Back from ELCE: selection of talks from the Bootlin team

As discussed in our previous blog post, Bootlin had a strong presence at the Embedded Linux Conference Europe, with 7 attendees, 4 talks, one BoF and one poster during the technical show case.

In this blog post, we would like to highlight a number of talks from the conference that we found interesting. Each Bootlin engineer who attended the conference has selected one talk, and gives his/her feedback about this talk.

uClibc Today: Still Makes Sense – Alexey Brodkin

Talk selected by Michael Opdenacker

uClibc Today: Still Makes Sense – Alexey BrodkinAlexey Brodkin, an active contributor to the uClibc library, shared recent updates about this C library, trying to show people that the project was still active and making progress, after a few years during which it appeared to be stalled. Alexey works for Synopsys, the makers of the ARC architecture, which uClibc supports.

If you look at the repository for uClibc releases, you will see that since version 1.0.0 released in 2015, the project has made 26 releases according to a predictable schedule. The project also runs runtime regression tests on all its releases, which weren’t done before. The developers have also added support for 4 new architectures (arm64 in particular), and uClibc remains the default C library that Buildroot proposes.

Alexey highlighted that in spite of the competition from the musl library, which causes several projects to switch from uClibc to musl, uClibc still makes a lot of sense today. As a matter of fact, it supports more hardware architectures than glibc and musl do, as it’s the only one to support platforms without an MMU (such as noMMU ARM, Blackfin, m68k, Xtensa) and as the library size is still smaller that what you get with musl (though a static hello_world program is much smaller with musl if you have a close look at the library comparison tests he mentioned).

Alexey noted that the uClibc++ project is still alive too, and used in OpenWRT/Lede by default.

Read the slides and watch the video of his talk.

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu Tsai

Talk selected by Quentin Schulz

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu TsaiAn SoC is made of multiple IP blocks from different vendors. In some cases the source or model of the hardware blocks are neither documented nor marketed by the SoC vendor. However, since there are only very few vendors of a given IP block, stakes are high that your SoC vendor’s undocumented IP block is compatible with a known one.

With his experience in developing drivers for multiple IP blocks present in Allwinner SoCs and as a maintainer of those same SoCs, Chen-Yu first explained that SoC vendors often either embed some vendors’ licensed IP blocks in their SoCs and add the glue around it for platform- or SoC-specific hardware (clocks, resets and control signals), or they clone IP blocks with the same logic but some twists (missing, obfuscated or rearranged registers).

To identify the IP block, we can dig into the datasheet or the vendor BSP and compare those with well documented datasheets such as the one for NXP i.MX6, TI KeyStone II or the Zynq UltraScale+ MPSoC, or with mainline drivers. Asking the community is also a good idea as someone might have encountered an IP with the same behaviour before and can help us identify it quicker.

Some good identifiers for IPs could be register layouts or names along with DMA logic and descriptor format. For the unlucky ones that have been provided only a blob, they can look for the symbols in it and that may slightly help in the process.

He also mentioned that identifying an IP block is often the result of the developer’s experience in identifying IPs and other time just pure luck. Unfortunately, there are times when someone couldn’t identify the IP and wrote a complete driver just to be told by someone else in the community that this IP reminds him of that IP in which case the work done can be just thrown away. That’s where the community plays a strong role, to help us in our quest to identify an IP.

Chen-Yu then went on with the presentation of the different ways to handle the multiple variants of an IP blocks in drivers. He said that the core logic of all IP drivers is usually presented as a library and that the different variants have a driver with their own resources, extra setup and use this library. Also, a good practice is to use booleans to select features of IP blocks instead of using the ID of each variant.
For IPs whose registers have been altered, the way to go is usually to write a table for the register offsets, or use regmaps when bitfields are also modified. When the IP block differs a bit too much, custom callbacks should be used.

He ended his talk with his return from experience on multiple IP blocks (UART, USB OTG, GMAC, EMAC and HDMI) present in Allwinner SoCs and the differences developers had to handle when adding support for them.

Read the slides and watch the video of his talk.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey Senozhatsky

Talks selected by Boris Brezillon. Boris also covered the related talk “printk: It’s Old, What Can We Do to Make It Young Again?” from the same speakers.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey SenozhatskyMaybe I should be ashamed of saying that but printk() is one of the basic tool I’m using to debug kernel code, and I must say it did the job so far, so when I saw these presentations talking about how to improve printk() I was a bit curious. What could be wrong in printk() implementation?
Before attending the talks, I never digged into printk()’s code, because it just worked for me, but what I thought was a simple piece of code appeared to be a complex infrastructure with locking scheme that makes you realize how hard it is when several CPUs are involved.

