
ELC 2018

I + I2C = I3C, what’s
hiding in this additional
’I’
Boris Brezillon
boris@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Boris Brezillon

I Embedded Linux engineer and trainer at Bootlin
I Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, consulting, etc.
I Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and

Buildroot training courses, with materials freely available under a Creative
Commons license.

I https://bootlin.com
I Contributions

I Maintainer of the MTD subsystem
I Kernel support for various ARM SoCs
I Submitted RFCs for an I3C subsystem

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

https://bootlin.com


’I’ like in ...

I I2C == Inter Integrated Circuit
I I3C == Improved Inter Integrated Circuit
I If it’s improved, it’s obviously better

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Questions? Suggestions? Comments?

Boris Brezillon
boris@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/elc/bbrezillon-i3c/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

https://bootlin.com/pub/conferences/2018/elc/bbrezillon-i3c/


Backup slides
(for those who need more to be convinced)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1



I + I2C = I3C, what’s hiding in this additional ’I’

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



I2C and SPI: fine but could do better

I I2C and SPI have long been the primary choice for embedded devices
+ Both are relatively simple to implement (slaves and masters)
+ Both require a limited amount of pins
– I2C is quite slow
– SPI requires one extra CS pin per device
– Both need an extra pin per device to signal interrupts
– Both don’t support hotplug
– Both don’t support automated device discovery (though I2C bus can be scanned to

know if a device is present at a specific address)
– Address collisions on I2C buses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



I3C: an attempt at addressing I2C/SPI limitations

I What if we could improve SPI and I2C to make something even more attractive
I Here comes I3C (MIPI standard):

+ Only 2 pins required
+ In Band Interrupts
+ Higher throughput (up to 35Mb/s)
+ Better energy efficiency than I2C on a per-transmitted-bit basis
+ Supports hotplug
+ Devices are discoverable
+ Dynamic address assignment to avoid address collisions
+ Backward compatible with I2C (to some extent)
+ [Standardization of device profiles?]
– Likely harder to implement

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



I + I2C = I3C, what’s hiding in this additional ’I’

Few details about the protocol

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



I3C: backward compatibility with I2C

I I3C has been designed with I2C backward compatibility in mind
I Why?
I Because of the existing I2C slaves ecosystem (a huge variety of sensors and other

kind of devices are controlled over I2C)
I Transition to systems containing only I3C sensors/slaves is likely to take long
I Some new/fancy sensors/slaves will support I3C natively
I But you’ll still have to embed I2C slaves to have a full-blown system until I3C

equivalences are available
I Backward compatibility is a two-way problem:

I You’ll have to connect I2C slaves on an I3C bus
I Slave vendors might want to make their new I3C-compatible devices backward

compatible with I2C so that can can indifferently be connected on an I3C or I2C bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



I3C vs I2C: physical layer

I Similarities:
I Only 2 signals: SDA (data) and SCL (clock)
I SDA in open-drain with a pull-up
I Start/RepeatedStart/Stop/Ack/Nack conditions are unchanged

I What has changed:
I SCL in push-pull →

I Devices doing clock-stretching are not allowed
I Clock frequency can be higher (due to faster rising edge)

I SDA switches to push-pull when possible (to improve throughput and reduce power
consumption)

I HDR (High Data Rate) modes (DDR or Ternary based modes)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



I3C vs I2C: why switching to push-pull?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



I3C vs I2C: but I2C is open-drain...

I Why?
I It’s simpler to implement
I Allows any device to easily take control of the bus:

I Default state is high-level
I The line is driven low if one or more devices set it low
I No risk of having 2 devices driving the line at two different levels

I Remember that I3C wants to be backward compatible with I2C
I SCL can easily be switched to push-pull if only one device (the master) drives it →

I No clock-stretching
I No I2C-like multi-master

I SDA still needs to be controlled by slaves at specific time (to ACK/NACK a
transaction)

I I3C Master should dynamically switch from open-drain to push-pull during a
transaction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



I3C: what about performance?

