

Introduction to Linux kernel Introduction to Linux kernel
driver programming + i2c driver programming + i2c

driversdrivers

Introduction to Linux kernel driver
programming: i2c drivers

The Linux kernel device model

Authors and license
● Authors

– Michael Opdenacker (michael@bootlin.com)
Founder of Bootlin,
kernel and embedded Linux engineering company
https://bootlin.com/company/staff/michael-opdenacker

● License
– Creative Commons Attribution – Share Alike 4.0

https://creativecommons.org/licenses/by-sa/4.0/
– Document sources: https://github.com/e-ale/Slides

https://bootlin.com/company/staff/michael-opdenacker
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/e-ale/Slides

Need for a device model
● For the same device, need to use the same device driver on

multiple CPU architectures (x86, ARM…), even though the
hardware controllers are different.

● Need for a single driver to support multiple devices of the
same kind.

● This requires a clean organization of the code, with the device
drivers separated from the controller drivers, the hardware
description separated from the drivers themselves, etc.

Driver: between bus infrastructure and
framework

In Linux, a driver is always interfacing with:
● a framework that allows the driver to

expose the hardware features in a
generic way.

● a bus infrastructure, part of the device
model, to detect/communicate with the
hardware.

Let’s focus on the bus infrastructure for now

Device model data structures
The device model is organized around three main data structures:
● The struct bus_type structure, which represent one type of

bus (USB, PCI, I2C, etc.)
● The struct device_driver structure, which represents one driver

capable of handling certain devices on a certain bus.
● The struct device structure, which represents one device connected to a

bus

The kernel uses inheritance to create more specialized versions of struct
device_driver and struct device for each bus subsystem.

The bus driver
● Example: USB. Implemented in drivers/usb/core/

● Creates and registers the bus_type structure

● Provides an API to register and implement adapter drivers
(here USB controllers), able to detect the connected devices and allowing to
communicate with them.

● Provides an API to register and implement device drivers (here USB device
drivers)

● Matches the device drivers against the devices detected by the adapter drivers.
● Defines driver and device specific structures, here mainly struct usb_driver

and struct usb_interface

USB bus example

A single driver for compatible devices, though connected to buses with different controllers.

Device drivers (1)
Need to register supported devices to the bus core.

Example: drivers/net/usb/rtl8150.c

static struct usb_device_id rtl8150_table[] =
{{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },
{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },
{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },
{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },[…]
{}
};
MODULE_DEVICE_TABLE(usb, rtl8150_table);

Device drivers (2)
Need to register hooks to manage devices (newly detected or removed ones), as
well as to react to power management events (suspend and resume)

static struct usb_driver rtl8150_driver = {
.name = "rtl8150",
.probe = rtl8150_probe,
.disconnect = rtl8150_disconnect,
.id_table = rtl8150_table,
.suspend = rtl8150_suspend,
.resume = rtl8150_resume
};

Device drivers (3)
The last step is to register the driver structure to the bus core.

static int __init usb_rtl8150_init(void)
{
return usb_register(&rtl8150_driver);
}

static void __exit usb_rtl8150_exit(void)
{
usb_deregister(&rtl8150_driver);
}

module_init(usb_rtl8150_init);
module_exit(usb_rtl8150_exit);

Note: this code has now been replaced by a shorter module_usb_driver() macro.

Now the bus driver knows the association between the devices and the device driver.

Work in the probe() function
probe() is called for each newly matched device

● Initialize the device
● Prepare driver work: allocate a structure for a suitable

framework, allocate memory, map I/O memory, register
interrupts…

● When everything is ready, register the new device to
the framework.

At driver loading time
● The USB adapter driver that

corresponds to the USB controller
registers itself to the USB core

● The rtl8150 USB device driver
registers itself to the USB core

● The USB core now knows the
association between the vendor/product
IDs of rtl8150 and the struct
usb_driver structure of this driver

When a device is detected

The model is recursive

Adapter drivers are device drivers too!

Platform devices and drivers
● Want to use the Device Model for devices that are not on buses that

can auto-detect devices (very frequent in embedded systems)
● Examples: UARTs, flash memory, LEDs, GPIOs, MMC/SD,

Ethernet…
● Solution:

1) Provide a description of devices

2) Manage them through a fake bus: the platform bus.

3) Drive the platform devices

Describing non-detectable devices
● Description through a Device Tree (on ARM, PowerPC, ARC…)
● In arch/arm/boot/dts/ on ARM

● Two parts:
– Device Tree Source (.dts)

One per board to support in the Linux kernel
Advantage: no need to write kernel code to support a new board
(if all devices are supported).

– Device Tree Source Includes (.dtsi)
Typically to describe devices on a particular SoC,
or devices shared between similar SoCs or boards

● Other method for describing non-detectable devices: ACPI
(on x86 platforms). Not covered here.

Declaring a device: .dtsi example

From arch/arm/boot/dts/am33xx.dtsi

...
i2c0: i2c@44e0b000 {

compatible = "ti,omap4-i2c";
#address-cells = <1>;
#size-cells = <0>;
ti,hwmods = "i2c1";
reg = <0x44e0b000 0x1000>;
interrupts = <70>;
status = "disabled";

};
...

Label Node name

Compatible drivers

HW register start
address and range
Present but not
used by default

Node
properties

Instantiating a device: .dts example

From arch/arm/boot/dts/am335x-boneblue.dts

&i2c0 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c0_pins>;

 status = "okay";
 clock-frequency = <400000>;

 tps: tps@24 {
 reg = <0x24>;
 };

 baseboard_eeprom: baseboard_eeprom@50 {
 compatible = "at,24c256";
 reg = <0x50>;

 #address-cells = <1>;
 #size-cells = <1>;
 baseboard_data: baseboard_data@0 {
 reg = <0 0x100>;
 };
 };
};

Phandle
(reference
to label)

Pin muxing configuration
(routing to external package pins)

List of devices on
i2c0

I2C bus identifier

Enabling this device, otherwise ignored
Node property: frequency

Pin multiplexing
● Modern SoCs have too many

hardware blocks compared to physical
pins exposed on the chip package.

● Therefore, pins have to be multiplexed
● Pin configurations are defined in the

Device Tree
● Correct pin multiplexing is mandatory

to make a device work from an
electronic
point of view.

DT pin definitions
&am33xx_pinmux {

...
i2c0_pins: pinmux_i2c0_pins {

pinctrl-single,pins = <
AM33XX_IOPAD(0x988, PIN_INPUT_PULLUP | MUX_MODE0) /* (C17) I2C0_SDA.I2C0_SDA */
AM33XX_IOPAD(0x98c, PIN_INPUT_PULLUP | MUX_MODE0) /* (C16) I2C0_SCL.I2C0_SCL */

>;
};

…
};

...

&i2c0 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c0_pins>;

 status = "okay";
 clock-frequency = <400000>;
 ...
};

From arch/arm/boot/dts/am335x-boneblue.dts

Register offset corresponding
to a given package pin

Package pin
name

SoC signal
name

Allows to select
a given SoC signal

Configures the pin:
input, output, drive
strengh, pull up/down...

DT: matching devices and drivers
Platform drivers are matched with platform devices that have the same compatible
property. static const struct of_device_id omap_i2c_of_match[] = {

 {
 .compatible = "ti,omap4-i2c",
 .data = &omap4_pdata,
 },
 {
…
};
…
static struct platform_driver omap_i2c_driver = {
 .probe = omap_i2c_probe,
 .remove = omap_i2c_remove,
 .driver = {
 .name = "omap_i2c",
 .pm = OMAP_I2C_PM_OPS,
 .of_match_table = of_match_ptr(omap_i2c_of_match),
 },
}; From drivers/i2c/busses/i2c-omap.c

Usage of the platform bus
Like for physical buses, the platform bus is used by the driver to retrieve information
about each device

static int omap_i2c_probe(struct platform_device *pdev)
{

...
struct device_node *node = pdev→dev.of_node;
struct omap_i2c_dev *omap;
...
irq = platform_get_irq(pdev, 0);

…
omap = devm_kzalloc(&pdev->dev, sizeof(struct omap_i2c_dev), GFP_KERNEL);
...
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
omap->base = devm_ioremap_resource(&pdev->dev, mem);
u32 freq = 100000; /* default to 100000 Hz */

…
of_property_read_u32(node, "clock-frequency", &freq);

…
return 0;

}
From drivers/i2c/busses/i2c-omap.c

Device tree bindings
● Device tree bindings provide a specification of properties that

a driver expects in a DT
● Bindings are available in
Documentation/devicetree/bindings in kernel
sources.

● To know how to set device properties, look for a binding for
the same compatible string:

$ git grep “ti,omap4-i2c” Documentation/devicetree/bindings/

The I2C bus
● A very commonly used low-speed bus to connect on-board and external

devices to the processor.
● Uses only two wires: SDA for the data, SCL for the clock.
● It is a master/slave bus: only the master can initiate transactions, and

slaves can only reply to transactions initiated by masters.
● In a Linux system, the I2C controller embedded in the processor is

typically the master, controlling the bus.
● Each slave device is identified by a unique I2C address. Each transaction

initiated by the master contains this address, which allows the relevant
slave to recognize that it should reply to this particular transaction.