At its core, printk() is supposed to store logs into a circular buffer and push new entries to one or several consoles. In his first talk Steven Rostedt walked through the history of printk() and explained why it became more complex when support for multi CPU appeared. He also detailed why printk() is not re-entrant and the problem it causes when called from an NMI handler. He finally went through some fixes that made the situation a bit better and advertised the 2nd half of the talk driven by Sergey Senozhatsky.

Note that between these two presentations, the printk() rework has been discussed at Kernel Summit, so Sergey already had some feedback on his proposals. While Steven presentation focused mainly on the main printk() function, Sergey gave a bit more details on why printk() can deadlock, and one of the reasons why preventing deadlocks is so complicated is that printk() delegates the ‘print to console’ aspect to console drivers which have their own locking scheme. To address that, it is proposed to move away from the callback approach and let console drivers poll for new entries in the console buffer instead, which would remove part of the locking issues. The problem with this approach is that it brings even more uncertainty on when the logs are printed on the consoles, and one of the nice things about printk() in its current form is that you are likely to have the log printed on the output before printk() returns (which helps a lot when you debug things).

He also mentioned other solutions to address other possible deadlocks, but I must admit I got lost at some point, so if you’re interested in this topic I recommend that you watch the video (printk(): The Most Useful Tool is Now Showing its Age, sadly no video is available for the second talk) and read the slides (printk(): The Most Useful Tool is Now Showing its Age and printk: It’s Old, What Can We Do to Make It Young Again?).

More robust I2C designs with a new fault-injection driver – Wolfram Sang

Talk selected by Miquèl Raynal

More robust I2C designs with a new fault-injection driver – Wolfram SangAlthough Wolfram had a lot of troubles starting its presentation lacking a proper HDMI adaptater, he gave an illuminating talk about how, as an I2C subsystem maintainer, he would like to strengthen the robustness of I2C drivers.

He first explained some basics of the I2C bus like START and STOP conditions and introduced us to a few errors he regularly spots in drivers. For instance, some badly written drivers used a START and STOP sequence while a “repeated START” was needed. This is very bad because another master on the bus could, in this little spare idle delay, decide to grab the medium and send its message. Then the message right after the repeated START would not have the expected effect. Of course plenty other errors can happen: stalled bus (SDA or SCL stuck low), lost arbitration, faulty bits… All these situations are usually due to incorrect sequences sent by the driver.

To avoid so much pain debugging obscure situations where this happens, he decided to use an extended I2C-gpio interface to access SDA and SCL from two external GPIOs and this way forces faulty situations by simply pinning high or low one line (or both) and see how the driver reacts. The I2C specification and framework provide everything to get out of a faulty situation, it is just a matter of using it (sending a STOP condition, clocking 9 times, operate a reset, etc).

Wolfram is aware of his quite conservative approach but he is really scared about breaking users by using random quirks so he tried with this talk to explain his point of view and the solutions he wants to promote.

Two questions that you might have a hard time hearing were also interesting. The first person asked if he ever considered using a “default faulty chip” designed to do by itself this kind of fault injection and see how the host reacts and behaves. Wolfram said buying hardware is too much effort for debugging, so he was more motivated to get something very easy and straightforward to use. Someone else asked if he thought about multiple clients situation, but from Wolfram’s point of view, all clients are in the same state whether the bus is busy or free and should not badly behave if we clock 9 times.

Watch the video and grab the slides.

HDMI 4k Video: Lessons Learned – Hans Verkuil

Talk selected by Maxime Ripard

HDMI 4k Video: Lessons Learned – Hans VerkuilHaving worked recently on a number of display related drivers, it was quite natural to go see what I was probably going to work on in a quite close future.

Hans started by talking about HDMI in general, and the various signals that could go through it. He then went on with what was basically a war story about all the mistakes, gotchas and misconceptions that he encountered while working on a video-conference box for Cisco. He covered the hardware itself, but also more low-level oriented aspects, such as the clocks frequencies needed to operate properly, the various signals you could look at for debugging or the issues that might come with the associated encoding and / or color spaces, especially when you want to support as many displays as you can. He also pointed out the flaws in the specifications that might lead to implementation inconsistencies. He concluded with the flaws of various HDMI adapters, the issues that might arise using them on various OSes, and how to work around them when doable.

Watch the video and the slides.

The Serial Device Bus – Johan Hovold

Talk selected by Thomas Petazzoni

The Serial Device Bus – Johan HovoldJohan started his talk at ELCE by exposing the problem with how serial ports (UARTs) are currently handled in the Linux kernel. Serial ports are handled by the TTY layer, which allows user-space applications to send and receive data with what is connected on the other side of the UART. However, the kernel doesn’t provide a good mechanism to model the device that is connected at the other side of the UART, such as a Bluetooth chip. Due to this, people have resorted to either writing user-space drivers for such devices (which falls short when those devices need additional resources such as regulators, GPIOs, etc.) or to developing specific TTY line-discipline in the kernel. The latter also doesn’t work very well because a line discipline needs to be explicitly attached to a UART to operate, which requires a user-space program such as hciattach used in Bluetooth applications.