I SCL can run at up to 12.5 MHz in push-pull mode → 1.4 MByte/s
I Problem: I2C devices don’t support such high-speed SCL

I We need to slow down SCL when I2C devices are present on the bus...
I ... unless we find a way to let them think the SCL signal stays low and exclude them

from pure I3C transactions
I Luckily, some devices have spike filters, filtering any changes that are maintained less

than 50 ns
I I3C takes benefit of that by using an asymmetric SCL signal:

I SCL stays high less than 50 ns (usually 40 ns since 12.5 MHz implies a 80 ns period)
I The low period is extended (more than 50 ns) so that the I2C device always sees a

logical low-level
I With this trick performance is still lower than when you have only I3C devices on

the bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



I2C: 50 ns spike filter

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



I3C: bus configurations

I Pure Bus: only I3C devices connected on the bus
I SCL can be set to 12.5MHz
I All HDR modes can be used
I This is the ideal case in term of performance

I Mixed Fast Bus: I3C and I2C devices connected on the bus, but I2C devices have a
50 ns spike filter
I SCL has to be lower (usually around 8.3MHz if you make low period twice as big as

high period)
I HDR-DDR and HDR-TSL can be used
I This is a good compromise when you have to connect both I2C and I3C device on an

I3C bus
I Mixed Slow Bus: I3C and I2C devices connected on the bus, but some I2C devices

do not have a 50 ns spike filter
I SCL is limited to the slowest I2C device on the bus
I HDR modes are not supported

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



I3C vs I2C: addressing scheme

I Similarities:
I 7-bit addresses
I Devices are expected to ACK/NACK transactions

I What has changed:
I Broadcast address (0x7e)

I Can be used to address all I3C devices
I Has been picked from the reserved address space of I2C to avoid collision with I2C

devices
I Addresses are no longer statically assigned: dynamically assigned by the master

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



I3C: I2C backward compatibility, let’s sum-up

I Similarities in the PHY and MAC layer are motivated by backward compatibility
I Still, not all I2C slaves can be connected on an I3C bus along with I3C devices

I Slaves doing clock-stretching are forbidden
I Having a 50 ns spike filter on the I2C slaves end is recommended if you want to

achieve acceptable performance on I3C transactions
I Don’t forget that some HDR modes can’t be used when I2C devices are present on

the bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



I3C vs I2C: functional differences

I This is probably the most interesting part for software developers
I I3C is functionally far from I2C:

I Devices are assigned addresses by the master dynamically
I Devices can be automatically discovered
I Devices are self-descriptive (similar to USB devices)

I Manufacturer and part id exposed
I Concept of device class
I Devices expose their bus-related capabilities

I Some masters/slaves are hotplug-friendly
I Bus management is more advanced/controlled than with I2C
I Provides different types of transactions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



I3C: CCC transactions or how to manage the bus

I I2C specification defines the bare minimum:
I How to transmit things on the bus
I How to interact with devices (address them and exchange data)
I Lacks generic protocol to do bus management operations

I I3C protocol is more complex and I3C masters have a few more responsibilities:
I Discover devices connected on the bus
I Query information about those devices
I Keep the bus in a consistent state
I Do generic operations

I Requires standardization of bus management related operations
I This is done with CCC (Common Command Codes) transactions

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



I3C: CCC frame format

I An 8-bit opcode
I Bit 7: 0 → broadcast, 1 → unicast
I In case of unicast commands, the destination address is stored in the payload

I 0 to N bytes of payload
I Opcode id defines whether the payload should be read or written
I Payload length depends on the opcode

I A few examples:
I ENTDAA: Start a DAA procedure (auto-discovery procedure)
I ENTASX: Enter Activity State (related to power management)
I GETPID: Get Provisional ID (related to device identification)
I GETBCR: Get Bus Characteristics Register (related to device capabilities)
I GETBCR: Get Device Characteristics Register (related to device classification)
I ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



