
Embedded Linux Conference Europe, October 2018

From the Ethernet MAC
to the link partner
Maxime Chevallier Antoine Ténart
maxc@bootlin.com antoine@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/40

Antoine Ténart

I Linux kernel engineer and trainer at Bootlin.
I Linux kernel and driver development, system integration, boot time optimization,

consulting. . .
I Embedded Linux, Linux driver development, Yocto Project & OpenEmbedded and

Buildroot training, with materials freely available under a Creative Commons license.
I https://bootlin.com

I Contributions:
I Worked on network (MAC, PHY, switch) and cryptographic engines.
I Contributed to the Marvell EBU SoCs upstream support.
I Introduced the Marvell Berlin SoCs upstream support.
I Co-maintainer of the Annapurna Alpine SoCs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/40

https://bootlin.com

Maxime Chevallier

I Linux kernel engineer at Bootlin.
I Linux kernel and driver development, system integration, boot time optimization,

consulting. . .
I Embedded Linux, Linux driver development, Yocto Project & OpenEmbedded and

Buildroot training, with materials freely available under a Creative Commons license.
I https://bootlin.com

I Contributions:
I Worked on network (MAC, PHY, switch) engines.
I Contributed to the Marvell EBU SoCs upstream support.
I Also worked on SPI and real-time topics.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/40

https://bootlin.com

Preamble - goals

I Discover what are the components of an Ethernet data link and physical layer.
I Have a first glance at the technologies and protocols used for the components to

communicate.
I Learn how to configure all of this in Linux.
I This subject is wide and complex: we’ll take shortcuts and make approximations.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/40

Embedded Linux Conference Europe, October 2018

Introduction to the
Ethernet link layer
Maxime Chevallier Antoine Ténart
maxc@bootlin.com antoine@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/40

Reminder: the OSI model

1. Physical layer.
I Rx/Tx of unstructured data, converts the digital data into a signal (e.g. electrical,

radio, optical).
2. Data link layer (e.g. Ethernet).

I Data transfer between directly connected nodes using frames.
3. Network layer (e.g. IP).

I Data transfer between nodes — directly connected or being routed through other
nodes — using packets.

4. Transport layer (e.g. TCP, UDP).
I Reliability, flow control, QoS, ordering, segmentation. . .

I We’ll focus on the first two layers, when using Ethernet.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/40

The Ethernet link layer

MAC PHY ConnectorCPU Link partner

MDIO bus

L2 L1

I The MAC (media access control), makes up the data link layer:
I Transfers/receives frames.
I Handles preambles and paddings.
I Protects against errors — checks frames and their FCS (frame check sequence).
I . . .

I The network PHY, makes up the physical layer:
I Connects the link layer device to a physical medium.
I Accessible through an MDIO bus.

I Cages (e.g. RJ45, SFP), physical mediums (e.g. copper, fiber). . .
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/40

The MacchiatoBin example (1/4)

I The Ethernet link layer is built using the elements we just saw (MAC, PHY. . .), and
can differ a bit depending on the hardware design and purpose.

I Let’s focus on the MacchiatoBin double shot example, a board using a Marvell
Armada 8040 SoC — https://macchiatobin.net

I It has 4 network ports, 3 different link designs and 6 cages.

MAC
(PPv2.2)

CPU
(A8040)

PHY
(88E1512)

PHY
(88X3310)

PHY
(88X3310)

Connector
(RJ45)

Connector
(RJ45)

Connector
(RJ45)

Connector (SFP+)

Connector (SFP+)

Connector (SFP+)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/40

https://macchiatobin.net

The MacchiatoBin example (2/4)

I The first port (eth2 in Linux) can handle up to 1G links, connected to an RJ45
port.

MAC (PPv2.2) PHY (88E1512) Connector (RJ45)CPU (A8040)

MDIO bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/40

The MacchiatoBin example (3/4)

I The second and third ports (eth0/eth1 in Linux) can handle up to 10G links,
connected to RJ45 and SFP+ cages.

I Only one cage can be used at a time.
I Dynamic reconfiguration (MAC, SerDes lanes, PHY) allows to switch between the

two usages.

MAC (PPv2.2) PHY (88X3310) Connector (RJ45)CPU (A8040)

MDIO bus

Connector (SFP+)

i²c bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/40

The MacchiatoBin example (4/4)

I The fourth port (eth3 in Linux) can handle up to 2.5G links, connected to an
SFP+ cage.