In order to address this problem, Johan picked up the work initially started by Rob Herring (Linaro), which consisted in writing a serial device bus (serdev in short), which consists in turning UART into a proper bus, with bus controllers (UART controllers) and devices connected to this bus, very much like other busses in the Linux kernel (I2C, SPI, etc.). serdev was initially merged in Linux 4.11, with some improvements being merged in follow-up versions. Johan then described in details how serdev works. First, there is a TTY port controller, which instead of registering the traditional TTY character device will register the serdev controller and its slave devices. Thanks to this, one can described in its Device Tree child nodes of the UART controller node, which will be probed as serdev slaves. There is then a serdev API to allow the implementation of serdev slave drivers, that can send and receive data of the UART. Already a few drivers are using this API: hci_serdev, hci_bcm, hci_ll, hci_nokia (Bluetooth) and qca_uart (Ethernet).

We found this talk very interesting, as it clearly explained what is the use case for serdev and how it works, and it should become a very useful subsystem for many embedded applications that use UART-connected devices.

Watch the video and the slides.

GStreamer for Tiny Devices – Olivier Crête

Talk selected by Grégory Clement

GStreamer for Tiny Devices – Olivier CrêteThe purpose of this talk was to show how to shrink Gstreamer to make it fit in an embedded Linux device. First, Olivier Crête introduced what GStreamer is, it was very high level but well done. Then after presenting the issue, he showed step by step how he managed to reduce the footprint of a GStreamer application to fit in his device.

In a first part it was a focus on features specific to GStreamer such as how to generate only the needed plugins. Then most of the tricks showed could be used for any C or C++ application. The talk was pretty short so there was no useless or boring part Moreover, the speaker himself was good and dynamic.

To conclude it was a very pleasant talk teaching step by step how to reduce the footprint of an application being GStreamer or not.

Watch the video and the slides.

Bootlin at NetDev 2.2

NetDev 2.2Back in April 2017, Bootlin engineer Antoine Ténart participated to NetDev 2.1, the most important conference discussing Linux networking support. After the conference, Antoine published a summary of it, reporting on the most interesting talks and topics that have been discussed.

Next week, NetDev 2.2 takes place in Seoul, South Korea, and this time around, two Bootlin engineers will be attending the event: Alexandre Belloni and Antoine Ténart. We are getting more and more projects with networking related topics, and therefore the wide range of talks proposed at NetDev 2.2 will definitely help grow our expertise in this field.

Do not hesitate to get in touch with Alexandre or Antoine if you are also attending this event!

Buildroot Long Term Support releases: from 2017.02 to 2017.02.6 and counting

Buildroot LogoBuildroot is a widely used embedded Linux build systems. A large number of companies and projects use Buildroot to produce customized embedded Linux systems for a wide range of embedded devices. Most of those devices are now connected to the Internet, and therefore subject to attacks if the software they run is not regularly updated to address security vulnerabilities.

The Buildroot project publishes a new release every three months, with each release providing a mix of new features, new packages, package updates, build infrastructure improvements… and security fixes. However, until earlier this year, as soon as a new version was published, the maintenance of the previous version stopped. This means that in order to stay up to date in terms of security fixes, users essentially had two options:

  1. Update their Buildroot version regularly. The big drawback is that they get not only security updates, but also many other package updates, which may be problematic when a system is in production.
  2. Stick with their original Buildroot version, and carefully monitor CVEs and security vulnerabilities in the packages they use, and update the corresponding packages, which obvisouly is a time-consuming process.

Starting with 2017.02, the Buildroot community has decided to offer one long term supported release every year: 2017.02 will be supported one year in terms of security updates and bug fixes, until 2018.02 is released. The usual three-month release cycle still applies, with 2017.05 and 2017.08 already being released, but users interested in a stable Buildroot version that is kept updated for security issues can stay on 2017.02.

Since 2017.02 was released on February 28th, 2017, six minor versions were published on a fairly regularly basis, almost every month, except in August:

With about 60 to 130 commits between each minor version, it is relatively easy for users to check what has been changed, and evaluate the impact of upgrading to the latest minor version to benefit from the security updates. The commits integrated in those minor versions are carefully chosen with the idea that users should be able to easily update existing systems.

In total, those six minor versions include 526 commits, of which 183 commits were security updates, representing roughly one third of the total number of commits. The other commits have been:

  • 140 commits to fix build issues
  • 57 commits to bump versions of packages for bug fixes. These almost exclusively include updates to the Linux kernel, using its LTS versions. For other packages, we are more conservative and generally don’t upgrade them.
  • 17 commits to address issues in the licensing description of the packages
  • 186 commits to fix miscellaneous issues, ranging from runtime issues affecting packages to bugs in the build infrastructure

The Buildroot community has already received a number of bug reports, patches or suggestions specifically targetting the 2017.02 LTS version, which indicates that developers and companies have started to adopt this LTS version.

