Back from ELCE: award to Bootlin CEO Michael Opdenacker

The Embedded Linux Conference Europe 2017 took place at the end of October in Prague. We already posted about this event by sharing the slides and videos of Bootlin talks and later by sharing our selection of talks given by other speakers.

During the closing session of this conference, Bootlin CEO Michael Opdenacker has received from the hands of Tim Bird, on behalf of the ELCE committee, an award for its continuous participation to the Embedded Linux Conference Europe. Indeed, Michael has participated to all 11 editions of ELCE, with no interruption. He has been very active in promoting the event, especially through the video recording effort that Bootlin did in the early years of the conference, as well as through the numerous talks given by Bootlin.

Michael Opdenacker receives an award at the Embedded Linux Conference Europe

Bootlin is proud to see its continuous commitment to knowledge sharing and community participation be recognized by this award!

Linux 4.14 released, Bootlin contributions

Penguin from Mylène Josserand
Drawing from Mylène Josserand,
based on a picture from Samuel Blanc under CC-BY-SA
Linux 4.14, which is going to become the next Long Term Supported version, has been released a week ago by Linus Torvalds. As usual, LWN.net did an interesting coverage of this release cycle merge window, highlighting the most important changes: The first half of the 4.14 merge window and The rest of the 4.14 merge window.

According to Linux Kernel Patch statistics, Bootlin contributed 111 patches to this release, making it the 24th contributing company by number of commits: a somewhat lower than usual contribution level from our side. At least, Bootlin cannot be blamed for trying to push more code into 4.14 because of its Long Term Support nature! 🙂

The main highlights of our contributions are:

  • On the RTC subsystem, Alexandre Belloni made as usual a number of fixes and improvements to various drivers, especially the ds1307 driver.
  • On the NAND subsystem, Boris Brezillon did a number of small improvements in various areas.
  • On the support for Marvell platforms
    • Antoine Ténart improved the ppv2 network driver used by the Marvell Armada 7K/8K SoCs: support for 10G speed and TSO support are the main highlights. In order to support 10G speed, Antoine added a driver in drivers/phy/ to configure the common PHYs in the Armada 7K/8K SoCs.
    • Thomas Petazzoni also improved the ppv2 network driver by adding support for TX interrupts and per-CPU RX interrupts.
    • Grégory Clement contributed some patches to enable NAND support on Armada 7K/8K, as well as a number of fixes in different areas (GPIO fix, clock handling fixes, etc.)
    • Miquèl Raynal contributed a fix for the Armada 3700 SPI controller driver.
  • On the support for Allwinner platforms
    • Maxime Ripard contributed the support for a new board, the BananaPI M2-Magic. Maxime also contributed a few fixes to the Allwinner DRM driver, and a few other misc fixes (clock, MMC, RTC, etc.).
    • Quentin Schulz contributed the support for the power button functionality of the AXP221 (PMIC used in several Allwinner platforms)
  • On the support for Atmel platforms, Quentin Schulz improved the clock drivers for this platform to properly support the Audio PLL, which allowed to fix the Atmel audio drivers. He also fixed suspend/resume support in the Atmel MMC driver to support the deep sleep mode of the SAMA5D2 processor.

In addition to making direct contributions, Bootlin is also involved in the Linux kernel development by having a number of its engineers act as Linux kernel maintainers. As part of this effort, Bootlin engineers have reviewed, merged and sent pull requests for a large number of contributions from other developers:

  • Boris Brezillon, as the NAND subsystem maintainer and MTD subsystem co-maintainer, merged 68 patches from other developers.
  • Alexandre Belloni, as the RTC subsystem maintainer and Atmel ARM platform co-maintainer, merged 32 patches from other developers.
  • Grégory Clement, as the Marvell ARM platform co-maintainer, merged 29 patches from other developers.
  • Maxime Ripard, as the Allwinner ARM platform co-maintainer, merged 18 patches from other developers.

This flow of patches from kernel maintainers to other kernel maintainers is also nicely described for the 4.14 release by the Patch flow into the mainline for 4.14 LWN.net article.

The detailed list of our contributions:

Back from ELCE: selection of talks from the Bootlin team

As discussed in our previous blog post, Bootlin had a strong presence at the Embedded Linux Conference Europe, with 7 attendees, 4 talks, one BoF and one poster during the technical show case.

In this blog post, we would like to highlight a number of talks from the conference that we found interesting. Each Bootlin engineer who attended the conference has selected one talk, and gives his/her feedback about this talk.

uClibc Today: Still Makes Sense – Alexey Brodkin

Talk selected by Michael Opdenacker

uClibc Today: Still Makes Sense – Alexey BrodkinAlexey Brodkin, an active contributor to the uClibc library, shared recent updates about this C library, trying to show people that the project was still active and making progress, after a few years during which it appeared to be stalled. Alexey works for Synopsys, the makers of the ARC architecture, which uClibc supports.

If you look at the repository for uClibc releases, you will see that since version 1.0.0 released in 2015, the project has made 26 releases according to a predictable schedule. The project also runs runtime regression tests on all its releases, which weren’t done before. The developers have also added support for 4 new architectures (arm64 in particular), and uClibc remains the default C library that Buildroot proposes.

Alexey highlighted that in spite of the competition from the musl library, which causes several projects to switch from uClibc to musl, uClibc still makes a lot of sense today. As a matter of fact, it supports more hardware architectures than glibc and musl do, as it’s the only one to support platforms without an MMU (such as noMMU ARM, Blackfin, m68k, Xtensa) and as the library size is still smaller that what you get with musl (though a static hello_world program is much smaller with musl if you have a close look at the library comparison tests he mentioned).

Alexey noted that the uClibc++ project is still alive too, and used in OpenWRT/Lede by default.

Read the slides and watch the video of his talk.

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu Tsai

Talk selected by Quentin Schulz

Identifying and Supporting “X-Compatible” hardware blocks – Chen-Yu TsaiAn SoC is made of multiple IP blocks from different vendors. In some cases the source or model of the hardware blocks are neither documented nor marketed by the SoC vendor. However, since there are only very few vendors of a given IP block, stakes are high that your SoC vendor’s undocumented IP block is compatible with a known one.

With his experience in developing drivers for multiple IP blocks present in Allwinner SoCs and as a maintainer of those same SoCs, Chen-Yu first explained that SoC vendors often either embed some vendors’ licensed IP blocks in their SoCs and add the glue around it for platform- or SoC-specific hardware (clocks, resets and control signals), or they clone IP blocks with the same logic but some twists (missing, obfuscated or rearranged registers).

To identify the IP block, we can dig into the datasheet or the vendor BSP and compare those with well documented datasheets such as the one for NXP i.MX6, TI KeyStone II or the Zynq UltraScale+ MPSoC, or with mainline drivers. Asking the community is also a good idea as someone might have encountered an IP with the same behaviour before and can help us identify it quicker.

Some good identifiers for IPs could be register layouts or names along with DMA logic and descriptor format. For the unlucky ones that have been provided only a blob, they can look for the symbols in it and that may slightly help in the process.

He also mentioned that identifying an IP block is often the result of the developer’s experience in identifying IPs and other time just pure luck. Unfortunately, there are times when someone couldn’t identify the IP and wrote a complete driver just to be told by someone else in the community that this IP reminds him of that IP in which case the work done can be just thrown away. That’s where the community plays a strong role, to help us in our quest to identify an IP.

Chen-Yu then went on with the presentation of the different ways to handle the multiple variants of an IP blocks in drivers. He said that the core logic of all IP drivers is usually presented as a library and that the different variants have a driver with their own resources, extra setup and use this library. Also, a good practice is to use booleans to select features of IP blocks instead of using the ID of each variant.
For IPs whose registers have been altered, the way to go is usually to write a table for the register offsets, or use regmaps when bitfields are also modified. When the IP block differs a bit too much, custom callbacks should be used.

He ended his talk with his return from experience on multiple IP blocks (UART, USB OTG, GMAC, EMAC and HDMI) present in Allwinner SoCs and the differences developers had to handle when adding support for them.

