

Yocto Project and OpenEmbedded development training

Course duration —

3 days – 24 hours

Language -

Materials

English

Oral Lecture

English

French

Portuguese

Italian

Trainer -

One of the following engineers

- Alexandre Belloni
- Antonin Godard
- Jérémie Dautheribes
- João Marcos Costa
- Luca Ceresoli

Contact —

training@bootlin.com

 $+33\ 484\ 258\ 097$

Audience

Companies and engineers interested in using the Yocto Project to build their embedded Linux system.

Training objectives

- Be able to understand the role and principle of an embedded Linux build system, and compare Yocto Project/OpenEmbedded to other tools offering similar functionality.
- Be able to configure and build basic embedded Linux system with Yocto, and install the result on an embedded platform.
- Be able to write and extend recipes, for your own packages or customizations.
- Be able to use existing layers of recipes, and create your own new layers.
- Be able to integrate support for your own embedded board into a BSP layer.
- Be able to create custom images.
- Be able to use the Yocto Project SDK to develop applications.
- Be able to use devtool to generate and modify recipes.

Prerequisites

- Knowledge and practice of UNIX or GNU/Linux commands: participants must be familiar with the Linux command line. Participants lacking experience on this topic should get trained by themselves, for example with our freely available on-line slides.
- Minimal experience in embedded Linux development: participants should have
 a minimal understanding of the architecture of embedded Linux systems: role of
 the Linux kernel vs. user-space, development of Linux user-space applications in C.
 Following Bootlin's Embedded Linux course allows to fulfill this pre-requisite.
- Minimal English language level: B1, according to the Common European Framework of References for Languages, for our sessions in English. See the CEFR grid for self-evaluation.

Pedagogics

- Lectures delivered by the trainer: 40% of the duration
- Practical labs done by participants: 60% of the duration
- Electronic copies of presentations, lab instructions and data files. They are freely available here.

Certificate

Only the participants who have attended all training sessions, and who have scored over 50% of correct answers at the final evaluation will receive a training certificate from Bootlin.

Disabilities

Participants with disabilities who have special needs are invited to contact us at *training@bootlin.com* to discuss adaptations to the training course.

Required equipement

For on-site session delivered at our customer location, our customer must provide:

- Video projector
- One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in a free partition of at least 30 GB
- Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
- Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or protocols.
- PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit

One of these Discovery Kits from STMicroelectronics: STM32MP157A-DK1, STM32MP157D-DK1, STM32MP157C-DK2 or STM32MP157F-DK2

- STM32MP157, dual Cortex-A7 processor from STMicroelectronics
- USB powered
- 512 MB DDR3L RAM
- Gigabit Ethernet port
- 4 USB 2.0 host ports
- 1 USB-C OTG port
- 1 Micro SD slot
- On-board ST-LINK/V2-1 debugger
- Arduino compatible headers
- Audio codec, buttons, LEDs
- LCD touchscreen (DK2 kits only)

BeagleBone Black

BeagleBone Black or BeagleBone Black Wireless board

- An ARM AM335x (single Cortex-A8) processor from Texas Instruments
- USB powered
- 512 MB of RAM
- 2 or 4 GB of on-board eMMC storage
- USB host and device
- HDMI output
- 2 x 46 pins headers, to access UARTs, SPI buses, I2C buses and more.
- Ethernet or WiFi

BeaglePlay

BeaglePlay board

- Texas Instruments AM625x (4xARM Cortex-A53 CPU)
- SoC with 3D acceleration, integrated MCU and many other peripherals.
- 2 GB of RAM
- 16 GB of on-board eMMC storage
- USB host and USB device, microSD, HDMI
- 2.4 and 5 GHz WiFi, Bluetooth and also Ethernet
- 1 MicroBus Header (SPI, I2C, UART, ...), OLDI and CSI connector.

Training Schedule

Lecture	Introduction to embedded Linux	 Overview of an embedded Linux system architecture
Locture	build systems	 Methods to build a root filesystem image Usefulness of build systems
1	Verte Deliver and Deliver Constraint	
Lecture	Yocto Project and Poky reference system overview	 Introduction to the Yocto / OpenEmbedded build system and its lexicon
	5,5	 Overview of the Poky reference system
Lecture	Using Yocto Project - basics	Setting up the build directory and environment
		Configuring the build systemBuilding a root filesystem image
		 Organization of the build output
Lab	First Yocto Project build	Downloading the Poky reference build system
		 Configuring the build system
		 Building a system image
Day 1 - A	Afternoon	
Lab	Flashing and booting	 Flashing and booting the image on the board
Lecture	Using Yocto Project - advanced	 Variable assignment, operators and overrides
	usage	Package variants and package selectionbitbake command line options
		- bitbake command fine options
Lab	Using NFS and configuring the	 Configuring the board to boot over NFS
	build	Add a package to the root filesystem
		 Learn how to use the PREFERRED_PROVIDER mechanism Get familiar with the bitbake command line options
		det familiar with the sitsake command line options
Day 2 - N		
Lecture	Writing recipes - basics	Recipes: overview
		Recipe file organizationApplying patches
		Recipe examples
1.1	A LP Parties to the Latte	With a second of the second
Lab	Adding an application to the build	Writing a recipe for <i>ninvaders</i>Troubleshooting the recipe
		 Troubleshooting cross-compilation issues
		 Adding ninvaders to the final image
Lecture	Writing recipes - advanced fea-	Extending and overriding recipes
	tures	Virtual packages
		Learn about classesBitBake file inclusions
		 Debugging recipes
		 Configuring BitBake network usage
Day 2 - A	Afternoon	
Lecture	Layers	What layers are
		Where to find layers
		 Creating a layer

Lab	Writing a layer	 Learn how to write a layer Add the layer to the build Move <i>ninvaders</i> to the new layer
Day 3 - N	Morning	
Lab	Extend a recipe	 Extend the kernel recipe to add patches Configure the kernel to compile the nunchuk driver Edit the ninvaders recipe to add patches Play ninvaders
Lecture	Writing a BSP	 Introduction to BSP layers Adding a new machine Bootloader configuration Linux: the kernel bbclass and the linux-yocto recipe
Lab	Create a custom machine configuration	 Create a new machine configuration Build an image for the new machine
Lecture	Distro layers	Distro configurationDistro layers
Day 3 - A	Afternoon	
Lecture	lmages	 Writing an image recipe Image types Writing and using package groups recipes
Lab	Create a custom image	 Add a basic image recipe Select the image capabilities and packages Add a custom package group Add an image variant for debugging
Lecture	Writing recipes - going further	 The per-recipe sysroot Using Python code in metadata Variable flags Packages features and PACKAGECONFIG Conditional features Package splitting Dependencies in detail
Lecture	Licensing	Managing open source licenses
Lecture	The Yocto Project SDK	 Goals of the SDK Building and customizing an SDK Using the Yocto Project SDK
Lab	Develop your application in the Poky SDK	Building an SDKUsing the Yocto Project SDK
Lecture	Devtool	About devtoolDevtool use cases
Lab	Using devtool	 Generate a new recipe Modify a recipe to add a new patch Upgrade a recipe to a newer version
Lecture	Poky SDK Devtool	 Using the Yocto Project SDK About devtool Devtool use cases Generate a new recipe Modify a recipe to add a new patch

Lecture	Automating layer management	Automating layer management
Lecture	Runtime Package Management	 Introduction to runtime package management Build configuration Package server configuration Target configuration