Therefore, if you are interested in using Buildroot for a product, you should probably consider using the LTS version! We very much welcome feedback on this version, and help in monitoring the security vulnerabilities affecting software packages in Buildroot.

Mali OpenGL support on Allwinner platforms with mainline Linux

As most people know, getting GPU-based 3D acceleration to work on ARM platforms has always been difficult, due to the closed nature of the support for such GPUs. Most vendors provide closed-source binary-only OpenGL implementations in the form of binary blobs, whose quality depend on the vendor.

This situation is getting better and better through vendor-funded initiatives like for the Broadcom VC4 and VC5, or through reverse engineering projects like Nouveau on Tegra SoCs, Etnaviv on Vivante GPUs, Freedreno on Qualcomm’s. However there are still GPUs where you do not have the option to use a free software stack: PowerVR from Imagination Technologies and Mali from ARM (even though there is some progress on the reverse engineering effort).

Allwinner SoCs are using either a Mali GPU from ARM or a PowerVR from Imagination Technologies, and therefore, support for OpenGL on those platforms using a mainline Linux kernel has always been a problem. This is also further complicated by the fact that Allwinner is mostly interested in Android, which uses a different C library that avoids its use in traditional glibc-based systems (or through the use of libhybris).

However, we are happy to announce that Allwinner gave us clearance to publish the userspace binary blobs that allows to get OpenGL supported on Allwinner platforms that use a Mali GPU from ARM, using a recent mainline Linux kernel. Of course, those are closed source binary blobs and not a nice fully open-source solution, but it nonetheless allows everyone to have OpenGL support working, while taking advantage of all the benefits of a recent mainline Linux kernel. We have successfully used those binary blobs on customer projects involving the Allwinner A33 SoCs, and they should work on all Allwinner SoCs using the Mali GPU.

In order to get GPU support to work on your Allwinner platform, you will need:

  • The kernel-side driver, available on Maxime Ripard’s Github repository. This is essentially the Mali kernel-side driver from ARM, plus a number of build and bug fixes to make it work with recent mainline Linux kernels.
  • The Device Tree description of the GPU. We introduced Device Tree bindings for Mali GPUs in the mainline kernel a while ago, so that Device Trees can describe such GPUs. Such description has been added for the Allwinner A23 and A33 SoCs as part of this commit.
  • The userspace blob, which is available on Bootlin GitHub repository. It currently provides the r6p2 version of the driver, with support for both fbdev and X11 systems. Hopefully, we’ll gain access to newer versions in the future, with additional features (such as GBM support).

If you want to use it in your system, the first step is to have the GPU definition in your device tree if it’s not already there. Then, you need to compile the kernel module:

git clone https://github.com/mripard/sunxi-mali.git
cd sunxi-mali
export CROSS_COMPILE=$TOOLCHAIN_PREFIX
export KDIR=$KERNEL_BUILD_DIR
export INSTALL_MOD_PATH=$TARGET_DIR
./build.sh -r r6p2 -b
./build.sh -r r6p2 -i

It should install the mali.ko Linux kernel module into the target filesystem.

Now, you can copy the OpenGL userspace blobs that match your setup, most likely the fbdev or X11-dma-buf variant. For example, for fbdev:

git clone https://github.com/bootlin/mali-blobs.git
cd mali-blobs
cp -a r6p2/fbdev/lib/lib_fb_dev/lib* $TARGET_DIR/usr/lib

You should be all set. Of course, you will have to link your OpenGL applications or libraries against those user-space blobs. You can check that everything works using OpenGL test programs such as es2_gears for example.

Linux 4.13 released, Bootlin contributions

Linux 4.13 was released last Sunday by Linus Torvalds, and the major new features of this release were described in details by LWN in a set of articles: part 1 and part 2.

This release gathers 13006 non-merge commits, amongst which 239 were made by Bootlin engineers. According to the LWN article on 4.13 statistics, this makes Bootlin the 13th contributing company by number of commits, the 10th by lines changed.

The most important contributions from Bootlin for this release have been:

