%

Understand your NAND
and drive it within Linux

Miquel Raynal
miquel@bootlin.com

bootlin

©

embedded Linux and kernel engineering

» Embedded Linux engineer at Bootlin

» Embedded Linux development: kernel and driver development, system integration,
boot time and power consumption optimization, consulting, etc.

» Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and
Buildroot training courses, with materials freely available under a Creative
Commons license.

> https://bootlin.com

» Contributions
» Active contributor to the NAND subsystem
» Kernel support for various ARM SoCs

» Living in Toulouse, south west of France

https://bootlin.com

» Introduction to the basics of NAND flash memory

» How they are driven by the NAND controller

» Overview of the Linux memory stack, especially the new interface to drive NAND
controllers: ->exec_op()

» | am not a NAND expert, more the NAND maintainer slave
» | will probably oversimplify some aspects
» This presentation is not about history nor NOR technology

» Focus on SLC NAND (Single Level Cell) to simplify explanations, logic is similar
with MLC/TLC NAND (Multi/Triple Level Cell)

» Main purpose: replace hard disks drives
» Main goal: lowest cost per bit

» Widely used in many consumer devices, embedded systems...

» Flavors:

> Raw NAND / parallel NAND p—

» Serial NAND (mostly over SPI)

» Managed NAND with FTL (Flash Translation Layer)
» SD cards

» USB sticks

» SSD

> etc

%

Understanding the
NAND memory cell

Miquel Raynal
miquel@bootlin.com

bootlin

©

embedded Linux and kernel engineering

» Silicon, Si
» Electrically balanced (neutral)
» 14 electrons spread in 3 orbits
» 4 electrons in the valence shell — easy bonding with other Silicon atoms (crystal)

.- T~ Conduction shell/Conduction band
_ - . ~ \/
.
. N
. - -~ ~
’ -7 ¢ RN N Valence shell/Valence band
// P - N N N
’ 7 ._ N <
/ , - - - o \ \
\ \
. g) ¥] o . \
\
! / 1 @~ h . | Valence electron

%

» Electricity = free electrons
» Silicon is almost an insulator
» Valence electron stroke by light — absorbs energy — jumps to the conduction band
» Free electrons drift randomly unless a voltage is applied — attracted to the + side

The Flash

» Nothing to do with cycling
» Purpose of doping: enhance conductivity

» Add impurities (atoms with more or less valence electrons than Si)
» Once bound with 4 Si atoms:

> 1 free electron < N-doping
» 1 hole +— P-doping

> Still electrically neutral

P Electrons close to the junction will jump to recombine with the closest hole

» Creation of a barrier of potential: a non-crossable electric field

» Depletion region thickness is modular

o .N ® ./@ ®,)
® o™ O
- .N e ® ? ®P ®
¢ ©| ® ®

P Electrons close to the junction will jump to recombine with the closest hole
» Creation of a barrier of potential: a non-crossable electric field

» Depletion region thickness is modular

oo ¢ ® @
+..N g. P®®-
(| Do v0 TG @ 0 gy

o ® ®

Insulator

O ®°@

®

Floating-Gate

» Change the charge of the floating-gate
» No electrical contact — Fowler-Nordheim tunneling

e
++

A

» Reverse the electric field
» Done by applying a high negative voltage on the control gate

|]

....
@@@ @_:’_@ ® OO

Word-line

Floating-Gate

Bit-line

AN

Want to read this bit?

%

Apply an higher voltage on the other cells to make them passing

R NN NN
| | | | | |

» High negative voltage — not that easy to produce

» Bulk is the same for all cells — “eraseblock”

L=l

®e® @+P+@ ® ®06

> Always erase before programming
» “Clean” erased state is only 1111... everywhere because floating gates are not
electrically charged.
» Writing is a one-way operation that brings more electrons in the floating-gate.
» This is “programming a 0".
» There is no “programming a 1" action.

» Cells may not be fully erased/programmed

» Electrons without enough energy might get
trapped, creating a depletion region

» Oxide becomes negative, preventing tunneling
of the electrons if the barrier gets too high

» Cells may not be fully erased/programmed

» Electrons without enough energy might get
trapped, creating a depletion region

» Oxide becomes negative, preventing tunneling
of the electrons if the barrier gets too high

» Data retention issue

> Writing/erasing moves electrons through the
oxide layer

» Electrons will dissipate their energy colliding
with the material, damaging it
— possible charge loss

» Cells may not be fully erased/programmed
» Electrons without enough energy might get
trapped, creating a depletion region
» Oxide becomes negative, preventing tunneling
of the electrons if the barrier gets too high
» Data retention issue
> Writing/erasing moves electrons through the
oxide layer
» Electrons will dissipate their energy colliding
with the material, damaging it
— possible charge loss

» Read/write disturbances
» ~100k program/erase cycles with SLC NAND

%

Driving a NAND chip:
the NAND controller

Miquel Raynal
miquel@bootlin.com

bootlin

©

embedded Linux and kernel engineering

@

: command cycle

: address cycle
NAND {
instructions

: data cycle

WAIT : wait period

FEE @ o ®
/

‘0 DomEO

———

NAND operation

%

Read page: . - .
Write page: . - .
Reset chip: .

Read id: . -

» Controllers are often embedded in an SoC
» Diverse implementations, from the most simplest to highly sophisticated ones

» Controller job: communicate with the NAND chip

» Can embed an ECC engine to handle bitflips

» Can embed advanced logic to optimize throughput
» Sequential accesses
> Parallel die accesses

%

Dealing with NAND
from Linux

Miquel Raynal
miquel@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, i ibutions and fons are welcome!

bootlin

©

embedded Linux and kernel engineering

Userspace T

Kernel

Wear leveling and
file system layers

I

v
Flash memory
abstraction layer MTD layer
Flash type NAND core
abstraction layer
Flash controller Controller Controller Controller
drivers driver A driver C

driver B
|

Hardware ¢ Flash controllers

->cmd_ctrl() ->cmd_ctrl() ->waitfunc() / ->dev_ready()

— —
@EEE ®@»H®
—_ _/

—~ \f_/

->cmdfunc() ->read/write_byte/word/buf()

Userspace

/dev/mtd0

Kernel

4

MTD
layer mtd_read()
|
¥
NAND
core ->cmdfunc() <€——— nand_read()
1= | 7 AN
Controllel
driver

->cmd_ctrl() ->dev_ready()

. @
@ ->read/write_byte()
SR ->read/write_word()

->read/write_buf()

%

> NAND controllers have become more complex
» Can handle higher-level operations
> higher performances?

» May provide support for operations that would do all command/address/data cycles
in one-go
> Some controllers are not able anymore to do basic operations (single cycles)
» They cannot send a single command, address or data cycle!

» Workaround: overload ->cmdfunc ()

> NAND controller drivers have to re-implement everything
» Encourages people to implement a minimal set of commands
» Logic changes from driver to driver
» NAND operations evolve over the time — new vendor specific operations

» Hard to maintain as support across the NAND controllers is not uniform
» Need to patch all the drivers for additions supposedly simple in the core

» According to the NAND maintainer, vendors are still creative
“Why are they so mean to us?!” — Boris Brezillon, 04/01,/2018

» Some controllers need the length of the data transfer

» Not available in ->cmdfunc ()
» Drivers started predicting what the core “next move” would be

» Clear symptoms that the framework was not fitting the user needs anymore

v

v

vvyyypy

New interface that asks to execute the whole operation
Just a translation in NAND operations of the MTD layer orders
» Doesn't try to be smart, logic should be in the NAND framework

Calls the controller ->exec_op () hook and passes it an array of instructions to
execute

Should fit most NAND controllers we already know about
Introduced in Linux v4.16

Marvell's NAND controller driver migrated

More to come: FSMC, Sunxi, VF610, Arasan, MXC, Atmel...

%

» When receiving an array of sequential instructions:
» Parses the sequence

» Splits in as much sub-operations as needed to perform the task
» Declares if the overall operation can be handled
» Otherwise returns -ENOTSUPP

» Simple controllers — trivial logic

» More complex controllers — use the core’s parser

Userspace

/dev/mtd0

A\
MTD
layer mtd_read()
|
|
v
NAND
core nand_read() nand_op_parser_exec_op()
4 AN
/[AN
Controller / NAND_OP_PARSER
driver
\4 oo
nfc_exec_op() O
o0

NAND_OP_PARSER

NAND_OP_PARSER_PATTERN

@ - (@) o

NAND_OP_PARSER_PATTERN

@ -

NAND_OP_PARSER_PATTERN

SRV

@D - o

NAND_OP_PARSER

Reset NAND_OP_PARSER_PATTERN

WAIT
@ @ B (@) o

NAND_OP_PARSER_PATTERN

Read ID

@ B €0 60 6 60 €D (@) (@) o

NAND_OP_PARSER_PATTERN

Change read column -
x1024 C

» Various hooks should be implemented by the controller driver
> —>exec_op() is one tool to do “low-level” operations
> ->setup_data_interface() to manage controller timings
» ->select_chip() to select a NAND chip die

» Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

» Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

» Get the NAND documentation
dd if=/dev/zero of=nand.txt

» Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

» Get the NAND documentation
dd if=/dev/zero of=nand.txt

» Ping the MTD community early on the public mailing-list

» Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

» Get the NAND documentation
dd if=/dev/zero of=nand.txt

» Ping the MTD community early on the public mailing-list
» Do not forget to add the maintainer(s) in copy, it puts them in a bad mood

» Presentation by Boris Brezillon (Bootlin) at ELCE 2016 in Berlin: “Modernizing
the NAND framework, the big picture”
https://www.youtube.com/watch?v=vhEbOfgk71M
https://events.linuxfoundation.org/sites/events/files/slides/
brezillon-nand-framework_O.pdf

» Presentation by Arnout Vandecappelle (Essensium/Mind) at ELCE 2016 in Berlin:
“Why NAND flash breaks down”
https://www.youtube.com/watch?v=VajB8vCsZ3s
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-
technology-ELCE16.pdf

» YouTube channel “Learn engineering” that democratizes physical concepts
https://www.youtube.com/watch?v=7ukDKVHnac4

» SlideShare by Nur Baya Binti Mohd Hashim (UNIMAP) about semiconductors
http://slideplayer.com/slide/10946788

https://www.youtube.com/watch?v=vhEb0fgk71M
https://events.linuxfoundation.org/sites/events/files/slides/brezillon-nand-framework_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/brezillon-nand-framework_0.pdf
https://www.youtube.com/watch?v=VajB8vCsZ3s
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-technology-ELCE16.pdf
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-technology-ELCE16.pdf
https://www.youtube.com/watch?v=7ukDKVHnac4
http://slideplayer.com/slide/10946788

Questions? Suggestions? Comments?

Miquel Raynal
miquel@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2018/fosdem/raynal-exec-op/

Support our crowdfunding campaign to develop
an upstream Linux kernel driver for Allwinner VPU
https://bootlin.com/blog/allwinner-vpu-crowdfunding/

https://bootlin.com/pub/conferences/2018/fosdem/raynal-exec-op/
https://bootlin.com/blog/allwinner-vpu-crowdfunding/

» For throughput or compatibility purpose, a controller driver may overload the
following functions defined by the core to bypass ->exec_op() and talk directly
to the NAND controller

» ->read/write_page()

» ->read/write_oob()
> Bitflips should be corrected and reported by the controller driver
> Let the NAND core handle the rest and report to upper layers

» [t is also mandatory to fill their “raw” counterpart in order to be able to test and
debug all the functionalities of the driver

» ->read/write_page_raw()
» ->read/write_oob_raw()