I No PHY on the board — direct MAC to MAC communication, or a PHY can be on
the SFP external connector.

MAC (PPv2.2) Connector (SFP+)CPU (A8040)

i²c bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/40

Linux representation

I The Ethernet MAC controller is driven by an Ethernet driver:
I Within drivers/net/ethernet/.
I Represented by struct net_device.

I The PHY is driven by a network PHY driver:
I Within drivers/net/phy/.
I Represented by struct phy_device.

I In the MacchiatoBin case:
I drivers/net/ethernet/marvell/mvpp2/*,mvmdio.c
I drivers/net/phy/marvell.c
I drivers/net/phy/marvell10g.c

I In case the MAC and the PHY are in the same hardware package, everything can be
handled directly in drivers/net/ethernet/.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/40

https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/
https://elixir.bootlin.com/linux/latest/ident/net_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/
https://elixir.bootlin.com/linux/latest/ident/phy_device
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/marvell.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/marvell10g.c

Reporting tools

I ethtool: reports information from the Ethernet driver.
I It can be what the MAC is seeing,
I Or if the MAC and the PHY are in the same package, the view of the package itself.

I mii-tool: deprecated and mostly replaced by ethtool, but can be useful to
dump the PHY status.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/40

Interfaces overview

I For the components of the Ethernet link to communicate, two interfaces are
standardized by the IEEE 802.3 specifications and amendments:

I The Media-Independent Interface (MII):
I Connects various types of MAC to various types of PHY.
I Originally standardized by the IEEE 802.3u.
I E.g. MII, GMII, RGMII, SGMII, XGMII, XAUI. . .

I The Media-Dependent Interface (MDI):
I Connects the physical layer implementation to the physical medium.
I E.g. 100BASE-T, 1000BASE-T, 1000BASE-CX, 1000BASE-SZ, 10GBASE-T. . .

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/40

Ethernet standards

The 802.3 standard is short and simple, with only a few specifications to remember :
Specifications

I 802.3z 802.3aa
I 802.3ab 802.3ac
I 802.3ad 802.3ae
I 802.3af 802.3ag
I 802.3ah 802.3aj
I 802.3ak 802.3an
I 802.3ap 802.3aq
I 802.3as 802.3at
I 802.3av 802.1AX
I 802.3az 802.3ba
I 802.3bc 802.3bd
I 802.3be 802.3bf
I 802.3bg 802.3bj
I 802.3bk 802.3bm
I 802.3bn 802.3bp . . .

Formats
I 10BASE2
I 10BASE5
I 10BASE-F
I 10BASE-FB
I 10BASE-FL
I 10BASE-FP
I 10BASE-T
I 100BASE-BX10
I 100BASE-FX
I 100BASE-LX10
I 100BASE-T
I 100BASE-T2
I 100BASE-T4
I 100BASE-TX
I 100BASE-X

I 1000BASE-BX10
I 1000BASE-CX
I 1000BASE-KX
I 1000BASE-LX
I 1000BASE-LX10
I 1000BASE-PX
I 1000BASE-SX
I 1000BASE-T
I 1000BASE-X
I 2.5GBASE-T
I 5GBASE-T
I 10GBASE-CX4
I 10GBASE-E
I 10GBASE-ER
I 10GBASE-EW
I 10GBASE-KR

I 10GBASE-KX4
I 10GBASE-L
I 10GBASE-LR
I 10GBASE-LRM
I 10GBASE-LW
I 10GBASE-LX4
I 10GBASE-PR
I 10/1GBASE-PRX
I 10GBASE-R
I 10GBASE-S
I 10GBASE-SR
I 10GBASE-SW
I 10GBASE-T
I 10GBASE-W
I 10GBASE-X
I 40GBASE-R

I 40GBASE-CR4
I 40GBASE-ER4
I 40GBASE-FR
I 40GBASE-KR4
I 40GBASE-LR4
I 40GBASE-SR4
I 100GBASE-P
I 100GBASE-R
I 100GBASE-CR4
I 100GBASE-CR10
I 100GBASE-KP4
I 100GBASE-KR4
I 100GBASE-ER4
I 100GBASE-LR4
I 100GBASE-SR4
I 100GBASE-SR10

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/40

Ethernet link modes notation

I 802.3 standards use a special notation to describe links and protocols:
I speedBand-MediumEncodingLanes : 1000Base-T, 10GBase-KR, 100Base-T4. . .

