Buildroot: what’s new?

Thomas Petazzoni
thomas.petazzoni@bootlin.com
Thomas Petazzoni

- CTO and Embedded Linux engineer at Bootlin
 - Embedded Linux specialists.
 - Development, consulting and training.
 - https://bootlin.com

- Contributions
 - **Kernel support for the Marvell Armada**
 ARM SoCs from Marvell
 - Major contributor to **Buildroot**, an open-source, simple and fast embedded Linux build system

- **Toulouse**, south west of France
- Windsurfing, snowboarding
- Who already knows about Buildroot?
Poll time

- Who already knows about Buildroot?
- Who is already using Buildroot?
Poll time

- Who already knows about Buildroot ?
- Who is already using Buildroot ?
- Who is using OpenEmbedded / Yocto Project ?
Poll time

- Who already knows about Buildroot?
- Who is already using Buildroot?
- Who is using OpenEmbedded / Yocto Project?
- Who is using OpenWRT / LEDE?
Poll time

- Who already knows about Buildroot?
- Who is already using Buildroot?
- Who is using OpenEmbedded / Yocto Project?
- Who is using OpenWRT / LEDE?
- Who is using another build system?
Buildroot at a glance

- Is an **embedded Linux build system**, builds from source:
 - cross-compilation toolchain
 - root filesystem with many libraries/applications, cross-built
 - kernel and bootloader images
- **Fast**, simple root filesystem in minutes
- **Easy** to use and understand: kconfig and make
- **Small** root filesystem, default 2 MB
- More than **2300 packages** available
- Generates filesystem images, not a distribution
- Vendor neutral
- Active community, stable releases every 3 months
- Started in 2001, oldest still maintained build system
- http://buildroot.org
What's new?

- Last *What's new* talk at the *Embedded Linux Conference 2014*, i.e. 4 years ago
- Lots of things have changed and improved in Buildroot since then, time for a new *What's new* talk!
- Main topics discussed
 - Project activity
 - Release schedule and LTS
 - Architecture support
 - Toolchain support
 - Infrastructure improvements
 - Testing improvements
 - Misc
Project activity: contributors

Number of contributors per release

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com
Project activity: packages

Number of packages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com
Since 2009, releases every three months: YYYY.02, YYYY.05, YYYY.08, YYYY.11

Never skipped a release or missed a release date!
Release schedule and LTS

▶ Since 2009, releases every **three months**: YYYY.02, YYYY.05, YYYY.08, YYYY.11
 ▶ Never skipped a release or missed a release date!
▶ Until 2017.02
 ▶ Point releases for the latest stable, but only until the next stable release
 ▶ Only option to get updates is to migrate to the next release
Since 2009, releases every **three months**: YYYY.02, YYYY.05, YYYY.08, YYYY.11
- Never skipped a release or missed a release date!

Until 2017.02
- Point releases for the latest stable, but only until the next stable release
- Only option to get updates is to migrate to the next release

Since 2017.02, one **LTS release** per year
- Every YYYY.02 release will be **maintained for one year**, with security, build and bug fixes
- 2017.02 had **10 point releases**, from 2017.02.1 to 2017.02.10, 778 commits
- 2018.02 published on March 4th 2018, new LTS release
Maintenance and physical meetings

- Used to have a single committer/project maintainer: Peter Korsgaard

- **Two additional committers** have been appointed in recent years:
 - Thomas Petazzoni (i.e, me)
 - Arnout Vandecappelle

- **Physical meetings**
 - One meeting before ELCE,
 - One meeting after FOSDEM, Brussels
 - One more private hackaton for the core team in the summer
Architectures

- Probably the build system with the largest number of architectures supported

- ARC, ARM(eb,nommu), ARM64(eb), Blackfin, C-Sky, m68k, Microblaze(el), mips(64)(el), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86(64), Xtensa

- ARM Cortex M3/M4 noMMU support

- Merge of ARM/ARM64 options, to select ARM64 cores

- PowerPC64 little endian and big endian support, contributions from IBM

- MIPS improvements: MIPS32r6 and MIPS64r6 support, MIPS core selection, NaN/FP32 selection, contributions from Imagination Technologies

- OpenRISC, C-Sky, Sparc64 support

- Re-enabling of m68k both Coldfire (noMMU) and 68k (MMU)

- Blackfin and Microblaze improved with uClibc-ng support

- SH64 and AVR32 support removed
Architectures

- Probably the build system with the largest number of architectures supported
 - ARC, ARM(eb,nommu), ARM64(eb), Blackfin, C-Sky, m68k, Microblaze(el), mips(64)(el), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86(64), Xtensa
Architectures