  • In the RTC subsystem
    • Alexandre Belloni introduced a new method for registering RTC devices, with one step for the allocation, and one step for the registration itself, which allows to solve race conditions in a number of drivers.
    • Alexandre Belloni added support for exposing the non-volatile memory found in some RTC devices through the Linux kernel nvmem framework, making them usable from userspace. A few drivers were changed to use this new mechanism.
  • In the MTD/NAND subsystem
    • Boris Brezillon did a large number of fixes and minor improvements in the NAND subsystem, both in the core and in a few drivers.
    • Thomas Petazzoni contributed the support for on-die ECC, specifically with Micron NANDs. This allows to use the ECC calculation capabilities of the NAND chip itself, as opposed to using software ECC (calculated by the CPU) or ECC done by the NAND controller.
    • Thomas Petazzoni contributed a few improvements to the FSMC NAND driver, used on ST Spear platforms. The main improvement is to support the ->setup_data_interface() callback, which allows to configure optimal timings in the NAND controller.
  • Support for Allwinner ARM platforms
    • Alexandre Belloni improved the sun4i PWM driver to use the so-called atomic API and support hardware read out.
    • Antoine Ténart improved the sun4i-ss cryptographic engine driver to support the Allwinner A13 processor, in addition to the already supported A10.
    • Maxime Ripard contributed HDMI support for the Allwinner A10 processor (in the DRM subsystem) and a number of related changes to the Allwinner clock support.
    • Quentin Schulz improved the support for battery charging through the AXP20x PMIC, used on Allwinner platforms.
  • Support for Atmel ARM platforms
    • Alexandre Belloni added suspend/resume support for the Atmel SAMA5D2 clock driver. This is part of a larger effort to implement the backup mode for the SAMA5D2 processor.
    • Alexandre Belloni added suspend/resume support in the tcb_clksrc driver, used as for clocksource and clockevents on Atmel SAMA5D2.
    • Alexandre Belloni cleaned up a number of drivers, removing support for non-DT probing, which is possible now that the AVR32 architecture has been dropped. Indeed, the AVR32 processors used to share the same drivers as the Atmel ARM processors.
    • Alexandre Belloni added the core support for the backup mode on Atmel SAMA5D2, a suspend/resume state with significant power savings.
    • Boris Brezillon switched Atmel platforms to use the new binding for the EBI and NAND controllers.
    • Boris Brezillon added support for timing configuration in the Atmel NAND driver.
    • Quentin Schulz added suspend/resume support to the Bosch m_can driver, used on Atmel platforms.
  • Support for Marvell ARM platforms
    • Antoine Ténart contributed a completely new driver (3200+ lines of code) for the Inside Secure EIP197 cryptographic engine, used in the Marvell Armada 7K and 8K processors. He also subsequently contributed a number of fixes and improvements for this driver.
    • Antoine Ténart improved the existing mvmdio driver, used to communicate with Ethernet PHYs over MDIO on Marvell platforms to support the XSMI variant found on Marvell Armada 7K/8K, used to communicate with 10G capable PHYs.
    • Antoine Ténart contributed minimal support for 10G Ethernet in the mvpp2 driver, used on Marvell Armada 7K/8K. For now, the driver still relies on low-level initialization done by the bootloader, but additional changes in 4.14 and 4.15 will remove this limitation.
    • Grégory Clement added a new pinctrl driver to configure the pin-muxing on the Marvell Armada 37xx processors.
    • Grégory Clement did a large number of changes to the clock drivers used on the Marvell Armada 7K/8K processors to prepare the addition of pinctrl support.
    • Grégory Clement added support for Marvell Armada 7K/8K to the existing mvebu-gpio driver.
    • Thomas Petazzoni added support for the ICU, a specialized interrupt controller used on the Marvell Armada 7K/8K, for all devices located in the CP110 part of the processor.
    • Thomas Petazzoni removed a work-around to properly resume per-CPU interrupts on the older Marvell Armada 370/XP platforms.
  • Support for RaspberryPi platforms
    • Boris Brezillon added runtime PM support to the HDMI encoder driver used on RaspberryPi platforms, and contributed a few other fixes to the VC4 DRM driver.

It is worth mentioning that Miquèl Raynal, recently hired by Bootlin, sees his first kernel patch merged: nand: fix wrong default oob layout for small pages using soft ecc.

Bootlin engineers are not only contributors, but also maintainers of various subsystems in the Linux kernel, which means they are involved in the process of reviewing, discussing and merging patches contributed to those subsystems:

  • Maxime Ripard, as the Allwinner platform co-maintainer, merged 113 patches from other contributors
  • Boris Brezillon, as the MTD/NAND maintainer, merged 62 patches from other contributors
  • Alexandre Belloni, as the RTC maintainer and Atmel platform co-maintainer, merged 57 patches from other contributors
  • Grégory Clement, as the Marvell EBU co-maintainer, merged 47 patches from other contributors

Here is the commit by commit detail of our contributors to 4.13:

Updated bleeding edge toolchains on toolchains.bootlin.com

Two months ago, we announced a new service from Bootlin: free and ready-to-use Linux cross-compilation toolchains, for a large number of architectures and C libraries, available at https://toolchains.bootlin.com/.

