Linux 4.8 released, Bootlin contributions

Adelie PenguinLinux 4.8 has been released on Sunday by Linus Torvalds, with numerous new features and improvements that have been described in details on LWN: part 1, part 2 and part 3. KernelNewbies also has an updated page on the 4.8 release. We contributed a total of 153 patches to this release. LWN also published some statistics about this development cycle.

Our most significant contributions:

  • Boris Brezillon improved the Rockchip PWM driver to avoid glitches basing that work on his previous improvement to the PWM subsystem already merged in the kernel. He also fixed a few issues and shortcomings in the pwm regulator driver. This is finishing his work on the Rockchip based Chromebook platforms where a PWM is used for a regulator.
  • While working on the driver for the sii902x HDMI transceiver, Boris Brezillon did a cleanup of many DRM drivers. Those drivers were open coding the encoder selection. This is now done in the core DRM subsystem.
  • On the support of Atmel platforms
    • Alexandre Belloni cleaned up the existing board device trees, removing unused clock definitions and starting to remove warnings when compiling with the Device Tree Compiler (dtc).
  • On the support of Allwinner platforms
    • Maxime Ripard contributed a brand new infrastructure, named sunxi-ng, to manage the clocks of the Allwinner platforms, fixing shortcomings of the Device Tree representation used by the existing implementation. He moved the support of the Allwinner H3 clocks to this new infrastructure.
    • Maxime also developed a driver for the Allwinner A10 Digital Audio controller, bringing audio support to this platform.
    • Boris Brezillon improved the Allwinner NAND controller driver to support DMA assisted operations, which brings a very nice speed-up to throughput on platforms using NAND flashes as the storage, which is the case of Nextthing’s C.H.I.P.
    • Quentin Schulz added support for the Allwinner R16 EVB (Parrot) board.
  • On the support of Marvell platforms
    • Grégory Clément added multiple clock definitions for the Armada 37xx series of SoCs.
    • He also corrected a few issues with the I/O coherency on some Marvell SoCs
    • Romain Perier worked on the Marvell CESA cryptography driver, bringing significant performance improvements, especially for dmcrypt usage. This driver is used on numerous Marvell platforms: Orion, Kirkwood, Armada 370, XP, 375 and 38x.
    • Thomas Petazzoni submitted a driver for the Aardvark PCI host controller present in the Armada 3700, enabling PCI support for this platform.
    • Thomas also added a driver for the new XOR engine found in the Armada 7K and Armada 8K families

Here are in details, the different contributions we made to this release:

Embedded Linux Projects Using Yocto Project Cookbook

Embedded Linux Projects Using Yocto Project Cookbook Cover

We were kindly provided a copy of Embedded Linux Projects Using Yocto Project Cookbook, written by Alex González. It is available at Packt Publishing, either in an electronic format (DRM free) or printed.

It is written as a cookbook so it is a set of recipes that you can refer to and solve your immediate problems instead of reading it from cover to cover. While, as indicated by the title, the main topic is embedded development using Yocto Project, the book also includes generic embedded Linux tips, like debugging the kernel with ftrace or debugging a device tree from U-Boot.

The chapters cover the following topics:

  • The Build System: an introduction to Yocto Project.
  • The BSP Layer: how to build and customize the bootloader and the Linux kernel, plenty of tips on how to debug kernel related issues.
  • The Software layer: covers adding a package and its configuration, selecting the initialization manager and making a release while complying with the various licenses.
  • Application development: using the SDK, various IDEs (Eclipse, Qt creator), build systems (make, CMake, SCons).
  • Debugging, Tracing and Profiling: great examples and tips for the usage of gdb, strace, perf, systemtap, OProfile, LTTng and blktrace.

The structure of the book makes it is easy to find the answers you are looking for and also explains the underlying concepts of the solution. It is definitively of good value once you start using Yocto Project.

Bootlin is also offering a Yocto Project and OpenEmbedded training course (detailed agenda) to help you start with your projects. If you’re interested, join one of the upcoming public training sessions, or order a session at your location!

Bootlin registered as Yocto Project Participant.

Yocto_Project_Badge_Participant_Web_RGB
Earlier this month, Bootlin applied and was elected Yocto Project Participant by the Yocto Project Advisory Board. This badge is awarded to people and companies actively participating to the Yocto Project and promoting it.

We have mainly contributed to the meta-fsl-arm and meta-fsl-arm-extra layers but we also have some contributions in OpenEmbedded Core and in the meta-ti layer.

