells = <1>;

};
[...]
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Clock framework, devices referencing their clocks

From arch/arm/boot/dts/sun6i-a31.dtsi

[...]
uart0: serial@01c28000 {

compatible = "snps,dw-apb-uart";
reg = <0x01c28000 0x400>;
interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_APB2_UART0>;
resets = <&ccu RST_APB2_UART0>;
dmas = <&dma 6>, <&dma 6>;
dma-names = "rx", "tx";
status = "disabled";

};
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



Clock framework: summary

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Introduction to pin muxing

▶ SoCs integrate many more peripherals than the number of available pins allows to
expose.

▶ Many of those pins are therefore multiplexed: they can either be used as function
A, or function B, or function C, or a GPIO.

▶ Example of functions are:
▶ parallel LCD lines
▶ SDA/SCL lines for I2C buses
▶ MISO/MOSI/CLK lines for SPI
▶ RX/TX/CTS/DTS lines for UARTs

▶ This muxing is software-configurable, and depends on how the SoC is used on
each particular board.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Pin muxing: principle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



The pin-muxing subsystem

▶ The new pinctrl subsystem aims at solving those problems
▶ Mainly developed and maintained by Linus Walleij, from Linaro/ST-Ericsson
▶ Implemented in drivers/pinctrl
▶ Provides:

▶ An API to register pinctrl driver, i.e. entities knowing the list of pins, their functions,
and how to configure them. Used by SoC-specific drivers to expose pin-muxing
capabilities.

▶ An API for device drivers to request the muxing of a certain set of pins.
▶ An interaction with the GPIO framework.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



The pin-muxing subsystem: diagram

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Declaring pin groups in the SoC dtsi

▶ From arch/arm64/boot/dts/amlogic/meson-gxbb.dtsi.
▶ Declares the pinctrl device and various pin groups.

pinctrl_aobus: pinctrl@14 {
compatible = "amlogic,meson-gxbb-aobus-pinctrl";
#address-cells = <2>;
#size-cells = <2>;
ranges;

gpio_ao: bank@14 {
reg = <0x0 0x00014 0x0 0x8>,

<0x0 0x0002c 0x0 0x4>,
<0x0 0x00024 0x0 0x8>;

reg-names = "mux", "pull", "gpio";
gpio-controller;
#gpio-cells = <2>;

};

uart_ao_a_pins: uart_ao_a {
mux {

groups = "uart_tx_ao_a", "uart_rx_ao_a";
function = "uart_ao";

};
};

[...]
i2c_ao_pins: i2c_ao {
mux {

groups = "i2c_sck_ao", "i2c_sda_ao";
function = "i2c_ao";

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



Associating devices with pin groups, board dts

▶ From arch/arm64/boot/dts/amlogic/meson-gxbb-odroidc2.dts.

[...]
&uart_AO {

status = "okay";
pinctrl-0 = <&uart_ao_a_pins>;
pinctrl-names = "default";

};

[...]
&i2c_A {

status = "okay";
pinctrl-0 = <&i2c_a_pins>;
pinctrl-names = "default";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



Device drivers requesting pin muxing

▶ From drivers/mmc/host/mxs-mmc.c

static int mxs_mmc_probe(struct platform_device *pdev)
{

[...]
pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
if (IS_ERR(pinctrl)) {

ret = PTR_ERR(pinctrl);
goto out_mmc_free;

}
[...]

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



GPIO

▶ All GPIO drivers, including drivers for GPIO controllers internal to the SoC must
be in drivers/gpio.

▶ If the GPIO pins are muxed, the driver must interact with the pinctrl subsystem to
get the proper muxing: pinctrl_request_gpio() and pinctrl_free_gpio().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



Step 3: more drivers, advanced features

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Device drivers

▶ Each device driver must have a device tree binding.
▶ A binding describes the compatible string and the properties that a DT node

instantiating the device must carry.
▶ The binding must be documented in Documentation/devicetree/bindings.

▶ Pay attention of the 64-bits support
▶ arm64 SoCs reused driver developed for ARM 32-bits.
▶ Driver supposed to be portable,
▶ However being used only on 32-bits architecture some bugs could have been missed.
▶ Use uintptr_t to cast pointer.
▶ Pay attention to the peripheral bus which can have a smaller size than the CPU bus.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 



Conclusion

▶ The code in the arch/arm64 tree is cleaner than the one in arm/soc.
▶ It benefits on all the consolidation done in arch/arm without having to deal with

legacy code.
▶ Adding an initial support for a new ARM64 SoCs needs very few line of code now.
▶ However some of the complexity is hidden in a firmware (SCPI and PSCI) and

power management is still challenging.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 



Questions?

Gregory CLEMENT
gregory.clement@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2016/elce/clement-arm64-soc-checklist

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

http://bootlin.com/pub/conferences/2016/elce/clement-arm64-soc-checklist