Bleeding edge toolchain updates

All our bleeding edge toolchains have been updated, with the latest version of the toolchain components:

  • gcc 7.2.0, which was released 2 days ago
  • glibc 2.26, which was released 2 weeks ago
  • binutils 2.29
  • gdb 8.0

Those bleeding edge toolchains are now based on Buildroot 2017.08-rc2, which brings a nice improvement: the host tools (gcc, binutils, etc.) are no longer linked statically against gmp, mpfr and other host libraries. They are dynamically linked against them with an appropriate rpath encoded into the gcc and binutils binaries to find those shared libraries regardless of the installation location of the toolchain.

However, due to gdb 8.0 requiring a C++11 compiler on the host machine (at least gcc 4.8), our bleeding edge toolchains are now built in a Debian Jessie system instead of Debian Squeeze, which means that at least glibc 2.14 is needed on the host system to use them.

The only toolchains for which the tests are not successful are the MIPS64R6 toolchains, due to the Linux kernel not building properly for this architecture with gcc 7.x. This issue has already been reported upstream.

Stable toolchain updates

We haven’t changed the component versions of our stable toolchains, but we made a number of fixes to them:

  • The armv7m and m68k-coldfire toolchains have been rebuilt with a fixed version of elf2flt that makes the toolchain linker directly usable. This fixes building the Linux kernel using those toolchains.
  • The mips32r5 toolchain has been rebuilt with NaN 2008 encoding (instead of NaN legacy), which makes the resulting userspace binaries actually executable by the Linux kernel, which expects NaN 2008 encoding on mips32r5 by default.
  • Most mips toolchains for musl have been rebuilt, with Buildroot fixes for the creation of the dynamic linker symbolic link. This has no effect on the toolchain itself, but also the tests under Qemu to work properly and validate the toolchains.

Other improvements

We made a number of small improvements to the toolchains.bootlin.com site:

  • Each architecture now has a page that lists all toolchain versions available. This allows to easily find a toolchain that matches your requirements (in terms of gcc version, kernel headers version, etc.). See All aarch64 toolchains for an example.
  • We added a FAQ as well as a news page.

As usual, we welcome feedback about our toolchains, either on our bug tracker or by mail at info@bootlin.com.

Bootlin proposes an I3C subsystem for the Linux kernel

MIPI I3C fact sheet, from the MIPI I3C white paper
MIPI I3C fact sheet, from the MIPI I3C white paper
At the end of 2016, the MIPI consortium has finalized the first version of its I3C specification, a new communication bus that aims at replacing older busses like I2C or SPI. According to the specification, I3C gets closer to SPI data rate while requiring less pins and adding interesting mechanisms like in-band interrupts, hotplug capability or automatic discovery of devices connected on the bus. In addition, I3C provides backward compatibility with I2C: I3C and legacy I2C devices can be connected on a common bus controlled by an I3C master.

For more details about I3C, we suggest reading the MIPI I3C Whitepaper, as unfortunately MIPI has not publicly released the specifications for this protocol.

For the last few months, Bootlin engineer Boris Brezillon has been working with Cadence to develop a Linux kernel subsystem to support this new bus, as well as Cadence’s I3C master controller IP. We have now posted the first version of our patch series to the Linux kernel mailing list for review, and we already received a large number of very useful comments from the kernel community.

Bootlin is proud to be pioneering the support for this new bus in the Linux kernel, and hopes to see other developers contribute to this subsystem in the near future!

Linux 4.12, Bootlin contributions

Linus Torvalds has released the 4.12 Linux kernel a week ago, in what is the second biggest kernel release ever by number of commits. As usual, LWN had a very nice coverage of the major new features and improvements: first part, second part and third part.

LWN has also published statistics about the Linux 4.12 development cycles, showing:

  • Bootlin as the #14 contributing company by number of commits, with 221 commits, between Broadcom (230 commits) and NXP (212 commits)
  • Bootlin as the #14 contributing company number of changed lines, with 16636 lines changed, just two lines less than Mellanox
  • Bootlin engineer and MTD NAND maintainer Boris Brezillon as the #17 most active contributor by number of lines changed.

Our most important contributions to this kernel release have been:

