
Embedded Linux Conference, March 12th 2018

Understand your NAND
and drive it within Linux
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Miquèl Raynal

I Embedded Linux engineer at Bootlin
I Embedded Linux development: kernel and driver development, system integration,

boot time and power consumption optimization, consulting, etc.
I Embedded Linux, Linux driver development, Yocto Project / OpenEmbedded and

Buildroot training courses, with materials freely available under a Creative
Commons license.

I https://bootlin.com
I Contributions

I Active contributor to the NAND subsystem
I Kernel support for various ARM SoCs

I Living in Toulouse, south west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

https://bootlin.com


What is this talk about?

I Introduction to the basics of NAND flash memory
I How they are driven by the NAND controller
I Overview of the Linux memory stack, especially the new interface to drive NAND

controllers: ->exec_op()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Disclaimer

I I am not a NAND expert, more the NAND maintainer slave
I I will probably oversimplify some aspects
I This presentation is not about history nor NOR technology
I Focus on SLC NAND (Single Level Cell) to simplify explanations, logic is similar

with MLC/TLC NAND (Multi/Triple Level Cell)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



The commercial minute

I Main purpose: replace hard disks drives
I Main goal: lowest cost per bit
I Widely used in many consumer devices, embedded systems...
I Flavors:

I Raw NAND / parallel NAND ⇐
I Serial NAND (mostly over SPI)
I Managed NAND with FTL (Flash Translation Layer)

I SD cards
I USB sticks
I SSD
I etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Embedded Linux Conference, March 12th 2018

Understanding the
NAND memory cell
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Back to school: Silicon

I Silicon, Si
I Electrically balanced (neutral)
I 14 electrons spread in 3 orbits
I 4 electrons in the valence shell → easy bonding with other Silicon atoms (crystal)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Back to school: electricity

I Electricity =⇒ free electrons
I Silicon is almost an insulator
I Valence electron stroke by light → absorbs energy → jumps to the conduction band
I Free electrons drift randomly unless a voltage is applied → attracted to the + side

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Back to school: doping

I Nothing to do with cycling
I Purpose of doping: enhance conductivity

I Add impurities (atoms with more or less valence electrons than Si)
I Once bound with 4 Si atoms:

I 1 free electron ← N-doping
I 1 hole ← P-doping

I Still electrically neutral

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



P-N junction: the diode

I Electrons close to the junction will jump to recombine with the closest hole
I Creation of a barrier of potential: a non-crossable electric field
I Depletion region thickness is modular

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



P-N junction: the diode

I Electrons close to the junction will jump to recombine with the closest hole
I Creation of a barrier of potential: a non-crossable electric field
I Depletion region thickness is modular

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Metal-Oxide-Semiconductor Field-Effect Transistor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Metal-Oxide-Semiconductor Field-Effect Transistor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Metal-Oxide-Semiconductor Field-Effect Transistor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Floating-gate transistor

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Floating-gate transistor: reading a one

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Floating-gate transistor: reading a zero

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Programming a cell to a 0 state

I Change the charge of the floating-gate
I No electrical contact → Fowler-Nordheim tunneling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Erasing a cell to a 1 state

I Reverse the electric field
I Done by applying a high negative voltage on the control gate

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Memory cell

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



NAND gate

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



NAND gate

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



NAND gate

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Memory string

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Memory string

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



Memory array

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Memory array

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



Erasing

I High negative voltage → not that easy to produce
I Bulk is the same for all cells → “eraseblock”

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Special care

I Always erase before programming
I “Clean” erased state is only 1111... everywhere because floating gates are not

electrically charged.
I Writing is a one-way operation that brings more electrons in the floating-gate.
I This is “programming a 0”.
I There is no “programming a 1” action.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Main design flaw: bitflips

I Cells may not be fully erased/programmed
I Electrons without enough energy might get

trapped, creating a depletion region
I Oxide becomes negative, preventing tunneling

of the electrons if the barrier gets too high

I Data retention issue
I Writing/erasing moves electrons through the

oxide layer
I Electrons will dissipate their energy colliding

with the material, damaging it
→ possible charge loss

I Read/write disturbances
I ∼100k program/erase cycles with SLC NAND

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Main design flaw: bitflips

I Cells may not be fully erased/programmed
I Electrons without enough energy might get

trapped, creating a depletion region
I Oxide becomes negative, preventing tunneling

of the electrons if the barrier gets too high
I Data retention issue

I Writing/erasing moves electrons through the
oxide layer

I Electrons will dissipate their energy colliding
with the material, damaging it
→ possible charge loss

I Read/write disturbances
I ∼100k program/erase cycles with SLC NAND

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Main design flaw: bitflips

I Cells may not be fully erased/programmed
I Electrons without enough energy might get

trapped, creating a depletion region
I Oxide becomes negative, preventing tunneling

of the electrons if the barrier gets too high
I Data retention issue

I Writing/erasing moves electrons through the
oxide layer

I Electrons will dissipate their energy colliding
with the material, damaging it
→ possible charge loss

I Read/write disturbances
I ∼100k program/erase cycles with SLC NAND

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Embedded Linux Conference, March 12th 2018

Driving a NAND chip:
the NAND controller
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



NAND bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



NAND protocol

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



NAND protocol (examples)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



NAND controller

I Controllers are often embedded in an SoC
I Diverse implementations, from the most simplest to highly sophisticated ones
I Controller job: communicate with the NAND chip

I Can embed an ECC engine to handle bitflips
I Can embed advanced logic to optimize throughput

I Sequential accesses
I Parallel die accesses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Embedded Linux Conference, March 12th 2018

Dealing with NAND
from Linux
Miquèl Raynal
miquel@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Linux Memory Technology Device stack (MTD)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



When there were still dinosaurs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



NAND legacy stack

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Limitations of the old methods

I NAND controllers have become more complex
I Can handle higher-level operations

I higher performances?
I May provide support for operations that would do all command/address/data cycles

in one-go
I Some controllers are not able anymore to do basic operations (single cycles)

I They cannot send a single command, address or data cycle!
I Workaround: overload ->cmdfunc()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 



Drawbacks of overloading ->cmdfunc()

I NAND controller drivers have to re-implement everything
I Encourages people to implement a minimal set of commands

I Logic changes from driver to driver
I NAND operations evolve over the time → new vendor specific operations

I Hard to maintain as support across the NAND controllers is not uniform
I Need to patch all the drivers for additions supposedly simple in the core

I According to the NAND maintainer, vendors are still creative
“Why are they so mean to us?!” – Boris Brezillon, 04/01/2018

I Some controllers need the length of the data transfer
I Not available in ->cmdfunc()
I Drivers started predicting what the core “next move” would be

I Clear symptoms that the framework was not fitting the user needs anymore

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

 



Addressing these limitations: ->exec_op()

I New interface that asks to execute the whole operation
I Just a translation in NAND operations of the MTD layer orders

I Doesn’t try to be smart, logic should be in the NAND framework
I Calls the controller ->exec_op() hook and passes it an array of instructions to

execute
I Should fit most NAND controllers we already know about
I Introduced in Linux v4.16
I Marvell’s NAND controller driver migrated
I More to come: FSMC, Sunxi, VF610, Arasan, MXC, Atmel...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

 



->exec_op() controller’s implementation

I When receiving an array of sequential instructions:
I Parses the sequence

I Splits in as much sub-operations as needed to perform the task
I Declares if the overall operation can be handled

I Otherwise returns -ENOTSUPP
I Simple controllers → trivial logic
I More complex controllers → use the core’s parser

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

 



Parser

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

 



Patterns

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

 



Swipe right to match

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

 



NAND hooks

I Various hooks should be implemented by the controller driver
I ->exec_op() is one tool to do “low-level” operations
I ->setup_data_interface() to manage controller timings
I ->select_chip() to select a NAND chip die

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

 



Good habits when you hack a NAND controller driver

I Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

I Get the NAND documentation
dd if=/dev/zero of=nand.txt

I Ping the MTD community early on the public mailing-list
I Do not forget to add the maintainer(s) in copy, it puts them in a bad mood

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 



Good habits when you hack a NAND controller driver

I Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

I Get the NAND documentation
dd if=/dev/zero of=nand.txt

I Ping the MTD community early on the public mailing-list
I Do not forget to add the maintainer(s) in copy, it puts them in a bad mood

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 



Good habits when you hack a NAND controller driver

I Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

I Get the NAND documentation
dd if=/dev/zero of=nand.txt

I Ping the MTD community early on the public mailing-list

I Do not forget to add the maintainer(s) in copy, it puts them in a bad mood

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 



Good habits when you hack a NAND controller driver

I Test with the userspace tools through the /dev/mtd* devices
mtd-utils: nandbiterrs, nandreadpage, flash_speed, flash_erase,
nanddump, nandwrite, etc

I Get the NAND documentation
dd if=/dev/zero of=nand.txt

I Ping the MTD community early on the public mailing-list
I Do not forget to add the maintainer(s) in copy, it puts them in a bad mood

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

 



Sources/Links

I Presentation by Boris Brezillon (Bootlin) at ELCE 2016 in Berlin: “Modernizing
the NAND framework, the big picture”
https://www.youtube.com/watch?v=vhEb0fgk71M
https://events.linuxfoundation.org/sites/events/files/slides/
brezillon-nand-framework_0.pdf

I Presentation by Arnout Vandecappelle (Essensium/Mind) at ELCE 2016 in Berlin:
“Why NAND flash breaks down”
https://www.youtube.com/watch?v=VajB8vCsZ3s
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-
technology-ELCE16.pdf

I YouTube channel “Learn engineering” that democratizes physical concepts
https://www.youtube.com/watch?v=7ukDKVHnac4

I SlideShare by Nur Baya Binti Mohd Hashim (UNIMAP) about semiconductors
http://slideplayer.com/slide/10946788

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

 

https://www.youtube.com/watch?v=vhEb0fgk71M
https://events.linuxfoundation.org/sites/events/files/slides/brezillon-nand-framework_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/brezillon-nand-framework_0.pdf
https://www.youtube.com/watch?v=VajB8vCsZ3s
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-technology-ELCE16.pdf
https://schd.ws/hosted_files/openiotelceurope2016/36/Flash-technology-ELCE16.pdf
https://www.youtube.com/watch?v=7ukDKVHnac4
http://slideplayer.com/slide/10946788


Questions? Suggestions? Comments?
Miquèl Raynal
miquel@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/fosdem/raynal-exec-op/

Support our crowdfunding campaign to develop
an upstream Linux kernel driver for Allwinner VPU

https://bootlin.com/blog/allwinner-vpu-crowdfunding/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

https://bootlin.com/pub/conferences/2018/fosdem/raynal-exec-op/
https://bootlin.com/blog/allwinner-vpu-crowdfunding/


Backup

I For throughput or compatibility purpose, a controller driver may overload the
following functions defined by the core to bypass ->exec_op() and talk directly
to the NAND controller
I ->read/write_page()
I ->read/write_oob()

I Bitflips should be corrected and reported by the controller driver
I Let the NAND core handle the rest and report to upper layers

I It is also mandatory to fill their “raw” counterpart in order to be able to test and
debug all the functionalities of the driver
I ->read/write_page_raw()
I ->read/write_oob_raw()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

 


