Embedded Linux training: switch to the IGEPv2 board

Since early 2009, our training sessions have been using the USB-A9263 board from Calao Systems as the hardware platform for the practical labs. However, this AT91-based platform was getting older, and we therefore started the process of switching our training sessions to a new hardware platform, the IGEPv2 board from ISEE.

IGEPv2 board
IGEPv2 board

The IGEPv2 platform is very similar to the popular BeagleBoard and BeagleBoard-XM platforms, and has the following technical characteristics :

  • TI DM3730, which is the latest OMAP3 processor from Texas Instruments, clocked at 1 Ghz, and including a DSP for signal processing, an IVA block for audio/video decoding and the PowerVR SGX for 3D/OpenGL. This processor offers far more possibilities than the AT91 one, especially for multimedia applications.
  • 512 MB of RAM and 512 MB of OneNAND flash.
  • Integrated Ethernet connector, Wifi and Bluetooth connectivity.
  • One USB OTG port and one USB host port.
  • A microSD connector.
  • A DVI-D connector (HDMI), stereo input and ouput
  • RS232 connector
  • Multiple expansion ports to access LCD, camera, I2C, SPI, JTAG, etc. signals

Compared to the BeagleBoard-XM, this board has the following advantages:

  • it has a OneNAND Flash device, which allows us to demonstrate and practice the usage of MTD and Linux flash-specific filesystems such as JFFS2 and UBIFS in our training sessions. Even though block-based storage such as SD and eMMC is more and more popular in consumer-electronic devices, usage of raw NAND flash is still very common in industrial applications, and we therefore wanted to keep presenting those devices and their usage in embedded Linux
  • ISEE, the company manufacturing the IGEPv2, is located in Spain, which makes it easier for us to regularly order boards from them, since we are also located in Europe
  • the board provides Bluetooth and Wifi connectivity, which is nice

We have already given two sessions of our Embedded Linux system development training with the IGEPv2, and all our future sessions of this training will use this hardware platform, so the participants will benefit from a more modern platform, with far more capabilities than our previous AT91-based training hardware. This is also the board we are now giving to the participants to our public training sessions, so those participants come back home with a very nice and powerful platform which allows countless experiments around embedded Linux. Note that we also intend to port our Embedded Linux kernel and driver development training session to the IGEPv2 platform in the near future.

Embedded Linux practical labs with the Beagle Board

Note: the materials for training with the Beagle Board are no longer available, and would be significantly out of date anyway. We advise you to check our Embedded Linux System Development and Linux Kernel and Driver Development training courses for up-to-date instructions that work on cheaper boards, which are still available on the market today. And if you still have an old Beagle board, it will be an interesting exercise to adapt our current labs to run them on such hardware.

We were asked to customize our embedded Linux training session with specific labs on OMAP 3530 hardware. After a successful delivery on the customer site, using Beagle boards, here are our training materials, released as usual under the terms of the Creative Commons Attribution-ShareAlike 3.0 license:

If you are the happy owner of such a board (both attractive and cheap), or are interested in getting one, you can get valuable embedded Linux experience by reading our lecture materials and by taking our practical labs.

Here’s what you would practise with if you decide to take our labs:

  • Build a cross-compiling toolchain with crosstool-NG
  • Compile U-boot and the X-loader and install it on MMC and flash storage.
  • Manipulate Linux kernel sources and apply source patches
  • Configure, compile and boot a Linux kernel for an emulated PC target
  • Configure, cross-compile and boot a Linux kernel on your Beagle Board
  • Build a tiny filesystem from scratch, based on BusyBox, and with a web server interface. Practice with NFS booting.
  • Put your filesystem on MMC storage, replacing NFS. Practice with SquashFS.
  • Put your filesystem on internal NAND flash storage. Practice with JFFS2 too.
  • Manually cross-compile libraries (zlib, libpng, libjpeg, FreeType and DirectFB) and a DirectFB examples, getting familiar with the tricks required to cross-compile components provided by the community.
  • Build the same kind of graphical system automatically with Buildroot.
  • Compile your own application against existing libraries. Debug a target application with strace, ltrace and gdbserver running on the target.
  • Do experiments with the rt-preempt patches. Measure scheduling latency improvements.
  • Implement hotplugging with mdev, BusyBox’s lightweight alternative to udev.

Note that the labs were tested with Rev. C boards, but are also supposed to work fine with Rev. B ones. You may also be able to reuse some of our instructions with other boards with a TI OMAP3 processor.

Of course, if you like the materials, you can also ask your company to order such a training session from us. We will be delighted to come to your place and spend time with you and your colleagues.

USB-Ethernet device for Linux

Useful device when you work with an embedded development board

For our Embedded Linux training sessions, I was looking for a USB to Ethernet device. Since Linux supported devices are often difficult to find, I’m glad to share my investigations here.

When you use an embedded development board, you must connect it to your computer with an Ethernet cable, for example to transfer a new kernel image to U-boot through tftp, or to make your board boot on a directory on your workstation, exported with NFS.

You could connect both the board and computer to your local network, which would still allow your computer to connect to the Internet while you work with the board. However, you may create conflicts on your local network if you don’t use DHCP to assign an IP address to your board (if your DHCP server even accepts this new device on the network). In a training environment, you are also likely to run out of Ethernet outlets in the training room if you have to connect 8 such boards. Hence, a direct connection between the board and your workstation’s Ethernet port is often the most convenient solution.

