
Onsite
training

Audience
Companies and engineers interested in using the Yocto Project to build
their embedded Linux system.

Training objectives
• Be able to understand the role and principle of an embedded Linux build system, and

compare Yocto Project/OpenEmbedded to other tools offering similar functionality.
• Be able to configure and build basic embedded Linux system with Yocto, and install

the result on an embedded platform.
• Be able to write and extend recipes, for your own packages or customizations.
• Be able to use existing layers of recipes, and create your own new layers.
• Be able to integrate support for your own embedded board into a BSP layer.
• Be able to create custom images.
• Be able to use the Yocto Project SDK to develop applications.
• Be able to use devtool to generate and modify recipes.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer: 40% of the duration
• Practical labs done by participants: 60% of the duration
• Electronic copies of presentations, lab instructions and data files. They are freely

available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Yocto Project and
OpenEmbedded

development training

Course duration
U 3 days – 24 hours

Language

Materials English

Oral Lecture English
French
Portuguese
Italian

Trainer
One of the following engineers

• Alexandre Belloni
• Antonin Godard
• Jérémie Dautheribes
• João Marcos Costa
• Luca Ceresoli

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/yocto
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexandre-belloni/
https://bootlin.com/company/staff/antonin-godard/
https://bootlin.com/company/staff/jeremie-dautheribes/
https://bootlin.com/company/staff/joaomarcos-costa/
https://bootlin.com/company/staff/luca-ceresoli/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
For on-site session delivered at our customer location, our customer must provide:

• Video projector
• One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in

a free partition of at least 30 GB
• Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.
• Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or

protocols.
• PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

BeagleBone Black
BeagleBone Black or BeagleBone Black
Wireless board

• An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments

• USB powered
• 512 MB of RAM
• 2 or 4 GB of on-board eMMC storage
• USB host and device
• HDMI output
• 2 x 46 pins headers, to access UARTs, SPI

buses, I2C buses and more.
• Ethernet or WiFi

BeaglePlay
BeaglePlay board

• Texas Instruments AM625x (4xARM
Cortex-A53 CPU)

• SoC with 3D acceleration, integrated
MCU and many other peripherals.

• 2 GB of RAM
• 16 GB of on-board eMMC storage
• USB host and USB device, microSD,

HDMI
• 2.4 and 5 GHz WiFi, Bluetooth and also

Ethernet
• 1 MicroBus Header (SPI, I2C, UART, ...),

OLDI and CSI connector. 2



Training Schedule

Day 1 - Morning
Lecture Introduction to embedded Linux

build systems
• Overview of an embedded Linux system architecture
• Methods to build a root filesystem image
• Usefulness of build systems

Lecture Yocto Project and Poky reference
system overview

• Introduction to the Yocto / OpenEmbedded build system and its lex-
icon

• Overview of the Poky reference system

Lecture Using Yocto Project - basics • Setting up the build directory and environment
• Configuring the build system
• Building a root filesystem image
• Organization of the build output

Lab First Yocto Project build • Downloading the Poky reference build system
• Configuring the build system
• Building a system image

Day 1 - Afternoon
Lab Flashing and booting • Flashing and booting the image on the board

Lecture Using Yocto Project - advanced
usage

• Variable assignment, operators and overrides
• Package variants and package selection
• bitbake command line options

Lab Using NFS and configuring the
build

• Configuring the board to boot over NFS
• Add a package to the root filesystem
• Learn how to use the PREFERRED_PROVIDER mechanism
• Get familiar with the bitbake command line options

Day 2 - Morning
Lecture Writing recipes - basics • Recipes: overview

• Recipe file organization
• Applying patches
• Recipe examples

Lab Adding an application to the build • Writing a recipe for ninvaders
• Troubleshooting the recipe
• Troubleshooting cross-compilation issues
• Adding ninvaders to the final image

Lecture Writing recipes - advanced fea-
tures

• Extending and overriding recipes
• Virtual packages
• Learn about classes
• BitBake file inclusions
• Debugging recipes
• Configuring BitBake network usage

Day 2 - Afternoon
Lecture Layers • What layers are

• Where to find layers
• Creating a layer

3



Lab Writing a layer • Learn how to write a layer
• Add the layer to the build
• Move ninvaders to the new layer

Day 3 - Morning
Lab Extend a recipe • Extend the kernel recipe to add patches

• Configure the kernel to compile the nunchuk driver
• Edit the ninvaders recipe to add patches
• Play ninvaders

Lecture Writing a BSP • Introduction to BSP layers
• Adding a new machine
• Bootloader configuration
• Linux: the kernel bbclass and the linux-yocto recipe

Lab Create a custom machine configu-
ration

• Create a new machine configuration
• Build an image for the new machine

Lecture Distro layers • Distro configuration
• Distro layers

Day 3 - Afternoon
Lecture Images • Writing an image recipe

• Image types
• Writing and using package groups recipes

Lab Create a custom image • Add a basic image recipe
• Select the image capabilities and packages
• Add a custom package group
• Add an image variant for debugging

Lecture Writing recipes - going further • The per-recipe sysroot
• Using Python code in metadata
• Variable flags
• Packages features and PACKAGECONFIG
• Conditional features
• Package splitting
• Dependencies in detail

Lecture Licensing • Managing open source licenses

Lecture The Yocto Project SDK • Goals of the SDK
• Building and customizing an SDK
• Using the Yocto Project SDK

Lab Develop your application in the
Poky SDK

• Building an SDK
• Using the Yocto Project SDK

Lecture Devtool • About devtool
• Devtool use cases

Lab Using devtool • Generate a new recipe
• Modify a recipe to add a new patch
• Upgrade a recipe to a newer version

4



Lecture Automating layer management • Automating layer management

Lecture Runtime Package Management • Introduction to runtime package management
• Build configuration
• Package server configuration
• Target configuration

5