  • On Atmel AT91 and SAMA5 platforms:
    • Alexandre Belloni has continued to upstream the support for the SAMA5D2 backup mode, which is a very deep suspend to RAM state, offering very nice power savings. Alexandre touched the core code in arch/arm/mach-at91 as well as pinctrl and irqchip drivers
    • Boris Brezillon has converted the Atmel PWM driver to the atomic API of the PWM subsystem, implemented suspend/resume and did a number of fixes in the Atmel display controller driver, and also removed the no longer used AT91 Parallel ATA driver.
    • Quentin Schulz improved the suspend/resume hooks in the atmel-spi driver to support the SAMA5D2 backup mode.
  • On Allwinner platforms:
    • Mylène Josserand has made a number of improvements to the sun8i-codec audio driver that she contributed a few releases ago.
    • Maxime Ripard added devfreq support to dynamically change the frequency of the GPU on the Allwinner A33 SoC.
    • Quentin Schulz added battery charging and ADC support to the X-Powers AXP20x and AXP22x PMICs, found on Allwinner platforms.
    • Quentin Schulz added a new IIO driver to support the ADCs found on numerous Allwinner SoCs.
    • Quentin Schulz added support for the Allwinner A33 built-in thermal sensor, and used it to implement thermal throttling on this platform.
  • On Marvell platforms:
    • Antoine Ténart contributed Device Tree changes to describe the cryptographic engines found in the Marvell Armada 7K and 8K SoCs. For now only the Device Tree description has been merged, the driver itself will arrive in Linux 4.13.
    • Grégory Clement has contributed a pinctrl and GPIO driver for the Marvell Armada 3720 SoC (Cortex-A53 based)
    • Grégory Clement has improved the Device Tree description of the Marvell Armada 3720 and Marvell Armada 7K/8K SoCs and corresponding evaluation boards: SDHCI and RTC are now enabled on Armada 7K/8K, USB2, USB3 and RTC are now enabled on Armada 3720.
    • Thomas Petazzoni made a significant number of changes to the mvpp2 network driver, finally adding support for the PPv2.2 version of this Ethernet controller. This allowed to enable network support on the Marvell Armada 7K/8K SoCs.
    • Thomas Petazzoni contributed a number of fixes to the mv_xor_v2 dmaengine driver, used for the XOR engines on the Marvell Armada 7K/8K SoCs.
    • Thomas Petazzoni cleaned-up the MSI support in the Marvell pci-mvebu and pcie-aardvark PCI host controller drivers, which allowed to remove a no-longer used MSI kernel API.
  • On the ST SPEAr600 platform:
    • Thomas Petazzoni added support for the ADC available on this platform, by adding its Device Tree description and fixing a clock driver bug
    • Thomas did a number of small improvements to the Device Tree description of the SoC and its evaluation board
    • Thomas cleaned up the fsmc_nand driver, which is used for the NAND controller driver on this platform, removing lots of unused code
  • In the MTD NAND subsystem:
    • Boris Brezillon implemented a mechanism to allow vendor-specific initialization and detection steps to be added, on a per-NAND chip basis. As part of this effort, he has split into multiple files the vendor-specific initialization sequences for Macronix, AMD/Spansion, Micron, Toshiba, Hynix and Samsung NANDs. This work will allow in the future to more easily exploit the vendor-specific features of different NAND chips.
  • Other contributions:
    • Maxime Ripard added a display panel driver for the ST7789V LCD controller

In addition, several Bootlin engineers are also maintainers of various kernel subsystems. During this release cycle, they reviewed and merged a number of patches from kernel contributors:

  • Maxime Ripard, as the Allwinner co-maintainer, merged 94 patches
  • Boris Brezillon, as the NAND maintainer and MTD co-maintainer, merged 64 patches
  • Alexandre Belloni, as the RTC maintainer and Atmel co-maintainer, merged 38 patches
  • Grégory Clement, as the Marvell EBU co-maintainer, merged 32 patches

The details of all our contributions for this release:

Free and ready-to-use cross-compilation toolchains

For all embedded Linux developers, cross-compilation toolchains are part of the basic tool set, as they allow to build code for a specific CPU architecture and debug it. Until a few years ago, CodeSourcery was providing a lot of high quality pre-compiled toolchains for a wide range of architectures, but has progressively stopped doing so. Linaro provides some freely available toolchains, but only targetting ARM and AArch64. kernel.org has a set of pre-built toolchains for a wider range of architectures, but they are bare metal toolchains (cannot build Linux userspace programs) and updated infrequently.

To fill in this gap, Bootlin is happy to announce its new service to the embedded Linux community: toolchains.bootlin.com.

Bootlin toolchains

This web site provides a large number of cross-compilation toolchains, available for a wide range of architectures, in multiple variants. The toolchains are based on the classical combination of gcc, binutils and gdb, plus a C library. We currently provide a total of 138 toolchains, covering many combinations of:

  • Architectures: AArch64 (little and big endian), ARC, ARM (little and big endian, ARMv5, ARMv6, ARMv7), Blackfin, m68k (Coldfire and 68k), Microblaze (little and big endian), MIPS32 and MIPS64 (little and big endian, with various instruction set variants), NIOS2, OpenRISC, PowerPC and PowerPC64, SuperH, Sparc and Sparc64, x86 and x86-64, Xtensa
  • C libraries: GNU C library, uClibc-ng and musl
  • Versions: for each combination, we provide a stable version which uses slightly older but more proven versions of gcc, binutils and gdb, and we provide a bleeding edge version with the latest version of gcc, binutils and gdb.

After being generated, most of the toolchains are tested by building a Linux kernel and a Linux userspace, and booting it under Qemu, which allows to verify that the toolchain is minimally working. We plan on adding more tests to validate the toolchains, and welcome your feedback on this topic. Of course, not all toolchains are tested this way, because some CPU architectures are not emulated by Qemu.

