
ELC 2018

Ethernet switch support
in the Linux kernel
Alexandre Belloni
alexandre.belloni@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/43

 



Alexandre Belloni

▶ Embedded Linux engineer at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Open-source contributor
▶ Maintainer for the Linux kernel RTC subsystem
▶ Co-Maintainer of kernel support for Atmel ARM processors

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/43

 



Switch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/43

 



Microsemi VSC7514

▶ 500MHz MIPS CPU
▶ Usual controllers (UART, I2C, SPI)
▶ 2 MDIO controllers
▶ 10 port gigabit Ethernet switch
▶ 4 integrated PHYs
▶ Currently supported using an SDK

running in userspace using UIO

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/43

 



Features

Usual hardware switch features include:
▶ Bridging
▶ STP
▶ MAC filtering
▶ IGMP snooping
▶ VLAN tagging/untagging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/43

 



Linux switch support

▶ Switch ports are Linux network interfaces
▶ Standard Linux tools are used:

▶ ip, ifconfig for interfaces
▶ ip, bridge, brctl for bridging
▶ Linux bonding for port trunks

▶ The switch can then accelerate what Linux can do in software
▶ switchdev is the Linux framework to offload features to the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/43

 



Switchdev

▶ Stateless framework, not using the device driver model
▶ switchdev_ops are attached to a net_device that has to be registered by the

driver
▶ switchdev_ops implement offloading operations
▶ switchdev_obj abstracts objects (VLANS, MDB) to be used by the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/43

 



Ethernet switch support in the Linux kernel

Front ports

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/43

 



Host mode

▶ Linux expects each port to be a network interface
▶ The VSC7514 doesn’t have an Ethernet controller
▶ However, it is possible to extract or inject frames to/from the CPU
▶ Most of the initial configuration is to configure the ports to not forward frames

and set up the CPU port for extraction and injection

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/43

 



Network devices, registration

▶ Each port is registered with register_netdev after setting the
struct net_device members: .netdev_ops, .ethtool_ops, .switchdev_ops

▶ The interface MAC address is added to the switch MAC table
▶ If necessary, the phy is looked up and probed.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/43

 



Network devices, .ndo_open

▶ ifconfig sw0p0 up or ip link set dev sw0p0 up
▶ Enable frame reception on the port and auto learning of MAC addresses
▶ Attach and start the phy.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/43

 



Network devices, .ndo_start_xmit

▶ The frames are injected on the CPU port and configured to be forwarded to the
switch port

▶ There is a 128-bit header to specify what to do with the frame, in particular the
port on which the frame has to be injected

▶ Frames can be transmitted using:
▶ PIO with one register
▶ DMA to DDR memory
▶ DMA to 16 KB registers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/43

 



Ethernet switch support in the Linux kernel

Bridging and STP

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/43

 



Software bridging

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/43

 



Hardware offloading

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/43

 



Bridging

▶ Setting up a bridge can be done using ip:

ip link add name br0 type bridge
ip link set dev sw0p0 master br0
ip link set dev sw0p1 master br0
ip link set dev sw0p2 master br0
ip link set dev sw0p3 master br0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/43

 



handling bridging

▶ Handling interface addition and removal is done through a netdevice notifier
callback registered using register_netdevice_notifier

▶ The event is NETDEV_CHANGEUPPER. It is necessary to check the upper device is a
bridge with netif_is_bridge_master

struct netdev_notifier_changeupper_info {
struct netdev_notifier_info info; /* must be first */
struct net_device *upper_dev; /* new upper dev */
bool master; /* is upper dev master */
bool linking; /* is the notification for link or unlink */
void *upper_info; /* upper dev info */

};

▶ Check info->linking to discriminate between interface addition and removal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/43

 



Forwarding database

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/43

 



FDB - Userspace

▶ Dumping the current bridge fdb table:

bridge fdb show

▶ Adding an FDB entry

bridge fdb add 00:00:05:00:01:00 dev sw0p0 static

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/43

 



FDB - kernel

▶ The bridge core and the switch FDB have to be kept in sync
▶ Handled using .ndo_fdb_* callbacks of the net_device_ops structure.
▶ At first, they were set to switchdev_port_fdb_* but they were removed in v4.14
▶ .ndo_fdb_add and .ndo_fdb_del are simple to implement, simply adds or

removes a MAC entry
▶ .ndo_fdb_dump is more complicated as it has to handle netlink messaging. Taken

mostly from DSA.
▶ This was necessary because the HW is not able to send interrupts when it learns a

new MAC so the driver is not able to send an event to the bridge driver to
maintain the FDB table.
call_switchdev_notifiers(SWITCHDEV_FDB_ADD_TO_BRIDGE, ...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/43

 



Ageing

▶ Ageing time can be changed at setup using ip:

ip link set dev br0 type bridge ageing_time 1000

▶ or with brctl:
brctl setageing br0 1000

▶ The bridge core will call the .switchdev_port_attr_set callback of the
registered switchdev_ops

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/43

 



switchdev_port_attr_set

int (*switchdev_port_attr_set)(struct net_device *dev,
const struct switchdev_attr *attr,
struct switchdev_trans *trans);

struct switchdev_attr {
struct net_device *orig_dev;
enum switchdev_attr_id id;
u32 flags;
void *complete_priv;
void (*complete)(struct net_device *dev, int err, void *priv);
union {

struct netdev_phys_item_id ppid; /* PORT_PARENT_ID */
u8 stp_state; /* PORT_STP_STATE */
unsigned long brport_flags; /* PORT_BRIDGE_FLAGS */
unsigned long brport_flags_support; /* PORT_BRIDGE_FLAGS_SUPPORT */
bool mrouter; /* PORT_MROUTER */
clock_t ageing_time; /* BRIDGE_AGEING_TIME */
bool vlan_filtering; /* BRIDGE_VLAN_FILTERING */
bool mc_disabled; /* MC_DISABLED */

} u;
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/43

 



Ageing

▶ attr->id is the attribute to set, for ageing, it will be
SWITCHDEV_ATTR_ID_BRIDGE_AGEING_TIME

▶ attr->u.ageing_time holds the ageing time in jiffies
▶ .switchdev_port_attr_set is called twice to allow to change the configuration

atomically. Use switchdev_trans_ph_prepare(trans) or
switchdev_trans_ph_commit(trans) to know which step of the transaction
this is.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/43

 



STP

▶ Enabling STP is done with brctl stp br0 on or with
ip link set dev br0 type bridge stp_state 1

▶ Handling STP is done through the .switchdev_port_attr_set callback
▶ attr->id will be SWITCHDEV_ATTR_ID_PORT_STP_STATE
▶ attr->u.stp_state hold the target STP state
▶ The various states are:

▶ BR_STATE_DISABLED
▶ BR_STATE_LISTENING
▶ BR_STATE_LEARNING
▶ BR_STATE_FORWARDING
▶ BR_STATE_BLOCKING

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/43

 



Ethernet switch support in the Linux kernel

Link aggregation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/43

 



configuration

ip link add name aggr0 type bond
ip link set dev eth_yellow master aggr0
ip link set dev eth_blue master aggr0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/43

 



Link aggregation

▶ As for bridging, it uses the NETDEV_CHANGEUPPER in the netdevice notifier callback
▶ Check the upper device is a bond with netif_is_lag_master
▶ Check info->linking to discriminate between interface addition and removal

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/43

 



Ethernet switch support in the Linux kernel

IGMP snooping

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/43

 



IGMP snooping

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/43

 



IGMP snooping

▶ Linux can install MDBs so the switch avoids flooding multicast traffic on all ports.
▶ The switch needs to forward IGMP packets to the CPU.

netdev_for_each_mc_addr will provide all the multicast addresses to be
installed in the MAC table.

▶ The bridge core will call the .switchdev_port_obj_add callback of the
registered switchdev_ops

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/43

 



switchdev_port_obj_add

int (*switchdev_port_obj_add)(struct net_device *dev,
const struct switchdev_obj *obj,
struct switchdev_trans *trans);

struct switchdev_obj {
struct net_device *orig_dev;
enum switchdev_obj_id id;
u32 flags;
void *complete_priv;
void (*complete)(struct net_device *dev, int err, void *priv);

};

struct switchdev_obj_port_mdb {
struct switchdev_obj obj;
unsigned char addr[ETH_ALEN];
u16 vid;

};

#define SWITCHDEV_OBJ_PORT_MDB(obj) \
container_of(obj, struct switchdev_obj_port_mdb, obj)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/43

 



installing MDBs

▶ obj->id will be SWITCHDEV_OBJ_ID_PORT_MDB
▶ Then cast to an mdb with SWITCHDEV_OBJ_PORT_MDB()
▶ The address and VLAN id are now available in mdb->addr and mdb->vid

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/43

 



Ethernet switch support in the Linux kernel

VLAN filtering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/43

 



configuration

ip link add name br0 type bridge
ip link set dev br0 type bridge vlan_filtering 1
ip link set dev sw0p0 master br0
ip link set dev sw0p1 master br0
ip link set dev sw0p2 master br0
ip link set dev sw0p3 master br0
bridge vlan add dev sw0p0 vid 1 pvid untagged
bridge vlan add dev sw0p1 vid 1
bridge vlan add dev sw0p2 vid 1
bridge vlan add dev sw0p3 vid 1
bridge vlan add dev sw0p0 vid 10
bridge vlan add dev sw0p1 vid 10 pvid untagged
bridge vlan add dev sw0p2 vid 20 pvid untagged
bridge vlan add dev sw0p3 vid 20
bridge vlan add dev sw0p0 vid 30
bridge vlan add dev sw0p1 vid 30
bridge vlan add dev sw0p2 vid 30

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/43

 



VLAN

▶ The bridge core will call the .switchdev_port_obj_add callback of the
registered switchdev_ops

▶ This time, obj->id will be SWITCHDEV_OBJ_ID_PORT_VLAN

struct switchdev_obj_port_vlan {
struct switchdev_obj obj;
u16 flags;
u16 vid_begin;
u16 vid_end;

};

#define SWITCHDEV_OBJ_PORT_VLAN(obj) \
container_of(obj, struct switchdev_obj_port_vlan, obj)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/43

 



VLAN

▶ Cast to a switchdev_obj_port_vlan with SWITCHDEV_OBJ_PORT_VLAN
▶ All VLAN ids to install are from vid_begin to vid_end
▶ flags will be a combination of:

#define BRIDGE_VLAN_INFO_MASTER (1<<0) /* Operate on Bridge device as well */
#define BRIDGE_VLAN_INFO_PVID (1<<1) /* VLAN is PVID, ingress untagged */
#define BRIDGE_VLAN_INFO_UNTAGGED (1<<2) /* VLAN egresses untagged */
#define BRIDGE_VLAN_INFO_RANGE_BEGIN (1<<3) /* VLAN is start of vlan range */
#define BRIDGE_VLAN_INFO_RANGE_END (1<<4) /* VLAN is end of vlan range */
#define BRIDGE_VLAN_INFO_BRENTRY (1<<5) /* Global bridge VLAN entry */

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/43

 



Ethernet switch support in the Linux kernel

DSA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/43

 



DSA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/43

 



DSA

▶ Distributed Switch Architecture
▶ Handles chaining switches through Ethernet ports
▶ Handles the vendor specific switch tagging protocol
▶ Integrates nicely in the device model
▶ As a defined device tree binding

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/43

 



DSA vs switchdev

▶ Is the switch connected to the CPU through an Ethernet interface?
▶ Can that interface absorb all the traffic from the switch?
▶ Does the switch use switch tags?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/43

 



Other challenges

▶ The switch can be used by the internal CPU using MMIO or by an external CPU
using PCIe. Device tree is used to describe the switch when using MMIO. This
becomes quite impractical when using the same switch connected through PCIe
on x86. The current solution is to have an MFD driver registering all the
necessary drivers as platform_devices.

▶ All the registers are packed in the register space, this complicates support for
similar switches but with a different number of ports

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/43

 



Next steps

▶ Sending patches Upstream
▶ DMA
▶ PTP, IEEE1588 support
▶ QoS
▶ SyncE support
▶ Rework promiscuous support

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/43

 



Questions? Suggestions? Comments?

Alexandre Belloni
alexandre.belloni@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/elc/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/43

https://bootlin.com/pub/conferences/2018/elc/

	Ethernet switch support in the Linux kernel
	Front ports
	Bridging and STP
	Link aggregation
	IGMP snooping
	VLAN filtering
	DSA