I Band: BASEband, BROADband or PASSband.
I Medium

I Base-T: Link over twisted-pair copper cables (Classic RJ45).
I Base-K: Backplanes (PCB traces) links.
I Base-C: Copper links.
I Base-L, Base-S, Base-F: Fiber links.
I Base-H: Plastic Fiber.
I . . .

I Encoding: Describe the block encoding used by the PCS
I Base-X: 10b/8b encoding.
I Base-R: 66b/64b encoding.

I Lanes: Number of lanes per link (for Base-T, number of twisted pairs used).
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/40

Link parameters

I An interface specification has many characteristics:
I Speed: the transmission rate at which data is flowing through the link: 10Mbps,

100Mbps, 1000Mbps, 2.5Gbps, 10Gbps, 40Gbps. . .
I Duplex: it can be half-duplex (the device is either transmitting or receiving data at

a given time) or full-duplex (transmission and reception can happen simultaneously).
I Auto-negotiation: can be used to exchange information about the duplex,

transmission rate. . . when a device is capable of handling different modes or
standards.

I Through MII (in-band) or MDIO (out-of-band).
I Different specifications can operate at the same speed, or using the same duplex.
I But the link can only be operational if compatible MII and MDI protocols are used.
I A given link can support multiple modes, through advertisement.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/40

Embedded Linux Conference Europe, October 2018

Media interfaces
Maxime Chevallier Antoine Ténart
maxc@bootlin.com antoine@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/40

MAC to PHY connection

PHY

PCS PMA PMDMAC

xMII

MDIO

MDI

Inside a PHY:
I PCS: Physical Coding Subsystem

I Encodes and decodes the MII link.
I Several PCS are described in different specifications: 1000Base-X, 10Base-R. . . .

I PMA: Physical Medium Attachment
I Translates between PCS and PMD.
I Handles collision detection and data transfers.

I PMD: Physical Medium Dependent
I Interfaces to the physical transmission medium

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/40

MDIO bus

PHYMAC
MII

MDIO

Management Data Input Output
I Also called SMI.
I Two lines: MDC for clock, MDIO for data.
I Serial addressable bus between MAC and up to 32 PHYs.
I Access to PHY configuration and status registers.
I Not always part of the MAC, can be a separate controller.
I Clause 22: 5bit register addresses, 16bit data.
I Clause 45: Extends C22 in a backwards-compatible way.

I 16bit register addresses, 16bit data.
I Multiple ”devices” per PHY, each with a register set.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/40

MDIO in Linux

I C22 and C45 are supported:
I drivers/net/phy/phy_device.c
I drivers/net/phy/phy-c45.c

I The driver is selected by matching the UID register:
struct phy_driver mv3310_drivers[] = {{

.phy_id = 0x002b09aa,

.phy_id_mask = 0xfffffff0,

...

I Each PHY is described as a child of the mdio bus:
&mdio {

ge_phy: ethernet-phy@0 {
/* Clause 45 register accesses */
compatible = "ethernet-phy-ieee802.3-c45";
/* PHY id 0 */
reg = <0>;

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/40

https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/phy_device.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/phy/phy-c45.c

MII family

PHYMAC
MII

MDIO

I MII: Media Independent Interface
I Originally a single standard, later extended. 16 pins, up to 100Mbps.
I RMII: Reduced MII: 8 pins.

I GMII: Gigabit MII
I 24 pins, 1Gbps, compatible with MII for 10/100 Mbps.
I RGMII: Reduced GMII: 12 pins.
I RGMII-ID: Hardware variant with clock delay tweaks.

I XGMII: X (ten) Gigabit MII
I 74 pins, 10Gbps. Mostly used for on-chip MAC to PHY links.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/40

Serializing the MII

PHY

PCS PMA PMD

MAC

PCSPCS

GMII

SGMII
RS

I xMII interfaces have a high pin count, duplicated for each PHY.
I Re-use already defined PCS and PMA to serialize the xMII link.
I RS: Reconciliation Sublayer: Glue between the MAC and the PCS.
I SerDes Lanes: Differential pair transmitting an encoded serialized signal.

