
Embedded Linux Conference 2017

Power Management Integrated
Circuits: Keep the power in
your hands

Quentin Schulz
Bootlin
quentin.schulz@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/44

 



Quentin Schulz

▶ Quentin Schulz
▶ Embedded Linux and kernel engineer at

Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus
▶ Linux kernel contributors, ARM SoC support,

kernel maintainers
▶ Worked on drivers for AXP20X/AXP22X

PMICs,

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/44

 



Table of contents

What’s a PMIC?

Commonly integrated features
Regulators
Power supplies

Miscellaneous - PMIC-specific parts
ADC for current values
MFD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/44

 



Embedded Linux Conference 2017

What’s a PMIC?
Quentin Schulz
quentin.schulz@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/44

 



What’s a PMIC?

▶ PMIC = Power Management Integrated Circuit,
▶ handles the power sequence of the board,
▶ supplies power to the different components inside the board,
▶ protects the board from unsupported overvoltage and undervoltage,
▶ might handle different external power supplies,
▶ can provide other misc features (GPIO, ADC, ...),
▶ is usually software-controllable (often as an i2c device),
▶ is not mandatory (e.g. Raspberry Pi and Orange Pi),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/44

 



Boards without a PMIC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/44

 



Active Semi ACT8865 (Atmel Sama5d3 Xplained)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/44

 



TI TPS65217x (BeagleBone Black)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/44

 



Boards with an X-Powers AXP20X PMIC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/44

 



Embedded Linux Conference 2017

Commonly integrated
features
Quentin Schulz
quentin.schulz@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/44

 



Commonly integrated features

Regulators

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/44

 



Regulators

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/44

 



Regulators

▶ PMIC supplies power to components requiring different input voltages (5V, 3V3,
1V8, ...),

▶ DC-DC converters and LDO regulators handle the different voltages,
▶ to save power, regulators can stop supplying power to their unused components,
▶ some components support a range of input voltages,
▶ PMIC handles all that,
▶ their regulator adapts its voltage depending on some parameters (e.g. load,

thermal throttling),
▶ variable regulators allow to reduce power consumption (undervolting) and increase

power (overvolting),
▶ allows CPU/GPU DVFS (Dynamic Voltage and Frequency Scaling),
▶ is the core of battery life and power consumption,

▶ regulators are part of the regulator framework (drivers/regulators/),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/44

 



Regulator driver example: AXP20X regulators driver

drivers/regulators/axp20x-regulator.c
static struct regulator_ops axp20x_ops = {

.set_voltage_sel = regulator_set_voltage_sel_regmap,

.get_voltage_sel = regulator_get_voltage_sel_regmap,

.list_voltage = regulator_list_voltage_linear,

.enable = regulator_enable_regmap,

.disable = regulator_disable_regmap,

.is_enabled = regulator_is_enabled_regmap,
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/44

 



Regulator driver example: AXP20X regulators driver

drivers/regulators/axp20x-regulator.c
static const struct regulator_desc axp20x_regulators[] = {

[AXP20X_DCDC2] = {
.name = "dcdc2",
.supply_name = "vin2",
.of_match = of_match_ptr("dcdc2"),
.regulators_node = of_match_ptr("regulators"),
.type = REGULATOR_VOLTAGE,
.id = AXP20X_DCDC2,
.n_voltages = (2275 - 700) / (25 + 1),
.owner = THIS_MODULE,
.min_uV = 700 * 1000,
.uV_step = 25 * 1000,
.vsel_reg = AXP20X_DCDC2_V_OUT,
.vsel_mask = 0x3f,
.enable_reg = AXP20X_PWR_OUT_CTRL,
.enable_mask = 0x10,
.ops = &axp20x_ops,

},
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/44

 



Regulator driver example: AXP20X regulators driver

drivers/regulators/axp20x-regulator.c
static int axp20x_regulator_probe(struct platform_device *pdev)
{

struct regulator_dev *rdev;
struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
const struct regulator_desc *regulators;
struct regulator_config config = {

.dev = pdev->dev.parent,

.regmap = axp20x->regmap,

.driver_data = axp20x,
};

[...]
for (i = 0; i < ARRAY_SIZE(axp20x_regulators); i++) {

rdev = devm_regulator_register(&pdev->dev, axp20x_regulators[i], &config);
if (IS_ERR(rdev)) {

dev_err(&pdev->dev, "Failed to register %s\n",
regulators[i].name);

return PTR_ERR(rdev);
}

}
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/44

 



Power supplies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/44

 



Commonly integrated features

Power supplies

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/44

 



Power supplies - Overview

The PMIC
▶ takes care of all possible supported external supplies:

▶ AC (socket), USB, battery, ...
▶ defines the power sequence for the board,
▶ protects from overvoltage/undervoltage (e.g. X-Powers AXPs are designed for 5V

boards but handles 0.3-11V)
▶ chooses the most suitable one depending on the status of each (low battery, not

enough current supplied by a power supply, ...)
▶ may handle the battery (recharging, handling recharge cycles),

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/44

 



Power Supply subsystem

▶ is located in drivers/power/supply,
▶ has typically one driver per physical input power supply,
▶ can expose different data[1], such as current voltage and current, battery capacity,

battery type, temperature, ...
▶ can set as many data, such as minimum and maximum allowed voltage or current,

battery voltage when full,
▶ exposed information is specific to a PMIC (e.g. AXP20X can read current voltage

and current values of the AC and USB power supplies unlike AXP22X),
[1]http://lxr.bootlin.com/source/include/linux/power_supply.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/44

 

http://lxr.bootlin.com/source/include/linux/power_supply.h


Power Supply driver example: AXP20X USB driver

drivers/power/supply/axp20x_usb_power.c
static enum power_supply_property axp20x_usb_power_properties[] = {

POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_VOLTAGE_MIN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,

};

static int axp20x_usb_power_prop_writeable(struct power_supply *psy,
enum power_supply_property psp)

{
return psp == POWER_SUPPLY_PROP_VOLTAGE_MIN;

}

static const struct power_supply_desc axp20x_usb_power_desc = {
.name = "axp20x-usb",
.type = POWER_SUPPLY_TYPE_USB,
.properties = axp20x_usb_power_properties,
.num_properties = ARRAY_SIZE(axp20x_usb_power_properties),
.property_is_writeable = axp20x_usb_power_prop_writeable,
.get_property = axp20x_usb_power_get_property,
.set_property = axp20x_usb_power_set_property,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/44

 



Power Supply driver example: AXP20X USB driver

include/linux/power_supply.h
union power_supply_propval {

int intval;
const char *strval;

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/44

 



Power Supply driver example: AXP20X USB driver

drivers/power/supply/axp20x_usb_power.c
static int axp20x_usb_power_get_property(struct power_supply *psy, enum power_supply_property psp,

union power_supply_propval *val)
{

struct axp20x_usb_power *power = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:

return axp20x_usb_power_is_present(power, &val->intval);
[...]
}
return -EINVAL;

}

static int axp20x_usb_power_set_property(struct power_supply *psy, enum power_supply_property psp,
const union power_supply_propval *val)

{
struct axp20x_usb_power *power = power_supply_get_drvdata(psy);

switch (psp) {
case POWER_SUPPLY_PROP_VOLTAGE_MIN:

return axp20x_usb_power_set_voltage_min(power, val->intval);
[...]
}
return -EINVAL;

}
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/44

 



Power Supply driver example: AXP20X USB driver

drivers/power/supply/axp20x_usb_power.c
static int axp20x_usb_power_probe(struct platform_device *pdev)
{

/* Custom structure */
struct axp20x_usb_power *power;
struct power_supply_config psy_cfg = {};

power = devm_kzalloc(&pdev->dev, sizeof(*power), GFP_KERNEL);
if (!power)

return -ENOMEM;

/* For use in other functions which call power_supply_get_drvdata */
psy_cfg.drv_data = power;
[...]
power->supply = devm_power_supply_register(&pdev->dev, axp20x_usb_power_desc, &psy_cfg);
if (IS_ERR(power->supply))

return PTR_ERR(power->supply);
[...]
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/44

 



Embedded Linux Conference 2017

Miscellaneous -
PMIC-specific parts
Quentin Schulz
quentin.schulz@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/44

 



Parts specific to some PMICs

▶ Buttons: detect when the power reset button is pushed to shutdown the system
(drivers/power/reset),

▶ GPIO: e.g. the AXP PMICs have several pins you can use either as GPIO or ADC,
▶ RTC with backup battery to keep time between reboots,
▶ Fuel gauge (if logically separated from the battery driver),
▶ ADC: e.g. AXP PMICs can expose what is the current voltage/current of a power

supply,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/44

 



Miscellaneous - PMIC-specific parts

ADC for current values

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/44

 



ADC driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/44

 



ADC - Current data values

▶ some PMICs can give some data in real time,
▶ internal temperature, supplied voltage, consumed current, (dis)charging current,

battery percentage, ...
▶ often stored in registers of an embedded Analog to Digital Converter (ADC),
▶ proper way: have a driver for this ADC feeding data to the power supply drivers,

▶ the subsystem for ADC drivers is Industrial I/O (drivers/iio/adc)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/44

 



IIO driver example: AXP20X ADC driver

drivers/iio/adc/axp20x_adc.c
#define AXP20X_ADC_CHANNEL(_channel, _name, _type, _reg) \

{ \
.type = _type, \
.indexed = 1, \
.channel = _channel, \
.address = _reg, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \

BIT(IIO_CHAN_INFO_SCALE), \
.datasheet_name = _name, \

}

enum axp20x_adc_channel_v {
AXP20X_ACIN_V = 0,
AXP20X_VBUS_V,
[...]

};

enum axp20x_adc_channel_i {
AXP20X_ACIN_I = 0,
AXP20X_VBUS_I,
[...]

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/44

 



IIO driver example: AXP20X ADC driver

drivers/iio/adc/axp20x_adc.c
/* Describe your IIO channels */
static const struct iio_chan_spec axp20x_adc_channels[] = {

AXP20X_ADC_CHANNEL(AXP20X_VBUS_V, "vbus_v", IIO_VOLTAGE,
AXP20X_VBUS_V_ADC_H),

AXP20X_ADC_CHANNEL(AXP20X_VBUS_I, "vbus_i", IIO_CURRENT,
AXP20X_VBUS_I_ADC_H),

[...]
};

static int axp20x_adc_scale(struct iio_chan_spec const *chan, int *val, int *val2)
{

switch (chan->type) {
case IIO_VOLTAGE:

if (chan->channel == AXP20X_VBUS_I) {
*val = 0;
*val2 = 375000;
return IIO_VAL_INT_PLUS_MICRO;

}
return -EINVAL;

[...]
}

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/44

 



IIO driver example: AXP20X ADC driver

drivers/iio/adc/axp20x_adc.c
static int axp20x_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val,

int *val2, long mask)
{

struct axp20x_adc_iio *info = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:

*val = axp20x_read_variable_width(info->regmap, chan->address, 12);
if (*val < 0)

return *val;
return IIO_VAL_INT;

case IIO_CHAN_INFO_SCALE:
return axp20x_adc_scale(indio_dev, chan, val);

default:
return -EINVAL;

}
}

/* Specify the functions used when reading or writing to a sysfs entry */
static const struct iio_info axp20x_adc_iio_info = {

.read_raw = axp20x_read_raw,

.write_raw = axp20x_write_raw,

.driver_module = THIS_MODULE,
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/44

 



IIO driver example: AXP20X ADC driver

drivers/iio/adc/axp20x_adc.c
/* Feed a consumer driver via an IIO channel */
static struct iio_map axp20x_maps[] = {

{
/* Name of the driver */
.consumer_dev_name = "axp20x-usb-power-supply",
/* The name under which the IIO channel will be gotten from the consumer driver */
.consumer_channel = "vbus_v",
/* The datasheet_name of the IIO channel to feed */
.adc_channel_label = "vbus_v",

}, {
.consumer_dev_name = "axp20x-usb-power-supply",
.consumer_channel = "vbus_i",
.adc_channel_label = "vbus_i",

}, { /* sentinel */ },
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/44

 



IIO driver example: AXP20X ADC driver

drivers/iio/adc/axp20x_adc.c
static int axp20x_probe(struct platform_device *pdev)
{

struct axp20x_adc_iio *info;
struct iio_dev *indio_dev;
int ret;

indio_dev = devm_iio_device_alloc(&pdev->dev,
sizeof(*info));

if (!indio_dev)
return -ENOMEM;

/* For use in other functions which call
* iio_priv */
info = iio_priv(indio_dev);

indio_dev->name = "axp20x_ac";
[...]

indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = axp20x_adc_iio_info;
indio_dev->num_channels =