- Probably the build system with the largest number of architectures supported
 - ARC, ARM(ub,nommu), ARM64(ub), Blackfin, C-Sky, m68k, Microblaze(ub), mips(64)(ub), nios2, OpenRISC, PowerPC(64)(le), SuperH, Sparc(64), x86(64), Xtens

- ARM Cortex M3/M4 noMMU support

- Merge of ARM/ARM64 options, to select ARM64 cores

- PowerPC64 little endian and big endian support, contributions from IBM

- MIPS improvements: MIPS32r6 and MIPS64r6 support, MIPS core selection, NaN/FP32 selection, contributions from Imagination Technologies

- OpenRISC, C-Sky, Sparc64 support

- Re-enabling of m68k both Coldfire (noMMU) and 68k (MMU)

- Blackfin and Microblaze improved with uClibc-ng support

- SH64 and AVR32 support removed
Toolchains

- Buildroot supports:
 - Building its own toolchain: so-called **internal toolchain** back-end
 - Using an existing pre-built toolchain: **external toolchain** back-end
Toolchains

- Buildroot supports:
 - Building its own toolchain: so-called **internal toolchain** back-end
 - Using an existing pre-built toolchain: **external toolchain** back-end

- Internal toolchain improvements
 - Support for **musl** C library added
 - Moved from uClibc to **uClibc-ng**
 - **Regular updates**: gcc up to 7.x (default is 6.x), binutils 2.29 (default 2.28), gdb 8.0 (default 7.12), glibc 2.27, uClibc-ng 1.0.28, musl 1.1.19.
 - **LTO** and **Fortran** support
 - Toolchain **wrapper** also used for the internal back-end: allows sanity checks
 - eglibc removed
Toolchains

- Buildroot supports:
 - Building its own toolchain: so-called **internal toolchain** back-end
 - Using an existing pre-built toolchain: **external toolchain** back-end

- Internal toolchain improvements
 - Support for **musl** C library added
 - Moved from uClibc to **uClibc-ng**
 - **Regular updates**: gcc up to 7.x (default is 6.x), binutils 2.29 (default 2.28), gdb 8.0 (default 7.12), glibc 2.27, uClibc-ng 1.0.28, musl 1.1.19.
 - **LTO** and **Fortran** support
 - Toolchain **wrapper** also used for the internal back-end: allows sanity checks
 - eglibc removed

- External toolchain improvements
 - Logic split in **multiple packages**, one per external toolchain family
 - Include/library paths **sanity checking** in the wrapper
 - Numerous **updates**: Linaro/Sourcery toolchains, new Imagination Technologies toolchains, removed old toolchains
Side project, but Buildroot related

Freely available **pre-built toolchains** for a wide range of architectures and configurations

34 different architecture/variants

glibc/uClibc-ng/musl, as available

Two versions: stable and bleeding-edge

Built by Buildroot, on Gitlab CI

Tested by building a Linux kernel and minimal userspace, and if supported, booting under QEMU

https://toolchains.bootlin.com
Infrastructure: relocatable SDK

- **output/host** contains
 - The native tools, including the cross-compiler
 - The toolchain *sysroot*, with all libraries and headers

- Can be used as an SDK
 - Allows application developers to build applications targeting the root filesystem without having to use Buildroot

- **output/host** is now **relocatable**, which makes it easier to use as an SDK

- **make sdk** prepares the SDK
 - Replaces absolute *RPATH* in native binaries by relative ones
 - Installs a *relocate-sdk.sh* script that users of the SDK must run to fix up the remaining absolute paths

- Related work:
 - **output/host/usr/* moved to output/host/**
 - *RPATH* in target binaries are now cleaned up
Infrastructure: hashes

- Each package now has a `<pkg>.hash` file that contains hashes
 - For the tarball being downloaded
 - For the patches being downloaded, if any
 - For the license files included in the upstream source code

- Tarball/patch hashes are checked when the package is extracted, i.e. at every build

- License files hashes are checked when generating the licensing report
 (make legal-info)

- Allows to:
 - check the integrity of what is downloaded,
 - ensure that tarballs stored locally have not been modified
 - detect if license terms have changed upstream
 - detect if upstream messes up and re-uploads a new (but different) tarball

- Almost all packages have a hash file now: 2247 packages out of 2315 packages

sha256 52426e75432e46996dc90f24fca027805a341c38fbbb022b60dc9acd2677ccf4 bind-9.11.1-P3.tar.gz
sha256 d3906dfe153e2c48440d3ca1d5319f5e89b4b820c8c5d0779c23d7ac2b175e9 COPYRIGHT

Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com
Packages include a description of the license and paths to license files

```
DBUS_LICENSE = AFL-2.1 or GPL-2.0+ (library, tools), GPL-2.0+ (tools)
DBUS_LICENSE_FILES = COPYING
```

Collected by `make legal-info`: source tarballs, patches, license files, manifests

Improvements

- **SPDX license codes** used to describe the licensing of all packages
- **Hashes** added for license files, in order to detect changes
- Storage of source code for binary artifacts such as pre-built toolchains, using `<pkg>_ACTUAL_SOURCE`
- Many **more packages have license details**: 2223 out of 2315 packages
Infrastructure: BR2_EXTERNAL

- BR2_EXTERNAL allows to implement packages, store defconfigs and other build-related files outside of the Buildroot tree
- Allows separating the upstream Buildroot from project/company-specific packages and data
- Simplified form of layer concept found in Yocto/OE/OpenWRT
- Available since 2014.02

Improvements

- Support for multiple BR2_EXTERNAL directories
- Support for implementing bootloader packages and filesystem image formats in BR2_EXTERNAL
Infrastructure: package infrastructures

- Base infrastructure: generic-package
- Specialized infrastructures for specific build systems: autotools-package, cmake-package, python-package

- Improvements
 - python-package extended to support Python 3.x
 - New perl-package infrastructure for Perl packages
 - New virtual-package infrastructure for virtual packages such as OpenGL, jpeg, udev
 - New waf-package infrastructure for Waf based packages
 - New rebar-package infrastructure for Erlang packages
 - New kconfig-package infrastructure, used by Linux, BusyBox, uClibc-ng, Barebox, U-Boot, etc.
 - New kernel-module infrastructure to help building kernel modules
Infrastructure: graphing

- Already existing:
 - `make graph-depends`, `make <pkg>-graph-depends`, to generate dependency graphs
 - `make graph-build`, graph of the build time per package

- Improvements
 - `make graph-size`, size of the filesystem, split by package
 - `make <pkg>-graph-rdepends`, graph of the reverse dependencies
Infrastructure: graphing

- Already existing:
 - make graph-depends, make <pkg>-graph-depends, to generate dependency graphs
 - make graph-build, graph of the build time per package

- Improvements
 - make graph-size, size of the filesystem, split by package
 - make <pkg>-graph-rdepends, graph of the reverse dependencies
Infrastructure: *skeleton* restructuring

- **Skeleton**: base of the root filesystem, main directory hierarchy and basic config files
- Initially a single set of files copied to `TARGET_DIR` at the beginning of the build
- Now:
 - *skeleton* is a virtual package, that depends on `skeleton-init-sysv`, `skeleton-init-systemd`, `skeleton-init-none` or `skeleton-custom`
 - Common base: `skeleton-init-common`
 - Core init scripts moved in `initscripts`
 - Allows to avoid SysV cruft in systemd systems and vice-versa
 - Allowed to implement read-only rootfs support with `systemd`
 - Support for merged `/usr`, used by `systemd` support
Filesystem support

- Support for generating filesystem images in a large number of formats
- Improvements
 - `ext2`, `ext3` and `ext4` images now generated by `mkfs.ext<X>` instead of `genext2fs`, to better support `ext3/ext4`
 - Support for AXFS added
 - ISO9660 support re-written, to support Grub2 and Isolinux as bootloaders, initramfs and pure ISO9660 scenarios
 - Usage of `genimage` to generate complete SD card/MMC images in many `defconfig`
 - Ability to specify a custom script to run within the `fakeroot` environment when creating filesystem images
Reproducible builds

- Idea: get binary identical results for repeated builds of a given configuration
- Option `BR2_REPRODUCIBLE` added
- Various things already fixed:
 - Sets `SOURCE_DATE_EPOCH`, used by gcc and various packages
 - Date/time of files in the filesystem
 - Build date, user, host name in the Linux kernel build and BusyBox
 - Remove timestamps in Python `.pyc` files
 - ...
- A lot more remains to be done. Unfortunately, the developers who started this work are no longer active.
Packages

- By far where most of the contributions go: updating existing packages and adding new packages
- More than **1000 packages** added between 2014.05 and 2018.02
- Significant updates/additions
 - SELinux support
 - Qt 5.9 (including Qt WebEngine), Gtk 3.x, EFL updates
 - OpenCV 3.0
 - Kodi
 - Go, Mono, Rust
 - Python modules (many!), Perl modules, Erlang modules
 - Docker, aufs
 - System upgrade: SWupdate, RAUC
 - HW support: AMD Catalyst, Freescale i.MX, NVidia, TI
 - Apache, ClamAV, Dovecot, MariaDB, Nginx, Asterisk
 - Glib C++ stack: glibmm, atkmm, cairomm, gtkmm, etc.
 - ... and SuperTuxKart!
Run-time test infrastructure added in `support/testing/`

