
Embedded Linux Conference, March 13th 2018

Secure Boot from A to
Z
Quentin Schulz Mylène Josserand
quentin@bootlin.com mylene@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Speakers presentation

▶ Embedded Linux engineers at Bootlin
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Implemented full chain-of-trust on custom i.MX6 board
▶ Open-source contributors
▶ Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Disclaimer

▶ definitely not security experts
▶ presenting only one way to verify boot on a board based on a specific family of

SoCs (though most parts can be applied to other boards)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Secure Boot from A to Z

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Who wants to verify the boot sequence and why?

▶ product vendors
▶ make sure your devices are used the way they should be
▶ not for a different purpose
▶ not for running unapproved software (e.g. software limitations removed)
▶ protect your consumers

▶ end users
▶ make sure your system hasn’t been tampered with

▶ basically, to make sure the binaries you’re trying to load/boot/execute were built
by a trustworthy person

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

How does it work?

▶ everything is based on digital signature verification (̸= encryption)
▶ the first element in the boot process authenticates the second, the second the

third, etc...
▶ called a chain-of-trust: if any element is authenticated but not sufficiently

locked-down (e.g. console access in bootloader, root access in userspace), the
device is not verified anymore

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

What does a chain-of-trust look like?

▶ every component is verified using its digital signature and a public key
▶ the rootfs integrity is verified using a hash mechanism
▶ our experience:

▶ implemented chain-of-trust on custom i.MX6 boards
▶ Quentin worked on the chain-of-trust from ROM code up to the kernel
▶ Mylène worked on the root FS part of the chain-of-trust

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Mandatory Alice and Bob example: encryption

▶ provided Bob’s public key is publicly available anyone (Alice, Charles, David, etc.)
can send encrypted data to someone (Bob) that is the only one able to decrypt
it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Mandatory Alice and Bob example: signature

▶ provided Alice’s public key is publicly available, anyone (Bob, Charles, David,
etc.) can verify that the signed data someone sent them is sent by the only one
(Alice) able to sign it

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Not inconsequential

▶ costly in terms of:
▶ logistic and overall project complexity: whole architecture to create keys, build with

the keys, ...
▶ workflow complexity for developers: if the platform is locked down, need to re-sign

the binary every time and validate the chain-of-trust
▶ boot time (bunch of authentications to be made along the way to Linux prompt)

▶ you have to be extremely careful with your chain-of-trust and private keys so that
none is broken or leaked

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Secure Boot from A to Z

ROM code - Root of trust

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Specific to the SoC

▶ need a way to store the public key(s) which will be used to decrypt the signature
of the bootloader and make them tamper-proof

▶ each vendor can decide whatever medium they want to use to store the public keys
▶ microcode in charge of checking the signature is embedded in the ROM code
▶ different vendors: Xilinx, Tegra, Atmel, Freescale/NXP, Rockchip, ST, Samsung,

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

NXP public key holder medium

▶ the public key has to be stored on an non-volatile memory (NVM) accessible to
the ROM code

▶ One-Time-Programmable (OTP) fuses are blown
▶ OTP fuses are silicon-expensive in terms of occupied area and store a relatively

small amount of information
▶ a public key is at least 1 KiB
▶ less expensive to store only the hash of the public key in OTP, then compare it to

the hash of the public key embedded in a given binary
▶ good idea to have multiple public keys so that if one private key is

stolen/leaked/lost, we revoke it and we can use others and:
1. not having a totally unverified device
2. not having to brick the device

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Secure boot sequence

ROM code:
▶ loads the bootloader in a secure space to avoid physical attacks
▶ loads the embedded public key
▶ checks the hash of the public key against the hash table in the OTP
▶ uses this verified public key to check the signature of the bootloader
▶ executes the bootloader binary
▶ called High Assurance Boot (HAB) for this SoC family

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Preparing the board

▶ create the keys using NXP custom tool (Code Signing Tool)
▶ flash fuses from working unverified U-Boot using NXP-specific code and the fuse

table returned by CST
▶ sign the bootloader using one of the keys whose hash is in the fuse table, using

CST
▶ check status of bootloader hab_status which is NXP specific
▶ lock down bootloader loading by blowing the locking fuse

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Bootloader authentication check

=> hab_status
Secure boot disabled

HAB Configuration: 0xf0, HAB State: 0x66

--------- HAB Event 1 -----------------
event data:

0xdb 0x00 0x08 0x41 0x33 0x11 0xcf 0x00

STS = HAB_FAILURE (0x33)
RSN = HAB_INV_CSF (0x11)
CTX = HAB_CTX_CSF (0xCF)
ENG = HAB_ENG_ANY (0x00)

--------- HAB Event 2 -----------------
event data:
[...]

=> hab_status
Secure boot disabled

HAB Configuration: 0xf0, HAB State: 0x66
No HAB Events Found!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Secure Boot from A to Z

Bootloader & kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Trust (almost) no one

▶ no point of having a secure bootloader if not authenticated by ROM code
▶ bootloader has to be sufficiently locked-down, otherwise there is no point

authenticating it
▶ specific case of U-Boot mainline: has to be inaccessible by anyone (no console at

all: gd->flags |= GD_FLG_DISABLE_CONSOLE in board_early_init_f())
▶ under no circumstances should you trust anything that isn’t in the U-Boot binary

that is authenticated by the ROM code
▶ by default, the environment can be trusted only if it’s in the U-Boot binary

(ENV_IS_NOWHERE)
▶ pending patch in U-Boot to load only a handful of variables from another

environment, limiting the attack vector
https://patchwork.ozlabs.org/patch/855542/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

https://patchwork.ozlabs.org/patch/855542/

Kernel and DTB authentication

▶ U-Boot has DeviceTree Blob (DTB) support, used the same way the kernel does
to probe drivers: according to the DT definition

▶ DTB can also be used to store a public key
▶ DTB is appended to the U-Boot binary and is thus affected by the computation of

the hash used by the ROM code to authenticate the bootloader => can be trusted
▶ fitImage to have only one file containing binaries and signatures instead of lots of

images to load
▶ mkimage (the tool to compile fitImages) has built-in support for signing of

binaries hash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Key generation

▶ openssl genrsa -out my_key.key 4096
▶ openssl req -batch -new -x509 -key my_key.key -out my_key.crt
▶ mkimage requires certificate and private key files to be named the same

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

DTB creation

u-boot_pubkey.dts
/dts-v1/;
/ {

model = "Keys";
compatible = "vendor,board";
signature {

key-my_key {
required = "image";
algo = "sha1,rsa4096";
key-name-hint = "my_key";

};
};

};

▶ key-name-hint and the suffix to the key- DT node has to be the same name as
the one given to the key

▶ required is either image or conf, refer to doc/uImage.FIT/signature.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

What’s a fitImage?

▶ several talks given to present the
fitImage, the reasons behind and
the challenges

▶ it’s basically a container for
multiple binaries with hashing and
signature support

▶ it also supports forcing a few
binaries to be loaded together,

▶ supports different architectures,
OSes, image types, ... => can be
found in common/image.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

fitImage.its

/ {
description = "fitImage for Foo revA and revB";
#address-cells = <1>;
images {

kernel@1 {
description = "Linux kernel";
data = /incbin/("zImage");
type = "kernel";
arch = "arm";
os = "linux";
compression = "none";
load = <0x10008000>;
entry = <0x10008000>;
signature@1 {

algo = "sha1,rsa4096";
key-name-hint = "my_key";

};
};
fdt@1 {

description = "DTB for Foo revA";
data = /incbin/("foo-reva.dtb");
type = "flat_dt";
arch = "arm";
compression = "none";
signature@1 {

algo = "sha1,rsa4096";
key-name-hint = "my_key";

};
};

fdt@2 {
description = "DTB for Foo revB";
data = /incbin/("foo-revb.dtb");
type = "flat_dt";
arch = "arm";
compression = "none";
signature@1 {

algo = "sha1,rsa4096";
key-name-hint = "my_key";

};
};

};
configurations {

default = "conf@1";
conf@1 {

kernel = "kernel@1";
fdt = "fdt@1";

};
conf@2 {

kernel = "kernel@1";
fdt = "fdt@2";

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

U-Boot & fitImage creation

#DTB compiled out-of-tree because we need to add the public key with \code{mkimage}
dtc u-boot_pubkey.dts -O dtb -o u-boot_pubkey.dtb
make CROSS_COMPILE=arm-linux-gnueabihf- foo_defconfig
make CROSS_COMPILE=arm-linux-gnueabihf- tools
tools/mkimage -f fitImage.its -K u-boot_pubkey.dtb -k /path/to/keys -r fitImage
make CROSS_COMPILE=arm-linux-gnueabihf- EXT_DTB=u-boot_pubkey.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