I Base-X (10b/8b) or Base-R (66b/64b).
I Embedded or Parallel clock.
I Handled by the Generic PHY Subsystem.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/40

MII Family - Continued

I SGMII: Serialized GMII
I De-facto standard, 4 differential pairs, Base-X PCS.
I Designed for 1Gbps, but a 2.5Gbps variant exists.
I QSGMII: Quad SGMII, 5Gbps.

I XAUI: X (ten) Gigabit Attachment Unit Interface
I XGMII serialized on 4 SerDes lanes, Base-X PCS.
I RXAUI: Reduced XAUI, using only 2 SerDes lanes.

I XFI: Part of XFP specs (outside of IEEE 802.3)
I 10Gbps over one SerDes lane.
I Uses 10GBase-R PCS.
I Similar to 10GBase-KR

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/40

MAC to PHY link in linux

I PHY connection represented by phy_interface_t.
I The phylink framework provides a representation of this link.
I Specified in DT using phy-mode in the MAC driver node:

ð1 {
status = "okay";

/* Reference to the PHY node */
phy-handle = <&ge_phy>;

/* PHY interface mode */
phy-mode = "sgmii";

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/40

https://elixir.bootlin.com/linux/latest/ident/phy_interface_t

Network PHY driver in Linux

I A PHY driver is responsible for:
I Handling the auto-negotiation parameters.
I Reporting the link status to the MAC

I Except in in-band status management.
I Interfaces with the phylib and phylink frameworks.
I PHY registers are standardized, the phylib does most of the hard work.
I Starts to have more advanced features:

I Report statistics.
I Configure the Wake-on-LAN parameters.
I Implement MACSec.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/40

Auto-negotiation

I What the PHY advertises is dictated by software.
I In Linux, the phylib subsystem manages the advertised modes.
I Each MAC and PHY driver reports its supported modes.
I phylink can take the MAC to PHY link into account.

MAC
10/100M
1G
2.5G
10G

PHY

MAC10/100M
1G
2.5G

XAUI XAUI
10/100/1000Base-T
2.5GBase-T

PHY
10/100/1000Base-T
2.5GBase-T
5GBase-T
10GBase-T

Cat 6

I XAUI interface, 10Gbps capable.
I → PHY advertises all of its

capabilities.

I XAUI interface.
I → PHY advertises 10/100/1000M and

2.5G in Base-T.

Link establishes at 2.5Gbps
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/40

The MacchiatoBin example

MAC (PPv2.2) PHY (88E1512) Connector (RJ45)CPU (A8040)

MDIO bus

21

1 SGMII

2 1000BASE-T / full-duplex

Link partner2

(a)

(b)
(c)
(d)

(e)

I (a): supported link modes by the MAC.
I (b): overall transmission rate.
I (c): overall duplex mode.
I (d): port type.
I (e): MDI protocol used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/40

Embedded Linux Conference Europe, October 2018

Evolution of the
Ethernet interface
Maxime Chevallier Antoine Ténart
maxc@bootlin.com antoine@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/40

SFP modules

I The small form-factor pluggable transceiver (SFP) is a module used for data
communication.

I Its form factor is described by a specification, which makes it widely used by
networking device vendors.

I An SFP interface supports various media, such as fiber optic or copper cables.
I It is hot-pluggable and can optionally embed a PHY.
I SFP transceivers can be passive, even for optical links.

I The SerDes driver or the SFP module reports the link state.

CC BY-SA 3.0 — Christophe Finot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/40

The need for a dynamic link infrastructure

I The Ethernet link is no longer fixed, with a single MAC connected to a single PHY
with a single connector.

I PHY can be hot-pluggable when in an SFP transceiver.
I Part of the PHY can be embedded into the MAC, such as the PCS. The SerDes

lanes can be configured and connected to various devices such as other PHYs or
modules (SFP, SFF).

I This allows more flexibility: less lanes, greater distance can be covered, SFP cages
can be connected directly to the MAC. . .

I Remember eth3 on the MacchiatoBin?

⇒ The Ethernet link in its whole should be dynamically reconfigurable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/40

Mandatory MacchiatoBin example (eth0/eth1)

MAC (PPv2.2) PHY (88X3310) Connector (RJ45)CPU (A8040)

MDIO bus

Connector (SFP+)

i²c bus

MAC (PPv2.2) PHY (88X3310)CPU (A8040)

MDIO bus

MAC (PPv2.2)CPU (A8040)

i²c bus

Link partner

Link partner

MAC (PPv2.2)CPU (A8040)

i²c bus

Link partnerSFP transceiver

SFP transceiver

PHY

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/40

Phylink to the rescue (1/2)

I To solve this problematic the phylink infrastructure was introduced:

commit 9525ae83959b60c6061fe2f2caabdc8f69a48bc6
Author: Russell King <rmk+kernel@arm.linux.org.uk>
Commit: David S. Miller <davem@davemloft.net>

phylink: add phylink infrastructure

[...]