Read the slides and watch the video of his talk.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey Senozhatsky

Talks selected by Boris Brezillon. Boris also covered the related talk “printk: It’s Old, What Can We Do to Make It Young Again?” from the same speakers.

printk(): The Most Useful Tool is Now Showing its Age – Steven Rostedt & Sergey SenozhatskyMaybe I should be ashamed of saying that but printk() is one of the basic tool I’m using to debug kernel code, and I must say it did the job so far, so when I saw these presentations talking about how to improve printk() I was a bit curious. What could be wrong in printk() implementation?
Before attending the talks, I never digged into printk()’s code, because it just worked for me, but what I thought was a simple piece of code appeared to be a complex infrastructure with locking scheme that makes you realize how hard it is when several CPUs are involved.

At its core, printk() is supposed to store logs into a circular buffer and push new entries to one or several consoles. In his first talk Steven Rostedt walked through the history of printk() and explained why it became more complex when support for multi CPU appeared. He also detailed why printk() is not re-entrant and the problem it causes when called from an NMI handler. He finally went through some fixes that made the situation a bit better and advertised the 2nd half of the talk driven by Sergey Senozhatsky.

Note that between these two presentations, the printk() rework has been discussed at Kernel Summit, so Sergey already had some feedback on his proposals. While Steven presentation focused mainly on the main printk() function, Sergey gave a bit more details on why printk() can deadlock, and one of the reasons why preventing deadlocks is so complicated is that printk() delegates the ‘print to console’ aspect to console drivers which have their own locking scheme. To address that, it is proposed to move away from the callback approach and let console drivers poll for new entries in the console buffer instead, which would remove part of the locking issues. The problem with this approach is that it brings even more uncertainty on when the logs are printed on the consoles, and one of the nice things about printk() in its current form is that you are likely to have the log printed on the output before printk() returns (which helps a lot when you debug things).

He also mentioned other solutions to address other possible deadlocks, but I must admit I got lost at some point, so if you’re interested in this topic I recommend that you watch the video (printk(): The Most Useful Tool is Now Showing its Age, sadly no video is available for the second talk) and read the slides (printk(): The Most Useful Tool is Now Showing its Age and printk: It’s Old, What Can We Do to Make It Young Again?).

More robust I2C designs with a new fault-injection driver – Wolfram Sang

Talk selected by Miquèl Raynal

More robust I2C designs with a new fault-injection driver – Wolfram SangAlthough Wolfram had a lot of troubles starting its presentation lacking a proper HDMI adaptater, he gave an illuminating talk about how, as an I2C subsystem maintainer, he would like to strengthen the robustness of I2C drivers.

He first explained some basics of the I2C bus like START and STOP conditions and introduced us to a few errors he regularly spots in drivers. For instance, some badly written drivers used a START and STOP sequence while a “repeated START” was needed. This is very bad because another master on the bus could, in this little spare idle delay, decide to grab the medium and send its message. Then the message right after the repeated START would not have the expected effect. Of course plenty other errors can happen: stalled bus (SDA or SCL stuck low), lost arbitration, faulty bits… All these situations are usually due to incorrect sequences sent by the driver.

To avoid so much pain debugging obscure situations where this happens, he decided to use an extended I2C-gpio interface to access SDA and SCL from two external GPIOs and this way forces faulty situations by simply pinning high or low one line (or both) and see how the driver reacts. The I2C specification and framework provide everything to get out of a faulty situation, it is just a matter of using it (sending a STOP condition, clocking 9 times, operate a reset, etc).

Wolfram is aware of his quite conservative approach but he is really scared about breaking users by using random quirks so he tried with this talk to explain his point of view and the solutions he wants to promote.

Two questions that you might have a hard time hearing were also interesting. The first person asked if he ever considered using a “default faulty chip” designed to do by itself this kind of fault injection and see how the host reacts and behaves. Wolfram said buying hardware is too much effort for debugging, so he was more motivated to get something very easy and straightforward to use. Someone else asked if he thought about multiple clients situation, but from Wolfram’s point of view, all clients are in the same state whether the bus is busy or free and should not badly behave if we clock 9 times.