I3C: Discovering devices connected on the bus

I Discovery is done with the ENTDAA broadcast CCC command
I Every I3C slave device connected to the bus should reply to this command
I The Master follows the ENTDAA command by a RepeatedStart and waits for an

ACK (which can be asserted by several devices since SDA is open drain in this
situation)

I Every device connected on the bus should start emitting the following data:
I PID: Unique ID containing a manufacturer ID, a part ID and an instance ID
I BCR: The Bus Characteristics Register
I DCR: The Device Characteristics Register

I While emitting, the slave should monitor the SDA state, and stop emitting as
soon as SDA does not match (arbitration lost)

I Master will assign a dynamic address to the winning device
I The master will re-emit RepeatedStart until no-one ACKs the request, which

means all devices have been discovered
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: DAA (Dynamic Address Assignment)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



I3C: Identifying devices connected on the bus

I PID (Provisional ID): Unique ID formed of several subfields
I Manufacturer ID: 15 bits describing the device manufacturer
I Part ID: 16 bits describing the device
I Instance ID: 4 bits in case you need to have several instances of the same device on

a bus. Usually configurable through external pins
I Extra information: 12 bits. Vendor specific. Still unclear what will be placed here

I BCR (Bus Characteristics Register): device capabilities
I IBI capable
I HDR capable
I SDR transfer speed limitations
I ...

I DCR (Device Characteristics Register): device type. IDs are standardized
I IDs are standardized by MIPI
I Will we have common interfaces standardized by MIPI??

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



I3C: SDR private transfers

I SDR transfers are supposed to replace I2C transfers for I3C devices
I Uses push-pull mode and higher SCL frequency (up to 12.5MHz) when applicable
I No standardization of the transfers content: devices are free to expose the

interface they like

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



I3C: HDR transfers

I HDR (High Data Rate) transfers are intended to be used by devices that need
high throughput

I 3 different HDR modes (all optional):
I DDR (Double Data Rate): both edges of the clock are used to transmit data
I TSP (Ternary Symbol Pure): both SCL and SDA are used to encode data. Only

applicable to pure I3C buses
I TSL (Ternary Symbol Legacy-inclusive-bus): same as TSP except it’s applicable to

buses on which you have I2C devices
I Based on 16-bit word transmission
I Frame format is defined by the spec → standard/generic HDR commands are

likely to show up

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



I3C: IBIs or how to make your hardware designer happy

I IBI stands for In-Band Interrupts
I Removes the need for an extra pin to signal interrupts
I IBI generation is part of the protocol

I Slave devices can preempt the bus to signal interrupts
I Master is still in control and can NACK IBIs
I IBIs can be followed by a payload

I Address arbitration takes place when several devices send IBIs concurrently
I The device with the lowest address wins

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



I3C: Hot-Join

I New name for hotplug, same feature
I I3C devices can signal their presence after the master has initialized the bus
I The master can ACK or NACK the request
I In case of ACK, the master should assign a dynamic address to the device by

starting a DAA procedure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



I3C: Multi master capabilities

I I3C natively supports multi-master
I Bus ownership is much more controlled than with I2C
I Gaining bus ownership involves a 2-way handshake between the currently active

master and the one taking bus ownership
I 2 types of I3C masters:

I Main master: the master responsible for initializing the bus
I Secondary masters: masters that initially act as slaves and can at some point gain

ownership of the bus
I There can only be one main master on a given I3C bus
I But you can have several secondary masters
I Bus ownership handover can be requested by:

I an inactive master willing to control the bus
I the active master if it doesn’t want to act as a master anymore (for example, when

being suspended)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



I3C protocol: want to learn more?

I Very brief introduction to some of the I3C concepts
I Many pieces of information have been omitted
I If you want to know more, go check the I3C specification:

http://resources.mipi.org/mipi-i3c-v1-download

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 

http://resources.mipi.org/mipi-i3c-v1-download


I + I2C = I3C, what’s hiding in this additional ’I’

I3C support in Linux

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Supporting I3C in Linux

I I3C is a bit tricky to categorize
I It is backward compatible with I2C devices
I But I3C device handling is completely different

I Constraints:
I We must keep the existing I2C ecosystem unchanged (all I2C drivers and users should

work as before)
I We should be able to support and expose I3C functionalities

I Two options:
1. Extend the I2C framework to support I3C features
2. Add an I3C framework and connect it to the I2C framework

I We went for option 2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Linux I3C framework

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



Linux I3C framework: design choices

I Separate APIs for device drivers and I3C master controllers
I For each master controller an I3C and an I2C bus are created
I Both buses are connected through the controller parenting
I Device drivers are bound to devices based on the DCR or PID values
I IBIs are not exposed as regular IRQs (we tried this approach and it didn’t fit well)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



Linux I3C Device driver API: overview

I Exposed in include/linux/i3c/device.h
I Allows one to declare, register and unregister an I3C driver
I You can also register an hybrid I2C/I3C driver
I Provides a way to do SDR and HDR transfers (provided the device and master

supports HDR modes)
I CCC commands are not exposed yet, since most of them are related to bus

management (might change in the future if needed)
I Provides a way to register an IBI handler, and activate/deactivate the IBI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



Linux I3C Device driver API: declaring a driver

static int dummy_i3c_probe(struct i3c_device *dev)
{

...
}

static int dummy_i3c_remove(struct i3c_device *dev)
{

...
}

static const struct i3c_device_id dummy_i3cdev_ids[] = {
I3C_DEVICE(<manufid>, <partid>, <driver-data>),
{ /* sentinel */ },

};

static struct i3c_driver dummy_i3c_drv = {
.driver = {

.name = "dummy-i3c",
},
.id_table = dummy_i3cdev_ids,
.probe = dummy_i3c_probe,
.remove = dummy_i3c_remove,

};
module_i3c_driver(dummy_i3c_drv);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



Linux I3C Device driver API: SDR private transfers

u8 reg = 0x5;
u8 values[2] = {0x1, 0x2};
struct i3c_priv_xfer xfers[2] = {

{
.flags = 0,
.len = 1,
.data.out = &reg,

},
{

.flags = I3C_PRIV_XFER_READ,

.len = 2,

.data.in = values,
},

};

ret = i3c_device_do_priv_xfers(i3cdev, xfers, ARRAY_SIZE(xfers));
if (ret)

return ret;

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Linux I3C Device driver API: DDR transfers

#define MYVENDOR_READ_COMMAND HDR_VENDOR_READ_CMD(0)
...

u16 data[4] = {};
struct i3c_hdr_cmd hdrcmd = {

.mode = I3C_HDR_DDR,

.code = MYVENDOR_READ_COMMAND,

.ndatawords = ARRAY_SIZE(data),

.data.in = data,
};

ret = i3c_device_send_hdr_cmds(i3cdev, &hdrcmd, 1);
if (ret)

return ret;

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 



Linux I3C Device driver API: IBIs

static void ibi_handler(struct i3c_device *dev,
const struct i3c_ibi_payload *payload)

{
/* Called in a non-atomic context (workqueue) */
...

}

static int probe(struct i3c_device *i3cdev)
{

struct i3c_ibi_setup ibireq = {
.handler = ibi_handler,
.max_payload_len = 2,
.num_slots = 10,

};

...
ret = i3c_device_request_ibi(dev, &ibireq);
if (ret)

return ret;

ret = i3c_device_enable_ibi(dev);
if (ret)

return ret;
...

}

static int remove(struct i3c_device *i3cdev)
{

...
i3c_device_disable_ibi(i3cdev);
i3c_device_free_ibi(i3cdev);
...