Phylink aims to solve this by providing an intermediary between the
MAC and PHY, providing a safe way for PHYs to be hotplugged, and
allowing a SFP driver to reconfigure the SerDes connection.

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/40

Phylink to the rescue (2/2)

I phylink represents the link itself, between a MAC and a PHY.
I There can be an on-board PHY, a hot-pluggable PHY, a SFP transceiver.
I The PCS within the MAC can be reconfigured.
I Everything is configured at runtime.
I phylink acts as a single synchronization layer between the devices on the

Ethernet link, maintaining a state machine.
I One of the goals is to ensure all elements of the link are configured using

compatible modes.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/40

Dynamic reconfiguration using phylink (1/3)

At boot time, the Ethernet driver is probed:

MAC (PPv2.2) PHY (88X3310) Connector (RJ45)CPU (A8040)

MDIO bus

Connector (SFP+)

13

MAC driver

Phylink
2

1. The MAC is initialized, its ports are down.
2. A phylink instance is created — phylink_create().
3. An interface per port is created in Linux — register_netdev().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/40

https://elixir.bootlin.com/linux/latest/ident/phylink_create
https://elixir.bootlin.com/linux/latest/ident/register_netdev

Dynamic reconfiguration using phylink (2/3)

An interface is brought up:

MAC (PPv2.2) PHY (88X3310) Connector (RJ45)CPU (A8040)

MDIO bus

Connector (SFP+)

1

MAC driver

Phylink
4 PHY driver

2

3

5
10GBase-KR

1. The MAC port is started — net_device_ops->ndo_open().
2. phylink connects to the PHY — phylink_of_phy_connect().
3. The PHY is powered on — phy_power_on().
4. The phylink state machine is started — phylink_start().
5. The MII interface is configured to its default value.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/40

https://elixir.bootlin.com/linux/latest/ident/phylink_of_phy_connect
https://elixir.bootlin.com/linux/latest/ident/phy_power_on
https://elixir.bootlin.com/linux/latest/ident/phylink_start

Dynamic reconfiguration using phylink (3/3)

An RJ45 cable is connected:

MAC (PPv2.2) PHY (88X3310) Connector (RJ45)CPU (A8040)

MDIO bus

Connector (SFP+)

2

MAC driver

Phylink

PHY driver

SGMII

3

4
1000Base-T

1

1. The PHY sees a cable has been connected, and performs an auto-negotiation. It
reconfigures itself to use 1000Base-T.

2. The phylib state machine detects a change in the PHY state —
phy_state_machine().

3. A resolution of the flow is performed — phylink_resolve().
4. The MII is reconfigured to SGMII — phylink_mac_config().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/40

https://elixir.bootlin.com/linux/latest/ident/phy_state_machine
https://elixir.bootlin.com/linux/latest/ident/phylink_resolve
https://elixir.bootlin.com/linux/latest/ident/phylink_mac_config

Embedded Linux Conference Europe, October 2018

Conclusion
Maxime Chevallier Antoine Ténart
maxc@bootlin.com antoine@bootlin.com

© Copyright 2004-2018, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/40

Conclusion

I The MAC-PHY-LP representation of the link has evolved:
I It is useful to understand the concepts, and the Linux representation.
I It is still used in many embedded devices.

I More complex designs are also used:
I A PHY can be hot-plugged.
I Parts of a PHY can be re-used within the MAC.
I The full link can be reconfigured, to support incompatible modes (e.g. SGMII and

10GBase-KR in the MAC).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/40

Thank you!
Questions? Comments?

Maxime Chevallier — maxc@bootlin.com
Antoine Ténart — antoine@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2018/elce/chevallier-tenart-high-speed-phy/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/40

https://bootlin.com/pub/conferences/2018/elce/chevallier-tenart-high-speed-phy/

	From the Ethernet MAC to the link partner
	Introduction to the Ethernet link layer
	Media interfaces
	Evolution of the Ethernet interface
	Conclusion

