Crowdfunding campaign for upstream Linux kernel driver for Allwinner VPU

Back in 2012, Bootlin (formerly Free Electrons) engineer Maxime Ripard pioneered the support for Allwinner processors in the official Linux kernel. Today, thanks to the contributions of numerous developers around the world and our involvement, there is very good support for a large number of Allwinner processors in the Linux kernel, to the point where actual Allwinner-based products are shipping with the mainline kernel.

Despite this major effort, there is one area that has remained unsupported in the mainline kernel: the video decoding and encoding engine, which allows to accelerate in hardware the decoding and encoding of popular codecs such as MPEG2, MPEG4 or H264. Last summer, we successfully implemented a prototype, supporting MPEG2 decoding and partially MPEG4 decoding.

Today, we are launching a crowdfunding campaign to fund the remainder of the development: finishing MPEG4 decoding support, implementing H264 decoding, optimizing the rendering of video frames in cooperation with the display driver, and upstreaming the driver. We also have additional goals of supporting H265, encoding support, and additional Allwinner SoCs.

In the vendor-provided kernel, this video decoding/encoding unit is supported by a kernel driver that uses a non-standard user-space API, in conjunction with a binary-only userspace blob. Fortunately, a number of people have done an enormous reverse engineering effort, which we have leveraged for our existing prototype, and which we intend to use to continue the development of this upstream driver. Both Maxime Ripard and our intern Paul Kocialkowski will be working on this crowdfunded project.

This is our first crowdfunding campaign to fund upstream Linux kernel development, and we are interested in seeing how much interest there is in such a financing model. Help us making this a success by spreading the word!

Support for the Allwinner VPU in the mainline Linux kernel

Over the last few years, and most recently with the support for the C.H.I.P platform, Free Electrons has been heavily involved in initiating and improving the support in the mainline Linux kernel for the Allwinner ARM processors. As of today, a large number of hardware features of the Allwinner processors, especially the older ones such as the A10 or the A13 used in the CHIP, are usable with the mainline Linux kernel, including complex functionality such as display support and 3D acceleration. However, one feature that was still lacking is proper support for the Video Processing Unit (VPU) that allows to accelerate in hardware the decoding and encoding of popular video formats.

During the past two months, Florent Revest, a 19 year old intern at Free Electrons worked on a mainline solution for this Video Processing Unit. His work followed the reverse engineering effort of the Cedrus project, and this topic was also listed as a High Priority Reverse Engineering Project by the FSF.

The internship resulted in a new sunxi-cedrus driver, a Video4Linux memory-to-memory decoder kernel driver and a corresponding VA-API backend, which allows numerous userspace applications to use the decoding capabilities. Both projects have both been published on Github:

Currently, the combination of the kernel driver and VA-API backend supports MPEG2 and MPEG4 decoding only. There is for the moment no support for encoding, and no support for H264, though we believe support for both aspects can be added within the architecture of the existing driver and VA-API backend.

A first RFC patchset of the kernel driver has been sent to the linux-media mailing list, and a complete documentation providing installation information and architecture details has been written on the linux-sunxi’s wiki.

Here is a video of VLC playing a MPEG2 demo video on top of this stack on the Next Thing’s C.H.I.P: