%

| + 1°C = 13C, what's
hiding in this additional
1|1

Boris Brezillon
boris@bootlin.com

bootlin

©

embedded Linux and kernel engineering

» Embedded Linux engineer and trainer at Bootlin

» Embedded Linux development: kernel and driver development, system integration,
boot time and power consumption optimization, consulting, etc.

» Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and
Buildroot training courses, with materials freely available under a Creative
Commons license.

> https://bootlin.com

» Contributions

» Maintainer of the MTD subsystem

» Kernel support for various ARM SoCs

» Submitted RFCs for an 13C subsystem

» Living in Toulouse, south west of France

https://bootlin.com

» 2C == Inter Integrated Circuit
» [3C == Improved Inter Integrated Circuit

> If it's improved, it's obviously better

Questions? Suggestions? Comments?

Boris Brezillon
boris@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2018/elc/bbrezillon-i3c/

https://bootlin.com/pub/conferences/2018/elc/bbrezillon-i3c/

Backup slides

(for those who need more to be convinced)

Introduction

» [2C and SPI have long been the primary choice for embedded devices
+ Both are relatively simple to implement (slaves and masters)
+ Both require a limited amount of pins
— I2C is quite slow
— SPI requires one extra CS pin per device
— Both need an extra pin per device to signal interrupts
— Both don't support hotplug
— Both don't support automated device discovery (though I2C bus can be scanned to
know if a device is present at a specific address)
— Address collisions on I2C buses

» What if we could improve SPI and 12C to make something even more attractive
» Here comes I3C (MIPI standard):

IR e A

Only 2 pins required

In Band Interrupts

Higher throughput (up to 35Mb/s)

Better energy efficiency than 12C on a per-transmitted-bit basis
Supports hotplug

Devices are discoverable

Dynamic address assignment to avoid address collisions
Backward compatible with 12C (to some extent)
[Standardization of device profiles?]

Likely harder to implement

Few details about the protocol

» 13C has been designed with 1°C backward compatibility in mind

Why?

» Because of the existing I12C slaves ecosystem (a huge variety of sensors and other
kind of devices are controlled over 12C)

v

v

Transition to systems containing only 13C sensors/slaves is likely to take long

v

Some new/fancy sensors/slaves will support 13C natively
» But you'll still have to embed I2C slaves to have a full-blown system until 13C
equivalences are available

» Backward compatibility is a two-way problem:

» You'll have to connect I2C slaves on an I3C bus
» Slave vendors might want to make their new 13C-compatible devices backward
compatible with I2C so that can can indifferently be connected on an 13C or I?C bus

> Similarities:
> Only 2 signals: SDA (data) and SCL (clock)
» SDA in open-drain with a pull-up
> Start/RepeatedStart/Stop/Ack/Nack conditions are unchanged
» What has changed:
» SCL in push-pull —
» Devices doing clock-stretching are not allowed
» Clock frequency can be higher (due to faster rising edge)
> SDA switches to push-pull when possible (to improve throughput and reduce power
consumption)
» HDR (High Data Rate) modes (DDR or Ternary based modes)

400 KHz signal

_ — _ _logical
high-level

Open-Drain

Pull-up

Push-Pull

12.5 MHz signal
Open-Drain
Pull-up

Push-Pull

> Why?
P |t's simpler to implement
> Allows any device to easily take control of the bus:
» Default state is high-level
» The line is driven low if one or more devices set it low
» No risk of having 2 devices driving the line at two different levels
» Remember that I3C wants to be backward compatible with 12C
» SCL can easily be switched to push-pull if only one device (the master) drives it —

» No clock-stretching
» No I2C-like multi-master

» SDA still needs to be controlled by slaves at specific time (to ACK/NACK a

transaction)
» [3C Master should dynamically switch from open-drain to push-pull during a

transaction

» SCL can run at up to 12.5 MHz in push-pull mode — 1.4 MByte/s
» Problem: 12C devices don’t support such high-speed SCL
» We need to slow down SCL when I2C devices are present on the bus...
» .. unless we find a way to let them think the SCL signal stays low and exclude them
from pure I13C transactions
» Luckily, some devices have spike filters, filtering any changes that are maintained less
than 50 ns
» 13C takes benefit of that by using an asymmetric SCL signal:
> SCL stays high less than 50 ns (usually 40 ns since 12.5 MHz implies a 80 ns period)
» The low period is extended (more than 50 ns) so that the |12C device always sees a
logical low-level

» With this trick performance is still lower than when you have only 13C devices on
the bus

8 MHz SCL signal

40ns 85ns
< > <€ >
13C device ’ \ ’ \
filtered filtered
I2C device
with 50 ns

spike filter

» Pure Bus: only I3C devices connected on the bus
» SCL can be set to 12.5MHz
» All HDR modes can be used
» This is the ideal case in term of performance
» Mixed Fast Bus: I3C and I?2C devices connected on the bus, but I°C devices have a
50 ns spike filter
» SCL has to be lower (usually around 8.3MHz if you make low period twice as big as
high period)
» HDR-DDR and HDR-TSL can be used
» This is a good compromise when you have to connect both I2C and 13C device on an
I3C bus
» Mixed Slow Bus: 13C and I2C devices connected on the bus, but some 12C devices
do not have a 50 ns spike filter
» SCL is limited to the slowest I2C device on the bus
» HDR modes are not supported

» Similarities:

» 7-bit addresses

» Devices are expected to ACK/NACK transactions
» What has changed:

> Broadcast address (0x7e)

> Can be used to address all 13C devices
» Has been picked from the reserved address space of 12C to avoid collision with 12C
devices

» Addresses are no longer statically assigned: dynamically assigned by the master

» Similarities in the PHY and MAC layer are motivated by backward compatibility

» Still, not all I2C slaves can be connected on an 13C bus along with I3C devices
» Slaves doing clock-stretching are forbidden
» Having a 50 ns spike filter on the I?C slaves end is recommended if you want to
achieve acceptable performance on I3C transactions

» Don't forget that some HDR modes can’t be used when I2C devices are present on
the bus

» This is probably the most interesting part for software developers
» 13C is functionally far from 12C:
» Devices are assigned addresses by the master dynamically
» Devices can be automatically discovered
> Devices are self-descriptive (similar to USB devices)
» Manufacturer and part id exposed
P Concept of device class
» Devices expose their bus-related capabilities
Some masters/slaves are hotplug-friendly
Bus management is more advanced/controlled than with 12C
Provides different types of transactions

vvyy

» |2C specification defines the bare minimum:
» How to transmit things on the bus
> How to interact with devices (address them and exchange data)
» Lacks generic protocol to do bus management operations
» [3C protocol is more complex and 13C masters have a few more responsibilities:
» Discover devices connected on the bus
» Query information about those devices
» Keep the bus in a consistent state
» Do generic operations

» Requires standardization of bus management related operations

» This is done with CCC (Common Command Codes) transactions

» An 8-bit opcode

» Bit 7: 0 — broadcast, 1 — unicast

» In case of unicast commands, the destination address is stored in the payload
» 0 to N bytes of payload

» Opcode id defines whether the payload should be read or written

» Payload length depends on the opcode
> A few examples:

» ENTDAA: Start a DAA procedure (auto-discovery procedure)

> ENTASX: Enter Activity State (related to power management)

» GETPID: Get Provisional ID (related to device identification)

> GETBCR: Get Bus Characteristics Register (related to device capabilities)

> GETBCR: Get Device Characteristics Register (related to device classification)
>

» Discovery is done with the ENTDAA broadcast CCC command
Every I3C slave device connected to the bus should reply to this command
» The Master follows the ENTDAA command by a RepeatedStart and waits for an
ACK (which can be asserted by several devices since SDA is open drain in this
situation)
» Every device connected on the bus should start emitting the following data:
» PID: Unique ID containing a manufacturer ID, a part ID and an instance ID
» BCR: The Bus Characteristics Register
» DCR: The Device Characteristics Register
» While emitting, the slave should monitor the SDA state, and stop emitting as
soon as SDA does not match (arbitration lost)

\{

» Master will assign a dynamic address to the winning device

» The master will re-emit RepeatedStart until no-one ACKs the request, which
means all devices have been discovered

[I3C master]

| |

T EEEE

[2C slave 1 [2C slave 2

[I3C master]

C Repeatt:ed Start)

[2C slave 1 I2C slave 2

I3C slave 1 I3C slave 2
I3C master

[*W

I12C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
I3C master

< ASSIGN_:ADDR(A) >
13C bus [lel][IYll]

[2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
[IBC master] [2]] []

R [

[2C slave 1 I2C slave 2

I3C slave 1 I3C slave 2
I3C master 2]

(Repeat%d Start)
13C bus [Ill][lll]

[2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
I3C master]

[[
I3C bus] v
[IZC slave 1} [IZC slave 2}

I3C slave 1 I3C slave 2
I3C master 2]

<ASSIGN_:ADDR(B)>
13C bus [lel][lll]

I2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
[|3C master] []][5]]

SR SR

[2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
I3C master 2] 5]

(Repeatied Start)
13C bus [lel][lll]

[2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
I3C master] e

)

[2C slave 1 [2C slave 2

I3C slave 1 I3C slave 2
I3C master] e

[2C slave 1 [2C slave 2

SR SR

» PID (Provisional ID): Unique ID formed of several subfields
» Manufacturer ID: 15 bits describing the device manufacturer
> Part ID: 16 bits describing the device
» Instance ID: 4 bits in case you need to have several instances of the same device on
a bus. Usually configurable through external pins
» Extra information: 12 bits. Vendor specific. Still unclear what will be placed here

» BCR (Bus Characteristics Register): device capabilities
> IBI capable
» HDR capable
» SDR transfer speed limitations
> .
» DCR (Device Characteristics Register): device type. |IDs are standardized

» |Ds are standardized by MIPI
> Will we have common interfaces standardized by MIPI?7

» SDR transfers are supposed to replace I1°C transfers for 13C devices
» Uses push-pull mode and higher SCL frequency (up to 12.5MHz) when applicable

» No standardization of the transfers content: devices are free to expose the
interface they like

» HDR (High Data Rate) transfers are intended to be used by devices that need
high throughput
» 3 different HDR modes (all optional):

» DDR (Double Data Rate): both edges of the clock are used to transmit data

»> TSP (Ternary Symbol Pure): both SCL and SDA are used to encode data. Only
applicable to pure I3C buses

» TSL (Ternary Symbol Legacy-inclusive-bus): same as TSP except it's applicable to
buses on which you have I2C devices

» Based on 16-bit word transmission

» Frame format is defined by the spec — standard/generic HDR commands are
likely to show up

» IBI stands for In-Band Interrupts

» Removes the need for an extra pin to signal interrupts
> IBI generation is part of the protocol

» Slave devices can preempt the bus to signal interrupts
» Master is still in control and can NACK IBIs
» 1IBIs can be followed by a payload

» Address arbitration takes place when several devices send IBls concurrently

» The device with the lowest address wins

» New name for hotplug, same feature
» |3C devices can signal their presence after the master has initialized the bus
» The master can ACK or NACK the request

» In case of ACK, the master should assign a dynamic address to the device by
starting a DAA procedure

vy

I3C natively supports multi-master

Bus ownership is much more controlled than with 12C

Gaining bus ownership involves a 2-way handshake between the currently active
master and the one taking bus ownership

2 types of 13C masters:

» Main master: the master responsible for initializing the bus
» Secondary masters: masters that initially act as slaves and can at some point gain
ownership of the bus

There can only be one main master on a given 13C bus

But you can have several secondary masters
Bus ownership handover can be requested by:

» an inactive master willing to control the bus
> the active master if it doesn't want to act as a master anymore (for example, when
being suspended)

» Very brief introduction to some of the I13C concepts
» Many pieces of information have been omitted

» If you want to know more, go check the I3C specification:
http://resources.mipi.org/mipi-i3c-vi-download

http://resources.mipi.org/mipi-i3c-v1-download

|I3C support in Linux

» 13C is a bit tricky to categorize
» It is backward compatible with 12C devices
» But 13C device handling is completely different
» Constraints:
> We must keep the existing 12C ecosystem unchanged (all I12C drivers and users should
work as before)
» We should be able to support and expose 13C functionalities
» Two options:

1. Extend the I1°C framework to support I3C features
2. Add an I3C framework and connect it to the I2C framework

» We went for option 2

Software

Hardware

I2C bus

I12C driver

13C driver

i

~

12C framework

13C framework

1

)

I12C adapter driver

13C master
controller driver

p

p

12C adapter

e

12C 13C master
adapter controller

Y

13C bus

I12C slave

device

N
I13C slave
device

» Separate APlIs for device drivers and 13C master controllers

» For each master controller an I3C and an I2C bus are created

» Both buses are connected through the controller parenting

» Device drivers are bound to devices based on the DCR or PID values

» |Bls are not exposed as regular IRQs (we tried this approach and it didn't fit well)

vvyyypy

v

Exposed in include/linux/i3c/device.h
Allows one to declare, register and unregister an 13C driver
You can also register an hybrid 12C/I3C driver

Provides a way to do SDR and HDR transfers (provided the device and master
supports HDR modes)

CCC commands are not exposed yet, since most of them are related to bus
management (might change in the future if needed)

Provides a way to register an IBl handler, and activate/deactivate the IBI

%

static int dummy_i3c_probe(struct i3c_device *dev)

{
}

static int dummy_i3c_remove(struct i3c_device *dev)

}

static const struct i3c_device_id dummy_i3cdev_ids[] = {
I3C_DEVICE(<manufid>, <partid>, <driver-data>),
{ /* sentinel */ },

};

static struct i3c_driver dummy_i3c_drv = {
.driver = {
.name = "dummy-i3c",
}

.id_table = dummy_i3cdev_ids,
.probe = dummy_i3c_probe,
.remove = dummy_i3c_remove,
};

module_i3c_driver (dummy_i3c_drv);

u8 reg = 0x5;
u8 values[2] = {0x1, 0x2};
struct i3c_priv_xfer xfers[2] = {

.flags = 0,
.len = 1,
.data.out = ®,
},
{
.flags = I3C_PRIV_XFER_READ,
.len = 2,
.data.in = values,
},

};

ret = i3c_device_do_priv_xfers(i3cdev, xfers, ARRAY_SIZE(xfers));
if (ret)
return ret;

%

#define MYVENDOR_READ_COMMAND HDR_VENDOR_READ_CMD (0)

ul6 datal[4] = {};

struct i3c_hdr_cmd hdrcmd = {
.mode = I3C_HDR_DDR,
.code = MYVENDOR_READ_COMMAND,
.ndatawords = ARRAY_SIZE(data),
.data.in = data,

};

ret = i3c_device_send_hdr_cmds(i3cdev, &hdrcmd, 1);
if (ret)
return ret;

%

static void ibi_handler(struct i3c_device *dev,
const struct i3c_ibi_payload *payload)

{

}

/* Called in a non-atomic context (workqueue) */

static int probe(struct i3c_device *i3cdev)

struct i3c_ibi_setup ibireq = {
.handler = ibi_handler,
.max_payload_len = 2,
.num_slots = 10,

};
ret = i3c_device_request_ibi(dev, &ibireq);
if (ret)
return ret;
ret = i3c_device_enable_ibi(dev);
if (ret)

return ret;

static

int remove(struct i3c_device *i3cdev)

i3c_device_disable_ibi(i3cdev);
i3c_device_free_ibi(i3cdev);

vy

v

Exposed in include/linux/i3c/master.h
Allows one to register and unregister an 13C master controller

Master controller drivers have to implement the
struct i3c_master_controller_ops interface

This interface tries to follow the 13C specification as much as possible

Leaves a lot of freedom to drivers in how they deal with complex operations like
DAA

The framework provides generic helpers to help drivers implementing these
operations

» One of the first things controllers are asked to handle is the bus initialization
» The core

» parses information provided by the FW (currently, only DT parsing is supported)
> instantiates 12C and 13C device objects based on this definition (those devices are not
registered to the device model)

» And finally, the core calls the master controller ->bus_init () method which is
responsible for:

» Configuring the controller to take bus limitations into account (based on defined 12C
devices)

» Pre-reserving dynamic addresses that are meant to be manually assigned before DAA

» Doing DAA to discover devices connected to the bus

» For each device discovered during DAA, the controller calls a core helper to add the
new 13C device to the list of devices

» Only after all these steps, both 13C and I2C devices are registered to the device
model

» One method for each:
» —>priv_xfers() is for private SDR transfers
» ->send hdr_cmds() is for HDR transfers
» ->send ccc_cmd() is for CCC transactions
» ->i2c_xfers() is for I2C transfers (used by the 12C — 13C glue)
» There's an extra ->supports_ccc_cmd (), since not all CCC commands are
mandatory

» All these methods are working in a synchronous manner

» —>priv_xfers() and ->send_hdr_cmds () can do several transfers in one go
using RepeatedStart instead of Stop+Start

» The master controller IBI interface follows the I3C device API:

v

->request_ibi(): allocate resources to later handle IBls coming from a specific
device

->free_ibi(): free resources allocated for IBls coming from a specific device
->enable_ibi(): enable IBls coming from a device

->disable_ibi(): disable IBls coming from a device

->recycle_ibi_slot(): recycle a payload slot that was previously used to deliver
an IBI to a device driver. Called after the IBI handler returns

vVvyyvyy

» Design choices

» IBls are delivered to the device driver in a workqueue context. Simply because IBls
may lead to other transmissions on the bus, and the API does not allow that in an
atomic-context

» Still, you should refrain from doing everything from the 1Bl handler — it will prevent
other IBls from being delivered (maybe we should have a per-device workqueue...)

» |Bl slots are pre-allocated, so you may lose some IBls if the device driver is not
handling them fast enough

» Master controllers are likely to generate an interrupt when a Hot-Join request is
received

» Master controller drivers will have to schedule a work (using the 1Bl workqueue)
to start DAA

» They can use helpers to declare new devices after DAA

» What has been implemented /tested?

>
>
>

>

All the APIs described in the previous slides

Master controller API has been tested with Cadence Master IP

All Slave APIs have been tested using a dummy driver interacting with a dummy
slave IP provided by Cadence

Last version of the 13C patch series can be found here (reviews are welcome):
https://1kml.org/1kml/2017/12/14/406

» What's missing?

>
>
>

|

I3C Multi-master with bus ownership handover procedure

Slave controller API to support things like 13C gadget

HDR-TSP/TSL. Couldn't test it since Cadence master controller IP does not
support these modes

We didn't have a real device driver, but this is being addressed (driver for an 13C
gpio-expander will be part of the next version)

https://lkml.org/lkml/2017/12/14/406

Questions?

Boris Brezillon

boris@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2018/elc/i3c/

Support our crowdfunding campaign to develop
an upstream Linux kernel driver for Allwinner VPU
https://bootlin.com/blog/allwinner-vpu-crowdfunding/

https://bootlin.com/pub/conferences/2018/elc/i3c/
https://bootlin.com/blog/allwinner-vpu-crowdfunding/