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 



Linux I3C Master controller driver API: overview

I Exposed in include/linux/i3c/master.h
I Allows one to register and unregister an I3C master controller
I Master controller drivers have to implement the

struct i3c_master_controller_ops interface
I This interface tries to follow the I3C specification as much as possible
I Leaves a lot of freedom to drivers in how they deal with complex operations like

DAA
I The framework provides generic helpers to help drivers implementing these

operations

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

 



Linux I3C Master controller driver API: bus initialization

I One of the first things controllers are asked to handle is the bus initialization
I The core

I parses information provided by the FW (currently, only DT parsing is supported)
I instantiates I2C and I3C device objects based on this definition (those devices are not

registered to the device model)
I And finally, the core calls the master controller ->bus_init() method which is

responsible for:
I Configuring the controller to take bus limitations into account (based on defined I2C

devices)
I Pre-reserving dynamic addresses that are meant to be manually assigned before DAA
I Doing DAA to discover devices connected to the bus
I For each device discovered during DAA, the controller calls a core helper to add the

new I3C device to the list of devices
I Only after all these steps, both I3C and I2C devices are registered to the device

model
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 



Linux I3C Master controller driver API: various kind of transfers

I One method for each:
I ->priv_xfers() is for private SDR transfers
I ->send_hdr_cmds() is for HDR transfers
I ->send_ccc_cmd() is for CCC transactions
I ->i2c_xfers() is for I2C transfers (used by the I2C → I3C glue)

I There’s an extra ->supports_ccc_cmd(), since not all CCC commands are
mandatory

I All these methods are working in a synchronous manner
I ->priv_xfers() and ->send_hdr_cmds() can do several transfers in one go

using RepeatedStart instead of Stop+Start

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

 



Linux I3C Master controller driver API: IBIs

I The master controller IBI interface follows the I3C device API:
I ->request_ibi(): allocate resources to later handle IBIs coming from a specific

device
I ->free_ibi(): free resources allocated for IBIs coming from a specific device
I ->enable_ibi(): enable IBIs coming from a device
I ->disable_ibi(): disable IBIs coming from a device
I ->recycle_ibi_slot(): recycle a payload slot that was previously used to deliver

an IBI to a device driver. Called after the IBI handler returns
I Design choices

I IBIs are delivered to the device driver in a workqueue context. Simply because IBIs
may lead to other transmissions on the bus, and the API does not allow that in an
atomic-context

I Still, you should refrain from doing everything from the IBI handler → it will prevent
other IBIs from being delivered (maybe we should have a per-device workqueue...)

I IBI slots are pre-allocated, so you may lose some IBIs if the device driver is not
handling them fast enough

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

 



Linux I3C Master controller driver API: Hot-Join

I Master controllers are likely to generate an interrupt when a Hot-Join request is
received

I Master controller drivers will have to schedule a work (using the IBI workqueue)
to start DAA

I They can use helpers to declare new devices after DAA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

 



I3C support in Linux: the status

I What has been implemented/tested?
I All the APIs described in the previous slides
I Master controller API has been tested with Cadence Master IP
I All Slave APIs have been tested using a dummy driver interacting with a dummy

slave IP provided by Cadence
I Last version of the I3C patch series can be found here (reviews are welcome):

https://lkml.org/lkml/2017/12/14/406
I What’s missing?

I I3C Multi-master with bus ownership handover procedure
I Slave controller API to support things like I3C gadget
I HDR-TSP/TSL. Couldn’t test it since Cadence master controller IP does not

support these modes
I We didn’t have a real device driver, but this is being addressed (driver for an I3C

gpio-expander will be part of the next version)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

 

https://lkml.org/lkml/2017/12/14/406


Questions?
Boris Brezillon

boris@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/elc/i3c/

Support our crowdfunding campaign to develop
an upstream Linux kernel driver for Allwinner VPU

https://bootlin.com/blog/allwinner-vpu-crowdfunding/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/1

https://bootlin.com/pub/conferences/2018/elc/i3c/
https://bootlin.com/blog/allwinner-vpu-crowdfunding/