Bootlin offers a Yocto Project and OpenEmbedded training course that we can deliver at your location, or that you can attend by joining one of our public sessions. Our engineers are also available to provide consulting and development services around the Yocto Project, to help you use this tool for your embedded Linux projects. Do not hesitate to contact us!

Atmel SAMA5D4 support in the mainline Linux kernel

Atmel SAMA5D4Atmel announced its new ARM Cortex-A5-based SoC on October 1, the SAMA5D4. Compared to the previous Cortex-A5 SoC from Atmel, the SAMA5D3, this new version brings a L2 cache, NEON, a slightly different clock tree, a hardware video decoder, and Trustzone support.

Bootlin engineers have worked since several months with Atmel engineers to prepare and submit the support for this new SoC to the mainline Linux kernel. We have actually submitted the patches on September, 11th, almost a month before the official release of the new chip! This means that most of the support for this new SoC will already be part of the upcoming 3.18 kernel release. Meanwhile, it is already possible to test it out by using the linux-next repository.

There are however a few pieces missing pieces to support all aspects of the chip:

  • A few patches are needed to get proper NAND flash controller support.
  • The DMA controller is brand new in this SAMA5D4 SoC, and the DMA controller driver has not yet been merged, even though the patches have been posted a long time ago, and are currently in their sixth iteration.
  • Display support, through a DRM/KMS driver, is also being reviewed. The driver, written by Bootlin engineer Boris Brezillon, was initially designed for the sam9x5 and sam5d3, but will be compatible with sama5d4 as well. The patch series is currently in its seventh iteration.

The last big missing part is support for non-secure mode: for the moment, the system always runs in secure mode. Running the kernel in non-secure mode will require some more work but an initial version will probably be pushed during the next development cycle.

Besides this work on SAMA5D4 support ahead of its public release, Bootlin is also doing a lot of maintenance work on all the Atmel ARM platforms in the Linux kernel: migration to the Device Tree, to the clock framework, to several other new subsystems, etc. See the summary of our kernel contributions to 3.16, 3.15 and 3.14.

Through this work, the Bootlin engineering team has a very deep knowledge of the Linux support for Atmel ARM processors. Do not hesitate to contact us if you need help to bring up the bootloader or kernel on your custom Atmel ARM platform! It is also worth mentioning that Free-Electrons is part of the Atmel partner ecosystem.

Embedded Linux Development with Yocto Project

Embedded Linux Development with Yocto Project Cover

We were kindly provided a copy of Embedded Linux Development with Yocto Project, written by Otavio Salvador and Daiane Angolini. It is available at Packt Publishing, either in an electronic format (DRM free) or printed.

This book will help you start with your embedded system development and integration using the Yocto Project or OpenEmbedded.

The first chapter sheds some light on the meaning of commonly misused names: Yocto Project, Poky, OpenEmbedded, BitBake. Then, it doesn’t waste time and explains how to install and use Poky to build and then run an image. The entire book is full of examples that can easily be tested, providing useful hands-on experience, using Yocto Project 1.6 (Poky 11).

The following chapters cover:

  • Hob: a user friendly interface, however, it will soon be deprecated and replaced by Toaster.
  • BitBake and Metadata: how to use BitBake, how to write recipes for packages or images, how to extend existing recipes, how to write new classes, how to create a layer, where to find existing layers and use them.
  • The build directory layout: what the generated files are, and what their use is.
  • Packaging: how to generate different package formats, how to handle a package feed and the package versions.
  • The various SDKs that can be generated and their integration in Eclipse.
  • Debugging the metadata: what the common issues are, how to find what is going wrong, and solving these issues.
  • Debugging the applications on the target: how to generate an image with debugging tools installed.
  • Available tools to help achieve copyleft compliance: in particular, how to cope with the GPL requirements.

Finally, there is a chapter dedicated to explaining how to generate and run an image on the Wandboard, an i.MX6 based community board.

The book is easy to read, with plenty of examples and useful tips. It requires some knowledge about generic embedded Linux system development (see our training) as only the Yocto Project specifics are covered. I would recommend it both for beginners wanting to learn about the Yocto Project and for developers wanting to improve their current knowledge and their recipes and also understand the BitBake internals.

Speaking of the Yocto Project, it is worth noting that Bootlin is now offering a Yocto Project and OpenEmbedded training course (detailed agenda). If you’re interested, join one of the upcoming public training sessions, or order a session at your location!