I2C bus example

I2C drivers: probe() function
static int mma7660_probe(struct i2c_client *client,
 const struct i2c_device_id *id)
{
 int ret;
 struct iio_dev *indio_dev;
 struct mma7660_data *data;

 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
 if (!indio_dev) {
 dev_err(&client->dev, "iio allocation failed!\n");
 return -ENOMEM;
 }

 data = iio_priv(indio_dev);
 data->client = client;
 i2c_set_clientdata(client, indio_dev);
 mutex_init(&data->lock);
 data->mode = MMA7660_MODE_STANDBY;

 indio_dev->dev.parent = &client->dev;
 indio_dev->info = &mma7660_info;
 indio_dev->name = MMA7660_DRIVER_NAME;
 indio_dev->modes = INDIO_DIRECT_MODE;
 indio_dev->channels = mma7660_channels;
 indio_dev->num_channels = ARRAY_SIZE(mma7660_channels);

 ret = mma7660_set_mode(data, MMA7660_MODE_ACTIVE);
 if (ret < 0)
 return ret;

 ret = iio_device_register(indio_dev);
 if (ret < 0) {
 dev_err(&client->dev, "device_register failed\n");
 mma7660_set_mode(data, MMA7660_MODE_STANDBY);
 }

 return ret;
}

device structure for the i2c bus
needed to communicate with the device

Per device structure. Used by the driver
to store references to bus and framework structures,
plus its own data (locks, wait queues, etc.)

Framework (here iio) structure for each device

Allocation of the framework structure. This structure
also contains the per device structure (data)

Reference to the framework structure stored in the
bus structure.

Reference to the bus structure stored in the
framework structure.

From drivers/iio/accel/mma7660.c

Register a new framework device when everything is
ready (device now accessible in user-space)

Enabling the device (i2c reading and writing)

Disabling the device in case of failure

I2C drivers: remove() function

sstatic int mma7660_remove(struct i2c_client *client)
{
 struct iio_dev *indio_dev = i2c_get_clientdata(client);

 iio_device_unregister(indio_dev);

 return mma7660_set_mode(iio_priv(indio_dev),
MMA7660_MODE_STANDBY);

}

Same i2c device structure as in probe()

Get back the framework structure.
Needed to unregister the framework
device from the system

From drivers/iio/accel/mma7660.c

Unregister the framework
device from the system

Now that user-space can’t access
the device any more, disable the
device.

I2C driver registration
static const struct i2c_device_id mma7660_i2c_id[] = {
 {"mma7660", 0},
 {}
};
MODULE_DEVICE_TABLE(i2c, mma7660_i2c_id);

static const struct of_device_id mma7660_of_match[] = {
 { .compatible = "fsl,mma7660" },
 { }
};
MODULE_DEVICE_TABLE(of, mma7660_of_match);

static const struct acpi_device_id mma7660_acpi_id[] = {
 {"MMA7660", 0},
 {}
};

MODULE_DEVICE_TABLE(acpi, mma7660_acpi_id);

static struct i2c_driver mma7660_driver = {
 .driver = {
 .name = "mma7660",
 .pm = MMA7660_PM_OPS,
 .of_match_table = mma7660_of_match,
 .acpi_match_table = ACPI_PTR(mma7660_acpi_id),
 },
 .probe = mma7660_probe,
 .remove = mma7660_remove,
 .id_table = mma7660_i2c_id,
};

module_i2c_driver(mma7660_driver);

From drivers/iio/accel/mma7660.c

Matching by name (mandatory for I2C)

Matching by compatible property (for DT)

Matching by ACPI ID (for ACPI systems - x86)

Raw API for I2C communication
The most basic API to communicate with the I2C device provides
functions to either send or receive data:
● int i2c_master_send(struct i2c_client *client, const
char *buf, int count);
Sends the contents of buf to the client (slave).

● int i2c_master_recv(struct i2c_client *client, char
*buf, int count);
Receives count bytes from the client (slave), and store them into buf.

This API is sufficient for simple needs

smbus API for I2C communication
SMBus is roughly a subset of I2C. Best to use its Linux API so
that I2C drivers will work on controllers supporting only SMBus.

s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command, u8 value);
s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command);
s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command, u8 *values);

More details in real world drivers and in kernel documentation:
https://www.kernel.org/doc/html/latest/driver-api/i2c.html#c.i2c_smbus_read_byte_data

https://www.kernel.org/doc/html/latest/driver-api/i2c.html#c.i2c_smbus_read_byte_data

Driver development advise
● Look for code for devices similar to yours
● Read the code.

You can use Elixir (https://elixir.bootlin.com/)
● Always read code from the bottom up. You see

the big picture first, and then progressively how
the details are implemented.

https://elixir.bootlin.com/

Further reading
● Bootlin’s kernel and driver development

training materials for full details
https://bootlin.com/training/kernel/

● Device Tree for Dummies presentation
Thomas Petazzoni (Apr. 2014)
http://j.mp/1jQU6NR

● Kernel documentation on I2C
https://www.kernel.org/doc/html/latest/driv
er-api/i2c.html

●

https://bootlin.com/training/kernel/
http://j.mp/1jQU6NR
https://www.kernel.org/doc/html/latest/driver-api/i2c.html
https://www.kernel.org/doc/html/latest/driver-api/i2c.html

Questions?Questions?

Thank you!Thank you!