The toolchains are built with Buildroot, but can be used for any purpose: build a Linux kernel or bootloader, as a pre-built toolchain for your favorite embedded Linux build system, etc. The toolchains are available in tarballs, together with licensing information and instructions on how to rebuild the toolchain if needed.

We are very much interested in your feedback about those toolchains, so do not hesitate to report bugs or make suggestions in our issue tracker!

This work was done as part of the internship of Florent Jacquet at Bootlin.

Elixir Cross Referencer: new way to browse kernel sources

Today, we are pleased to announce the initial release of the Elixir Cross-Referencer, or just “Elixir”, for short.

What is Elixir?

Elixir home pageSince 2006, we have provided a Linux source code cross-referencing online tool as a service to the community. The engine behind this website was LXR, a Perl project almost as old as the kernel itself. For the first few years, we used the then-current 0.9.5 version of LXR, but in early 2009 and for various reasons, we reverted to the older 0.3.1 version (from 1999!). In a nutshell, it was simpler and it scaled better.

Recently, we had the opportunity to spend some time on it, to correct a few bugs and to improve the service. After studying the Perl source code and trying out various cross-referencing engines (among which LXR 2.2 and OpenGrok), we decided to implement our own source code cross-referencing engine in Python.

Why create a new engine?

Our goal was to extend our existing service (support for multiple projects, responsive design, etc.) while keeping it simple and fast. When we tried other cross-referencing engines, we were dissatisfied with their relatively low performance on a large codebase such as Linux. Although we probably could have tweaked the underlying database engine for better performance, we decided it would be simpler to stick to the strategy used in LXR 0.3: get away from the relational database engine and keep plain lists in simple key-value stores.

Another reason that motivated a complete rewrite was that we wanted to provide an up-to-date reference (including the latest revisions) while keeping it immutable, so that external links to the source code wouldn’t get broken in the future. As a direct consequence, we would need to index many different revisions for each project, with potentially a lot of redundant information between them. That’s when we realized we could leverage the data model of Git to deal with this redundancy in an efficient manner, by indexing Git blobs, which are shared between revisions. In order to make sure queries under this strategy would be fast enough, we wrote a proof-of-concept in Python, and thus Elixir was born.

What service does it provide?

First, we tried to minimize disruption to our users by keeping the user interface close to that of our old cross-referencing service. The main improvements are:

  • We now support multiple projects. For now, we provide reference for Linux, Busybox and U-Boot.
  • Every tag in each project’s git repository is now automatically indexed.
  • The design has been modernized and now fits comfortably on smaller screens like tablets.
  • The URL scheme has been simplified and extended with support for multiple projects. An HTTP redirector has been set up for backward compatibility.
Elixir supports multiple projects
Elixir supports multiple projects

Among other smaller improvements, it is now possible to copy and paste code directly without line numbers getting in the way.

How does it work?

Elixir is made of two Python scripts: “update” and “query”. The first looks for new tags and new blobs inside a Git repository, parses them and appends the new references to identifiers to a record inside the database. The second uses the database and the Git repository to display annotated source code and identifier references.

The parsing itself is done with Ctags, which provides us with identifier definitions. In order to find the references to these identifiers, Elixir then simply checks each lexical token in the source file against the definition database, and if that word is defined, a new reference is added.

Like in LXR 0.3, the database structure is kept very simple so that queries don’t have much work to do at runtime, thus speeding them up. In particular, we store references to a particular identifier as a simple list, which can be loaded and parsed very fast. The main difference with LXR is that our list includes references from every blob in the project, so we need to restrict it first to only the blobs that are part of the current version. This is done at runtime, simply by computing the intersection of this list with the list of blobs inside the current version.

Finally, we kept the user interface code clearly segregated from the engine itself by making these two modules communicate through a Unix command-line interface. This means that you can run queries directly on the command-line without going through the web interface.

Elixir code example
Elixir code example

What’s next?

Our current focus is on improving multi-project support. In particular, each project has its own quirky way of using Git tags, which needs to be handled individually.

At the user-interface level, we are evaluating the possibility of having auto-completion and/or fuzzy search of identifier names. Also, we are looking for a way to provide direct line-level access to references even in the case of very common identifiers.

On the performance front, we would like to cut the indexation time by switching to a new database back-end that provides efficient appending to large records. Also, we could make source code queries faster by precomputing the references, which would also allow us to eliminate identifier “bleeding” between versions (the case where an identifier shows up as “defined in 0 files” because it is only defined in another version).

If you think of other ways we could improve our service, don’t hesitate to drop us a feature request or a patch!

Bonus: why call it “Elixir”?

In the spur of the moment, it seemed like a nice pun on the name “LXR”. But in retrospect, we wish to apologize to the Elixir language team and the community at large for unnecessary namespace pollution.