U-Boot required options

▶ CONFIG_SECURE_BOOT=y (specific to NXP)
▶ #ifdef CONFIG_SECURE_BOOT

CSF CONFIG_CSF_SIZE
#endif, at the beginning of the DCD file of your NXP board

▶ CONFIG_OF_CONTROL=y
▶ CONFIG_DM=y, CONFIG_FIT=y, CONFIG_FIT_SIGNATURE=y

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

fitImage booting
with a fitImage loaded @ 0x15000000:
=> bootm 0x15000000 #or bootm 0x15000000#conf@1 since conf@1 is the default
Loading kernel from FIT Image at 15000000 ...

Using 'conf@1' configuration
Verifying Hash Integrity ... OK
Trying 'kernel@1' kernel subimage

Description: Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: 0x150000e4
Data Size: 7010496 Bytes = 6.7 MiB
Architecture: ARM
OS: Linux
Load Address: 0x10008000
Entry Point: 0x10008000
Hash algo: sha1
Hash value: 7d1fb52f2b8d1a98d555e01bc34d11550304fc26
Sign algo: sha1,rsa4096:my_key
Sign value: [redacted]

Verifying Hash Integrity ... sha1,rsa4096:my_key+ sha1+ OK
Loading fdt from FIT Image at 15000000 ...

Using 'conf@1' configuration
Trying 'fdt@1' fdt subimage
[...]
Verifying Hash Integrity ... sha1,rsa4096:my_key+ sha1+ OK
Booting using the fdt blob at 0x156afd40
Loading Kernel Image ... OK
Loading Device Tree to 1fff2000, end 1ffff1ed ... OK

Starting kernel...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

fitImage booting
with a fitImage loaded @ 0x15000000:
=> bootm 0x15000000 #or bootm 0x15000000#conf@1 since conf@1 is the default
Loading kernel from FIT Image at 15000000 ...

Using 'conf@1' configuration
Verifying Hash Integrity ... OK
Trying 'kernel@1' kernel subimage

Description: Linux kernel
Type: Kernel Image
Compression: uncompressed
Data Start: 0x150000e4
Data Size: 7010496 Bytes = 6.7 MiB
Architecture: ARM
OS: Linux
Load Address: 0x10008000
Entry Point: 0x10008000
Hash algo: sha1
Hash value: 7d1fb52f2b8d1a98d555e01bc34d11550304fc26
Sign algo: sha1,rsa4096:my_key
Sign value: [redacted]

Verifying Hash Integrity ... sha1,rsa4096:my_key+ sha1+ OK
Loading fdt from FIT Image at 15000000 ...

Using 'conf@1' configuration
Trying 'fdt@1' fdt subimage
Verifying Hash Integrity ... sha1,rsa4096:my_key- Failed to verify required signature 'key-my_key'

error!
Unable to verify required signature for '' hash node in 'fdt@1' image node
Bad Data Hash

Booting using the fdt blob at 0x156ba280
Loading Kernel Image ... OK

ERROR: image is not a fdt - must RESET the board to recover.
FDT creation failed! hanging...### ERROR ### Please RESET the board ###

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Secure Boot from A to Z

Root filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

The chosen solutions

To have a verified root filesystem, we have chosen the following solutions:
▶ Have an unalterable filesystem:

▶ read-only filesystem: impossible to modify it
=> squashfs: type for read-only filesystem

▶ Not part of the secure-boot process but it was important for us
▶ Authenticate the rootfs

▶ dm-verity:
▶ infrastructure to check if the rootfs is the one we are expecting

=> authentication of the squashfs image
▶ needs userspace applications to authenticate the system. Need to have these tools

available
=> use an initramfs builtin as a first filesystem

▶ the kernel is already in the chain of trust

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

dm-verity

▶ Device-Mapper: infrastructure in the Linux kernel to create virtual layers of
block devices

▶ Device-Mapper verity: provides integrity checking of block devices using kernel
crypto API