Test cases written in Python

Build a given Buildroot configuration, boot under QEMU, run commands and check results

Tests for filesystem images, packages, core functionality, init systems

class TestDropbear(infra.basetest.BRTest):
 config = infra.basetest.BASIC_TOOLCHAIN_CONFIG + ' \
 """\n BR2_SYSTEM_DHCP="eth0"
 BR2_PACKAGE_DROPBEAR=y
 BR2_TARGET_ROOTFS_CPIO=y
 # BR2_TARGET_ROOTFS_TAR is not set
 """

 def test_run(self):
 img = os.path.join(self.builddir, "images","rootfs.cpio")
 self.emulator.boot(arch="armv5",
 kernel="builtin",
 options=["-initrd", img,
 ",
 "-net", "nic"])

 self.emulator.login("testpwd")
 cmd = "netstat -ltn 2>/dev/null | grep 0.0.0.22"
 _, exit_code = self.emulator.run(cmd)
 self.assertEqual(exit_code, 0)
Testing: CI

- Already existing:

 http://autobuild.buildroot.org

- Set of 50 architecture/toolchain configurations

- Choose a random architecture/toolchain configuration, a random selection of packages, and build

- Results reported on a Web page, e-mailed to the mailing list

- Improvements

 - All defconfigs are built on Gitlab CI

 - Run-time tests are executed on Gitlab CI

 - autobuild.b.o supports testing multiples branches (master, next, LTS)

 - Notifications from autobuild.b.o sent to relevant developers
Tooling

- **DEVELOPERS** file and associated get-developers tool
 - Much like MAINTAINERS in the Linux kernel
 - Used when sending patches
 - Used to report build failures per package or per-architecture to the relevant developers

- check-package script to detect obvious mistakes in packages

- test-pkg to build test a package with a large number of architecture/toolchain configurations

- scanpypi script to generate Python packages
 - Connects to *Pypi*, analyzes the metadata, and produces a Buildroot *package*

DEVELOPERS

- N: Waldemar Brodkorb <wbx@openadk.org>
- F: arch/Config.in.bfin
- F: arch/Config.in.m68k
- F: arch/Config.in.or1k
- F: arch/Config.in.sparc
- F: package/glibc/
- F: package/mksh/
- F: package/uclibc/
- F: package/uclibc-ng-test/

test-pkg

- armv5-ctng-linux-gnueabi [1/49]: OK
- armv7-ctng-linux-gnueabihf [2/49]: OK
- br-aarch64-glibc [3/49]: OK
 - br-arcle-hs38 [4/49]: SKIPPED
- br-arm-basic [5/49]: OK
- br-arm-cortex-a9-glibc [6/49]: OK

...........

49 builds, 27 skipped, 0 build failed, 0 legal-info failed
- **Linux extensions** infrastructure, to support building packages that need kernel patching: Xenomai, RTAI, specific drivers

- **Linux tools** infrastructure, to build user-space tools part of the kernel tree: *perf*, *gpio*, *iio*, *cpupower*, *tmon*, *self-tests*

- Complete revamp of the *gettext* handling, option `BR2_SYSTEM_ENABLE_NLS` to control native language support

- Checks on the architecture of cross-compiled binaries, to detect packages that do not cross-compile to the correct architecture

- Support for hardening features: *relro* and *fortify source*, still experimental.
Features on the radar

- **Git download cache**
 - Avoid re-cloning an entire Git repository every time the version/tag of a Git-fetched package is changed

- **Per-package out of tree build**
 - Avoids *rsync* when using *local* packages or `<pkg>_OVERRIDE_SRCDIR` and improves debugging experience
 - Avoids extracting the source code twice when building host and target variants

- **Top-level parallel build**
 - Building different packages in parallel
 - Requires per-package staging and host directories

- **Improve package tooling**
 - Track upstream package releases using http://www.release-monitoring.org
 - Track CVEs using the NIST database

- **Go and *Meson* package infrastructures**
Conclusion

- Active project
- LTS releases with security updates
- Relocatable SDK
- Rich and up-to-date package set
- Good and increasing testing effort
- Interesting new features on the roadmap

Getting started with Buildroot tutorial at this ELC as part of the E-ALE track, on Wednesday at 2:30 PM.
Questions? Suggestions? Comments?

Thomas Petazzoni
thomas.petazzoni@bootlin.com

Slides under CC-BY-SA 3.0

Support our crowdfunding campaign to develop an upstream Linux kernel driver for Allwinner VPU
https://bootlin.com/blog/allwinner-vpu-crowdfunding/