ARRAY_SIZE(axp20x_adc_channels);
indio_dev->channels = axp20x_adc_channels;
ret = iio_map_array_register(indio_dev,

axp20x_maps);
if (ret < 0)

return ret;

ret = iio_device_register(indio_dev);
if (ret < 0)

return ret;
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/44

 



IIO driver example: AXP20X ADC driver

drivers/power/supply/axp20x_usb_power.c
static int axp20x_usb_power_get_property(struct power_supply *psy,

enum power_supply_property psp,
union power_supply_propval *val)

{
struct axp20x_usb_power *power = power_supply_get_drvdata(psy);

switch (psp) {
[...]
case POWER_SUPPLY_PROP_VOLTAGE_NOW:

ret = iio_read_channel_processed(power->vbus_v, &val->intval);
val->intval *= 1000;
return 0;

}
return -EINVAL;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/44

 



IIO driver example: AXP20X ADC driver

drivers/power/supply/axp20x_usb_power.c
static int axp20x_usb_power_probe(struct platform_device *pdev)
{

struct axp20x_usb_power *power;
[...]
power->vbus_v = devm_iio_channel_get(&pdev->dev, "vbus_v");
if (IS_ERR(power->vbus_v)) {

if (PTR_ERR(power->vbus_v) == -ENODEV)
return -EPROBE_DEFER;

return PTR_ERR(power->vbus_v);
}
[...]
power->supply = devm_power_supply_register(&pdev->dev, usb_power_desc, &psy_cfg);
if (IS_ERR(power->supply))

return PTR_ERR(power->supply);
return 0;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/44

 



Parts specific to boards - Fuel gauge

▶ battery percentage is approximated from its voltage,
▶ battery voltage does not linearly decrease in time or load,
▶ rather follows a curve, called the Open Circuit Voltage (OCV) curve,
▶ the curve is battery-specific (might be given by the battery vendor),
▶ the curve depends on several factors (environment, number of charges, age of

battery, usage, ...),
▶ the battery percentage approximation by software must be done in userspace,
▶ use of POWER_SUPPLY_PROP_VOLTAGE_OCV property:

▶ if software approximated, to give points on the OCV curve,
▶ if hardware approximated, to get/set the points defining OCV curve used in the

PMIC,

Worth reading: https:
//training.ti.com/sites/default/files/BatteryMonitoringBasics.ppt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/44

 

https://training.ti.com/sites/default/files/BatteryMonitoringBasics.ppt
https://training.ti.com/sites/default/files/BatteryMonitoringBasics.ppt


Parts specific to boards - Fuel gauge

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/44

 



Miscellaneous - PMIC-specific parts

MFD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/44

 



MFD - The glue between all this

▶ probes the different drivers of the PMIC (called MFD cells),
▶ maps the interrupts to the drivers which need them,
▶ usually passes a regmap to the MFD cells so it makes sure the drivers do not write

to and access the same registers at the same time,

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/44

 



MFD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/44

 



MFD

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/44

 



MFD driver example: AXP20X MFD driver

drivers/mfd/axp20x.c
static struct resource axp20x_usb_power_supply_resources[] = {

DEFINE_RES_IRQ_NAMED(AXP20X_IRQ_VBUS_PLUGIN, "VBUS_PLUGIN"),
};

static struct mfd_cell axp20x_cells[] = {
{

.name = "axp20x-usb-power-supply",

.of_compatible = "x-powers,axp202-usb-power-supply",

.num_resources = ARRAY_SIZE(axp20x_usb_power_supply_resources),

.resources = axp20x_usb_power_supply_resources,
}, [...]

};

int axp20x_device_probe(struct i2c_client *i2c, const struct i2c_device_id *id)
{

/* Do all the regmap configuration, regmap_irqs included */
ret = mfd_add_devices(&i2c->dev, -1, axp20x_cells,

ARRAY_SIZE(axp20x_cells), NULL, irq_base, NULL);

if (ret)
return ret;

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/44

 



Questions? Suggestions? Comments?

Quentin Schulz
quentin.schulz@bootlin.com

Slides under CC-BY-SA 3.0
http://bootlin.com/pub/conferences/2017/elc/schulz-pmics-keep-power-in-your-hands/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/44

http://bootlin.com/pub/conferences/2017/elc/schulz-pmics-keep-power-in-your-hands/

	What's a PMIC?
	Commonly integrated features
	Regulators
	Power supplies

	Miscellaneous - PMIC-specific parts
	ADC for current values
	MFD