▶ could hash the whole block device and compare it with the expected hash
▶ instead, use a cryptographic hash tree (Merkle tree)
▶ blocks are hashed and hash verified with hash tree only on access
▶ except the leaf nodes that are data, each node is the hash of its children. Until

only one last hash => root hash
▶ needs userspace apps: cryptsetup provides different tools (veritysetup)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

dm-verity in our case

▶ boot the kernel with initramfs
▶ have an init-script that uses

veritysetup on block device
(ubiblk0)

▶ veritysetup: a userspace
application to authenticate
devices according to
root_hash

▶ if OK, verified squashfs
available

▶ if NOK, fails to have squashfs
=> init stops here

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

dm-verity: create hash tree

▶ veritysetup creates the
hash tree (hash.img) and
prints the root hash

▶ by default, the hash image is
contained on another
device/image than the one we
want to authenticate

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

dm-verity: create hash tree

▶ not our use-case: want only
one device
=> concatenate the hash
image at the end of our
squashfs image

▶ veritysetup has an option
--hash-offset to locate the
hash area in the same
device/image

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

dm-verity: authenticate device

▶ use veritysetup to
authenticate the block device

▶ need the root hash and the
offset (where to find the hash
tree)

▶ if authentication is successful,
can mount (or switch-root)
the verified squashfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

dm-verity: authenticate device

▶ use veritysetup to
authenticate the block device

▶ need the root hash and the
offset (where to find the hash
tree)

▶ if authentication is successful,
can mount (or switch-root)
the verified squashfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

dm-verity: authenticate device

▶ use veritysetup to
authenticate the block device

▶ need the root hash and the
offset (where to find the hash
tree)

▶ if authentication is successful,
can mount (or switch-root)
the verified squashfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

U-Boot: passing hash-offset

▶ create a U-Boot environment
script

▶ but the U-Boot environment
script can be attacked

▶ add this script in the
FitImage
=> has a signature of the
hash of the binary

▶ Once sourced, set bootargs
to have offset and root hash

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

The final mechanism

▶ source U-Boot script to set
bootargs with hash and
offset

▶ bootargs read by Linux’s
init-script to retrieve
hash/offset values

▶ used with veritysetup to
authenticate the block device

▶ use switch-root tool to
switch the rootfs from
initramfs to squashfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

The final mechanism

▶ source U-Boot script to set
bootargs with hash and
offset

▶ bootargs read by Linux’s
init-script to retrieve
hash/offset values

▶ used with veritysetup to
authenticate the block device

▶ use switch-root tool to
switch the rootfs from
initramfs to squashfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Secure Boot from A to Z

Conclusion

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

Chain-of-trust completed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

Painful integration into Yocto

▶ currently, to create a fitImage, the kernel recipe is required to inherit
kernel-fitimage class

▶ it’s done before the rootfs is created (because usually people want the kernel to
be in /boot)

▶ U-Boot script needs to be in the fitImage
▶ U-Boot script has to be created after the squashfs rootfs to retrieve the root hash
▶ and that’s how you end up with a dependency loop in Yocto :)
▶ wrote a new image and class to work around this issue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

Read-Write filesystems

▶ our use case was very specific: read-only root filesystem, but one might want a
read-write filesystem

▶ if not critical (depends on your use case, e.g. logs, user data, etc...), mount it
along side your read-only authenticated rootfs

▶ if critical, have a look at IMA/EVM
▶ http://kernsec.org/files/lss2015/ima-applications-slides.pdf
▶ https://lwn.net/Articles/488906/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

http://kernsec.org/files/lss2015/ima-applications-slides.pdf
https://lwn.net/Articles/488906/

Remember about trusting no-one?

▶ secure boot vulnerabilities in ROM code of i.MX6, i.MX50, i.MX53, i.MX7,
i.MX28 and Vybrid families publicly disclosed July 17th, 2017
▶ https://community.nxp.com/docs/DOC-334996

▶ Know your threat model, nothing is 100% secure,
▶ Tutorial: Introduction to Reverse Engineering by Mike Anderson

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

https://community.nxp.com/docs/DOC-334996
https://elciotna18.sched.com/event/DXmx/tutorial-introduction-to-reverse-engineering-mike-anderson-the-ptr-group-inc

Questions? Suggestions? Comments?

Quentin Schulz Mylène Josserand
quentin@bootlin.com mylene@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/elc/josserand-schulz-secure-boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

https://bootlin.com/pub/conferences/2018/elc/josserand-schulz-secure-boot