If you can’t use WIFI to keep your computer connected to the outside world, a good solution is to add an extra Ethernet port to your computer by using an USB-to-Ethernet device.

My colleague Thomas and I started looking for such devices that would be supported by Linux. Here are a few that we found:

  • D-Link DUB-E100. Supported by the USB_NET_AX8817X driver. However, this product is bulky and quite heavy (at least 100 grams).
  • TRENDnet TU2-E100. Supported by the same driver, but still bulk (August 2015 update: now replaced by a more recent version, now almost as small as the Apple one, and supported out of the box in Linux. See the comment about this device.)
  • Linksys USB 200m. Supported by the same Linux driver and has a much more acceptable size, but customer reviews complain that its connector can break easily.
  • Apple USB Ethernet Adapter. This should be working out of the box in Linux. At least the MB442Z/A or MC704ZM/A references did, but Apple now sells a new reference that might have a different chipset. It is beautiful, small and light. Support for this device (at least the references I mentioned) was added to Linux 2.6.26 through the same driver. You should be able to use it in recent distros.

Apple USB to EthernetSo, I recommend the Apple device. I event posted a comment on the Apple Store, titled “Perfect for Linux”! I hope the Apple droids won’t censor it. Don’t hesitate to buy it, so that we can confirm that the latest reference is supported too.

I can’t tell whether this could happen with Apple. This was the first Apple device I ever bought…

Many new training materials

12 pages with new training materials!

We are happy to release many new training materials that we created along the course of 2008, for our embedded Linux and kernel training sessions:

Many thanks to customers who asked us to cover new topics!

This is actually the tip of the iceberg (with penguins standing on top of it, of course). The documents that have been around for a long time have also undergone significant improvements and have been updated every time new versions with interesting features were released. We are doing our best to keep our training sessions up to date, and this keeps us pretty busy! So, if you haven’t had a look at these documents for a while, you will probably learn new things if you open them again.

Why so many documents at once? Well, we usually try to release the new documents that we create as early as possible. Here are a few excuses for doing this late this time:

  • We’ve had a very busy year (new training sessions, development and service work), preventing us from polishing our new documents and creating new pages describing them.
  • The switch to our new website took more time than expected. We were reluctant to add more pages that would have caused more migration work, and we were also busy deploying the KVM virtualization technology on our new server.
  • We are also switching the documents to a new template, which leaves more space for real content and less space for logos and for information repeated on every page. This work is far from being over yet!
  • We couldn’t release them for National Security reasons Winking smiley.

Now that there’s no infrastructure work left, and that we have run out of excuses (except the one about being busy, we still are), we should be able to release our new documents much earlier.

So, stay tuned on our RSS feed, more will come soon!

Linux USB drivers

Learning how to write USB device drivers for Linux

Bootlin is proud to release a new set of training slides from its embedded Linux training materials. These new ones cover writing USB device drivers for Linux.

Like everything we create, these new materials are released to the user and developer community under a free license. They can be freely downloaded, copied, distributed or even modified according to the terms of the Creative Commons Attribution-ShareAlike 2.5 license.

Free embedded Linux training: one year after

A summary of the improvements brought in 1 year to our free embedded linux training materials.

Since our first public release in October 2004, we made significant improvements to our free embedded Linux training materials:

  • The total number of slides increased from approximately 500 to more than 1000. Here are all available training materials and presentations.
  • New training materials: audio in embedded Linux systems, multimedia in embedded Linux systems.
  • New presentations: embedded Linux From Scratch… in 40 minutes, Linux on TI OMAP processors, free software development tools.
  • Added many sections, updates and improvements to our main document: embedded Linux kernel and driver development. If you haven’t checked it for 1 year, you will hardly recognize it!
  • Some of training labs now use the SkyEye emulator, which supports several arm boards. People can now practise with cross-compiling and booting the Linux kernel without having to purchase expensive development boards.
  • KernelKit, a live GNU/Linux distribution derived from Knoppix, was created for embedded systems and kernel developers. In particular, it includes uClibc cross-compiling toolchains for several platforms: arm, armeb, i386, m68k, mips, mipsel, ppc and sh4. KernelKit is used in our training labs.
  • The PDF versions of the documents now include internal and external hyperlinks, thanks to using OpenOffice.org 2.0. To navigate within the documents or to go to an external site, just click on the links in your favorite PDF reader.
  • Some utilities were created and shared with the community: clink (to compact cross-compiling toolchains), and cOOol (to report broken hyperlinks in OpenOffice.org documents).
  • The training materials were used for 12 training sessions delivered to embedded system companies and key silicon vendors.
  • The documents are now released under the terms of the Creative Commons Attribution – ShareAlike 2.0 license, instead of the GNU Free Documentation License.
  • Some of the documents have been translated to French, German or Italian by several contributors.

Your corrections, suggestions, contributions and translations are welcome!

Free embedded Linux training materials

Bootlin embedded Linux training materials freely available

This was our first, initial annoucement in 2004. Since then, we have made huge improvements to our embedded Linux and Linux kernel and device driver development training courses. See all our training materials.

The 500 page materials of Bootlin’sembedded Linux training have just been published.

They are all released under the terms of the “GNU Free Documentation License (with no invariant sections).

Full training materials

Presentations