Watch the video and grab the slides.

HDMI 4k Video: Lessons Learned – Hans Verkuil

Talk selected by Maxime Ripard

HDMI 4k Video: Lessons Learned – Hans VerkuilHaving worked recently on a number of display related drivers, it was quite natural to go see what I was probably going to work on in a quite close future.

Hans started by talking about HDMI in general, and the various signals that could go through it. He then went on with what was basically a war story about all the mistakes, gotchas and misconceptions that he encountered while working on a video-conference box for Cisco. He covered the hardware itself, but also more low-level oriented aspects, such as the clocks frequencies needed to operate properly, the various signals you could look at for debugging or the issues that might come with the associated encoding and / or color spaces, especially when you want to support as many displays as you can. He also pointed out the flaws in the specifications that might lead to implementation inconsistencies. He concluded with the flaws of various HDMI adapters, the issues that might arise using them on various OSes, and how to work around them when doable.

Watch the video and the slides.

The Serial Device Bus – Johan Hovold

Talk selected by Thomas Petazzoni

The Serial Device Bus – Johan HovoldJohan started his talk at ELCE by exposing the problem with how serial ports (UARTs) are currently handled in the Linux kernel. Serial ports are handled by the TTY layer, which allows user-space applications to send and receive data with what is connected on the other side of the UART. However, the kernel doesn’t provide a good mechanism to model the device that is connected at the other side of the UART, such as a Bluetooth chip. Due to this, people have resorted to either writing user-space drivers for such devices (which falls short when those devices need additional resources such as regulators, GPIOs, etc.) or to developing specific TTY line-discipline in the kernel. The latter also doesn’t work very well because a line discipline needs to be explicitly attached to a UART to operate, which requires a user-space program such as hciattach used in Bluetooth applications.

In order to address this problem, Johan picked up the work initially started by Rob Herring (Linaro), which consisted in writing a serial device bus (serdev in short), which consists in turning UART into a proper bus, with bus controllers (UART controllers) and devices connected to this bus, very much like other busses in the Linux kernel (I2C, SPI, etc.). serdev was initially merged in Linux 4.11, with some improvements being merged in follow-up versions. Johan then described in details how serdev works. First, there is a TTY port controller, which instead of registering the traditional TTY character device will register the serdev controller and its slave devices. Thanks to this, one can described in its Device Tree child nodes of the UART controller node, which will be probed as serdev slaves. There is then a serdev API to allow the implementation of serdev slave drivers, that can send and receive data of the UART. Already a few drivers are using this API: hci_serdev, hci_bcm, hci_ll, hci_nokia (Bluetooth) and qca_uart (Ethernet).

We found this talk very interesting, as it clearly explained what is the use case for serdev and how it works, and it should become a very useful subsystem for many embedded applications that use UART-connected devices.

Watch the video and the slides.

GStreamer for Tiny Devices – Olivier Crête

Talk selected by Grégory Clement

GStreamer for Tiny Devices – Olivier CrêteThe purpose of this talk was to show how to shrink Gstreamer to make it fit in an embedded Linux device. First, Olivier Crête introduced what GStreamer is, it was very high level but well done. Then after presenting the issue, he showed step by step how he managed to reduce the footprint of a GStreamer application to fit in his device.

In a first part it was a focus on features specific to GStreamer such as how to generate only the needed plugins. Then most of the tricks showed could be used for any C or C++ application. The talk was pretty short so there was no useless or boring part Moreover, the speaker himself was good and dynamic.

To conclude it was a very pleasant talk teaching step by step how to reduce the footprint of an application being GStreamer or not.

Watch the video and the slides.

Back from Kernel Recipes: slides and videos

As we announced previously, we participated to the Embedded Recipes and Kernel Recipes conferences in September in Paris. Three people from Bootlin attended the event: Bootlin CEO Michael Opdenacker, and Bootlin engineers Mylène Josserand and Maxime Ripard.

Introduction to Yocto Project / OpenEmbedded, by Mylène Josserand

Mylène Josserand gave an Introduction to the Yocto Project / OpenEmbedded-core. The slides are available in PDF or as LaTeX code.

An introduction to the Linux DRM subsystem, by Maxime Ripard

Maxime Ripard gave an Introduction to the Linux DRM subsystem. The slides are available in PDF or as LaTeX code.

Other videos and slides

The slides of all talks are available on the Embedded Recipes and Kernel Recipes conference websites. Youtube playlists are available for Embedded Recipes 2017 and Kernel Recipes 2017 as well.

Conclusion

With its special one track format, an attendance limited to 100 people, excellent choice of talks and nice social events, Kernel Recipes remains a very good conference that we really enjoyed. Embedded Recipes, which was in its first edition this year, followed the same principle, with the same success. We’re looking forward to attending next year editions, and hopefully contributing a few talks as well. See you all at Embedded and Kernel Recipes in 2018!

Back from ELCE 2017: slides and videos

Bootlin participated to the Embedded Linux Conference Europe last week in Prague. With 7 engineers attending, 4 talks, one BoF and a poster at the technical showcase, we had a strong presence to this major conference of the embedded Linux ecosystem. All of us had a great time at this event, attending interesting talks and meeting numerous open-source developers.

Bootlin team at the Embedded Linux Conference Europe 2017
Bootlin team at the Embedded Linux Conference Europe 2017. Top, from left to right: Maxime Ripard, Grégory Clement, Boris Brezillon, Quentin Schulz. Bottom, from left to right: Miquèl Raynal, Thomas Petazzoni, Michael Opdenacker.

In this first blog post about ELCE, we want to share the slides and videos of the talks we have given during the conference.

SD/eMMC: New Speed Modes and Their Support in Linux – Gregory Clement

Grégory ClementSince the introduction of the original “default”(DS) and “high speed”(HS) modes, the SD card standard has evolved by introducing new speed modes, such as SDR12, SDR25, SDR50, SDR104, etc. The same happened to the eMMC standard, with the introduction of new high speed modes named DDR52, HS200, HS400, etc. The Linux kernel has obviously evolved to support these new speed modes, both in the MMC core and through the addition of new drivers.

This talk will start by introducing the SD and eMMC standards and how they work at the hardware level, with a specific focus on the new speed modes. With this hardware background in place, we will then detail how these standards are supported by Linux, see what is still missing, and what we can expect to see in the future.

Slides [PDF], Slides [LaTeX source]

An Overview of the Linux Kernel Crypto Subsystem – Boris Brezillon

Boris BrezillonThe Linux kernel has long provided cryptographic support for in-kernel users (like the network or storage stacks) and has been pushed to open these cryptographic capabilities to user-space along the way.

But what is exactly inside this subsystem, and how can it be used by kernel users? What is the official userspace interface exposing these features and what are non-upstream alternatives? When should we use a HW engine compared to a purely software based implementation? What’s inside a crypto engine driver and what precautions should be taken when developing one?

These are some of the questions we’ll answer throughout this talk, after having given a short introduction to cryptographic algorithms.

Slides [PDF], Slides [LaTeX source]

Buildroot: What’s New? – Thomas Petazzoni

Thomas PetazzoniBuildroot is a popular and easy to use embedded Linux build system. Within minutes, it is capable of generating lightweight and customized Linux systems, including the cross-compilation toolchain, kernel and bootloader images, as well as a wide variety of userspace libraries and programs.

Since our last “What’s new” talk at ELC 2014, three and half years have passed, and Buildroot has continued to evolve significantly.

After a short introduction about Buildroot, this talk will go through the numerous new features and improvements that have appeared over the last years, and show how they can be useful for developers, users and contributors.

Slides [PDF], Slides [LaTeX source]

Porting U-Boot and Linux on New ARM Boards: A Step-by-Step Guide – Quentin Schulz

May it be because of a lack of documentation or because we don’t know where to look or where to start, it is not always easy to get started with U-Boot or Linux, and know how to port them to a new ARM platform.

Based on experience porting modern versions of U-Boot and Linux on a custom Freescale/NXP i.MX6 platform, this talk will offer a step-by-step guide through the porting process. From board files to Device Trees, through Kconfig, device model, defconfigs, and tips and tricks, join this talk to discover how to get U-Boot and Linux up and running on your brand new ARM platform!

Slides [PDF], Slides [LaTeX source]

BoF: Embedded Linux Size – Michael Opdenacker

This “Birds of a Feather” session will start by a quick update on available resources and recent efforts to reduce the size of the Linux kernel and the filesystem it uses.

An ARM based system running the mainline kernel with about 3 MB of RAM will also be demonstrated.

If you are interested in the size topic, please join this BoF and share your experience, the resources you have found and your ideas for further size reduction techniques!

Slides [PDF], Slides [LaTeX source]

Bootlin at NetDev 2.2

NetDev 2.2Back in April 2017, Bootlin engineer Antoine Ténart participated to NetDev 2.1, the most important conference discussing Linux networking support. After the conference, Antoine published a summary of it, reporting on the most interesting talks and topics that have been discussed.

Next week, NetDev 2.2 takes place in Seoul, South Korea, and this time around, two Bootlin engineers will be attending the event: Alexandre Belloni and Antoine Ténart. We are getting more and more projects with networking related topics, and therefore the wide range of talks proposed at NetDev 2.2 will definitely help grow our expertise in this field.

Do not hesitate to get in touch with Alexandre or Antoine if you are also attending this event!

Buildroot training course updated to Buildroot 2017.08

BuildrootBack in June 2015, we announced the availability of a training course on Buildroot, a popular and easy to use embedded Linux build system. A year later, we updated it to cover Buildroot 2016.05. We are happy to announce a new update: we now cover Buildroot 2017.08.

The most significant updates are:

  • Presentation of the Long Term Supported releases of Buildroot, a topic we also presented in a previous blog post
  • Appearance of the new top-level utils/ directory, containing various utilities directly useful for the Buildroot user, such as test-pkg, check-package, get-developers or scanpypi
  • Removal of $(HOST_DIR)/usr/, as everything has been moved up one level to $(HOST_DIR), to make the Buildroot SDK/toolchain more conventional
  • Document the new organization of the skeleton package, now split into several packages, to properly support various init systems. A new diagram has been added to clarify this topic.
  • List all package infrastructures that are available in Buildroot, since their number is growing!
  • Use SPDX license codes for licensing information in packages, which is now mandatory in Buildroot
  • Remove the indication that dependencies of host (i.e native) packages are derived from the dependencies of the corresponding package, since it’s no longer the case
  • Indicate that the check for hashes has been extended to also allow checking the hash of license files. This allows to detect changes in the license text.
  • Update the BR2_EXTERNAL presentation to cover the fact that multiples BR2_EXTERNAL trees are supported now.
  • Use the new relocatable SDK functionality that appeared in Buildroot 2017.08.

The practical labs have of course been updated to use Buildroot 2017.08, but also Linux 4.13 and U-Boot 2017.07, to remain current with upstream versions. In addition, they have been extended with two additional steps:

  • Booting the Buildroot generated system using TFTP and NFS, as an alternative to the SD card we normally use
  • Using genimage to generate a complete and ready to flash SD card image

We will be delivering this course to one of our customers in Germany next month, and are of course available to deliver it on-site anywhere in the world if you’re interested! And of course, we continue to publish, for free, all the materials used in this training session: slides and labs.

Buildroot Long Term Support releases: from 2017.02 to 2017.02.6 and counting

Buildroot LogoBuildroot is a widely used embedded Linux build systems. A large number of companies and projects use Buildroot to produce customized embedded Linux systems for a wide range of embedded devices. Most of those devices are now connected to the Internet, and therefore subject to attacks if the software they run is not regularly updated to address security vulnerabilities.

The Buildroot project publishes a new release every three months, with each release providing a mix of new features, new packages, package updates, build infrastructure improvements… and security fixes. However, until earlier this year, as soon as a new version was published, the maintenance of the previous version stopped. This means that in order to stay up to date in terms of security fixes, users essentially had two options:

  1. Update their Buildroot version regularly. The big drawback is that they get not only security updates, but also many other package updates, which may be problematic when a system is in production.
  2. Stick with their original Buildroot version, and carefully monitor CVEs and security vulnerabilities in the packages they use, and update the corresponding packages, which obvisouly is a time-consuming process.

Starting with 2017.02, the Buildroot community has decided to offer one long term supported release every year: 2017.02 will be supported one year in terms of security updates and bug fixes, until 2018.02 is released. The usual three-month release cycle still applies, with 2017.05 and 2017.08 already being released, but users interested in a stable Buildroot version that is kept updated for security issues can stay on 2017.02.

Since 2017.02 was released on February 28th, 2017, six minor versions were published on a fairly regularly basis, almost every month, except in August:

With about 60 to 130 commits between each minor version, it is relatively easy for users to check what has been changed, and evaluate the impact of upgrading to the latest minor version to benefit from the security updates. The commits integrated in those minor versions are carefully chosen with the idea that users should be able to easily update existing systems.

In total, those six minor versions include 526 commits, of which 183 commits were security updates, representing roughly one third of the total number of commits. The other commits have been:

  • 140 commits to fix build issues
  • 57 commits to bump versions of packages for bug fixes. These almost exclusively include updates to the Linux kernel, using its LTS versions. For other packages, we are more conservative and generally don’t upgrade them.
  • 17 commits to address issues in the licensing description of the packages
  • 186 commits to fix miscellaneous issues, ranging from runtime issues affecting packages to bugs in the build infrastructure

The Buildroot community has already received a number of bug reports, patches or suggestions specifically targetting the 2017.02 LTS version, which indicates that developers and companies have started to adopt this LTS version.

Therefore, if you are interested in using Buildroot for a product, you should probably consider using the LTS version! We very much welcome feedback on this version, and help in monitoring the security vulnerabilities affecting software packages in Buildroot.

Bootlin at the Embedded Linux Conference Europe

The next Embedded Linux Conference Europe will take place on October 23-25 in Prague, Czech Republic.

Embedded Linux Conference Europe 2017

As usual, a significant part of the Bootlin engineering team will participate to the conference and give talks on various topics:

In addition to the main ELCE conference, Thomas Petazzoni will participate to the Buildroot Developers Days, a 2-day hackaton organized on Saturday and Sunday prior to ELCE, and will participate to the Device Tree workshop organized on Thursday afternoon.

Once again, we’re really happy to participate to this conference, and looking forward to meeting again with a large number of Linux kernel and embedded Linux developers!

Linux 4.13 released, Bootlin contributions

Linux 4.13 was released last Sunday by Linus Torvalds, and the major new features of this release were described in details by LWN in a set of articles: part 1 and part 2.

This release gathers 13006 non-merge commits, amongst which 239 were made by Bootlin engineers. According to the LWN article on 4.13 statistics, this makes Bootlin the 13th contributing company by number of commits, the 10th by lines changed.

The most important contributions from Bootlin for this release have been:

  • In the RTC subsystem
    • Alexandre Belloni introduced a new method for registering RTC devices, with one step for the allocation, and one step for the registration itself, which allows to solve race conditions in a number of drivers.
    • Alexandre Belloni added support for exposing the non-volatile memory found in some RTC devices through the Linux kernel nvmem framework, making them usable from userspace. A few drivers were changed to use this new mechanism.
  • In the MTD/NAND subsystem
    • Boris Brezillon did a large number of fixes and minor improvements in the NAND subsystem, both in the core and in a few drivers.
    • Thomas Petazzoni contributed the support for on-die ECC, specifically with Micron NANDs. This allows to use the ECC calculation capabilities of the NAND chip itself, as opposed to using software ECC (calculated by the CPU) or ECC done by the NAND controller.
    • Thomas Petazzoni contributed a few improvements to the FSMC NAND driver, used on ST Spear platforms. The main improvement is to support the ->setup_data_interface() callback, which allows to configure optimal timings in the NAND controller.
  • Support for Allwinner ARM platforms
    • Alexandre Belloni improved the sun4i PWM driver to use the so-called atomic API and support hardware read out.
    • Antoine Ténart improved the sun4i-ss cryptographic engine driver to support the Allwinner A13 processor, in addition to the already supported A10.
    • Maxime Ripard contributed HDMI support for the Allwinner A10 processor (in the DRM subsystem) and a number of related changes to the Allwinner clock support.
    • Quentin Schulz improved the support for battery charging through the AXP20x PMIC, used on Allwinner platforms.
  • Support for Atmel ARM platforms
    • Alexandre Belloni added suspend/resume support for the Atmel SAMA5D2 clock driver. This is part of a larger effort to implement the backup mode for the SAMA5D2 processor.
    • Alexandre Belloni added suspend/resume support in the tcb_clksrc driver, used as for clocksource and clockevents on Atmel SAMA5D2.
    • Alexandre Belloni cleaned up a number of drivers, removing support for non-DT probing, which is possible now that the AVR32 architecture has been dropped. Indeed, the AVR32 processors used to share the same drivers as the Atmel ARM processors.
    • Alexandre Belloni added the core support for the backup mode on Atmel SAMA5D2, a suspend/resume state with significant power savings.
    • Boris Brezillon switched Atmel platforms to use the new binding for the EBI and NAND controllers.
    • Boris Brezillon added support for timing configuration in the Atmel NAND driver.
    • Quentin Schulz added suspend/resume support to the Bosch m_can driver, used on Atmel platforms.
  • Support for Marvell ARM platforms
    • Antoine Ténart contributed a completely new driver (3200+ lines of code) for the Inside Secure EIP197 cryptographic engine, used in the Marvell Armada 7K and 8K processors. He also subsequently contributed a number of fixes and improvements for this driver.
    • Antoine Ténart improved the existing mvmdio driver, used to communicate with Ethernet PHYs over MDIO on Marvell platforms to support the XSMI variant found on Marvell Armada 7K/8K, used to communicate with 10G capable PHYs.
    • Antoine Ténart contributed minimal support for 10G Ethernet in the mvpp2 driver, used on Marvell Armada 7K/8K. For now, the driver still relies on low-level initialization done by the bootloader, but additional changes in 4.14 and 4.15 will remove this limitation.
    • Grégory Clement added a new pinctrl driver to configure the pin-muxing on the Marvell Armada 37xx processors.
    • Grégory Clement did a large number of changes to the clock drivers used on the Marvell Armada 7K/8K processors to prepare the addition of pinctrl support.
    • Grégory Clement added support for Marvell Armada 7K/8K to the existing mvebu-gpio driver.
    • Thomas Petazzoni added support for the ICU, a specialized interrupt controller used on the Marvell Armada 7K/8K, for all devices located in the CP110 part of the processor.
    • Thomas Petazzoni removed a work-around to properly resume per-CPU interrupts on the older Marvell Armada 370/XP platforms.
  • Support for RaspberryPi platforms
    • Boris Brezillon added runtime PM support to the HDMI encoder driver used on RaspberryPi platforms, and contributed a few other fixes to the VC4 DRM driver.

It is worth mentioning that Miquèl Raynal, recently hired by Bootlin, sees his first kernel patch merged: nand: fix wrong default oob layout for small pages using soft ecc.

Bootlin engineers are not only contributors, but also maintainers of various subsystems in the Linux kernel, which means they are involved in the process of reviewing, discussing and merging patches contributed to those subsystems:

  • Maxime Ripard, as the Allwinner platform co-maintainer, merged 113 patches from other contributors
  • Boris Brezillon, as the MTD/NAND maintainer, merged 62 patches from other contributors
  • Alexandre Belloni, as the RTC maintainer and Atmel platform co-maintainer, merged 57 patches from other contributors
  • Grégory Clement, as the Marvell EBU co-maintainer, merged 47 patches from other contributors

Here is the commit by commit detail of our contributors to 4.13: