
Lee Jones - Linaro
Team Lead, ST-Ericsson Landing Team

May 2011

Upstreaming

 Maintainers & current contributers
 Would be upstreamers
 Don't know what upstreaming is
 People against upstreaming

Who turned up?

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Repository hierarchy

 Theoretical hierarchy of repositories
 Git maintained
 Each repository specialises in one topic (902)
 One maintainer per topic (505)

arm cris mips ata base dma

sh x86 … (24) i2c usb … (90)

Repository hierarchy
Mainline

Architectures Driver Sub-Systems

Sub-arches

ndk sam

omap ?
Could be you

...

mxc

More specific driver subsystems

power ioat

scx200 ohci ...

promise

Dev

arm

Repository tree hierarchy
Mainline

Architectures

Sub-arches

arm

ndk

Dev

Repository tree hierarchy

Architectures

Sub-arches

Private trees

Dev

U
ps

tr
ea

m

ndk

arm

Mainline

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Maintainers

 Subsystem code owners
 Gatekeepers
 Upstreaming responsibilities

Maintainer hierarchy

M1

M2.1 M2.2 M2.3

M3.2 M3.4 M3.6M3.1 M3.3 M3.5 M3.7

M4.1 M4.2 M4.3

arm cris mips ata base dma

sh x86 ... i2c usb ...

Repository tree hierarchy
Mainline

Architectures Driver Sub-Systems

Sub-arches

arm

arm ndk sam

omap ?
Could be you

...

mxc

More specific driver subsystems

arm power ioat

scx200 ohci ...

promise

M1

M2 M2

M3 M3

arm cris
Mikael Starvik

mips
Ralf Baechle

ata
Jeff Garzik

base
Greg K-H

dma
Dan Williams

sh
Paul Mundt

x86
Thomas Gleixner

... i2c
Jean Delvare

usb
Greg K-H

...

Maintainer hierarchy
Mainline

Linus Torvalds

Architectures Driver Sub-Systems

Sub-arches

arm
Russell King

ndk
Linus Walleij
ST-Ericsson

sam
Kukjin Kim
Samsung

omap
Tony Lindgren

TI

?
Could be you

...

mxc
Sascha Hauer

Freescale

More specific driver subsystems

arm power
Pavel Machek

ioat
Dan Williams

scx200
Jim Cromie

acm
Oliver Neukum

...

promise
Mikael Pettersson

Dev
ST-Ericsson

M1

M2 M2

M3 M3

Maintainers

 Stats
 505 unique maintainers

 902 subsystems/topics

 LINUX/MAINTAINERS
ARM/NOMADIK ARCHITECTURE

M: Linus Walleij <linus.walleij@stericsson.com>

M: Alessandro Rubini <rubini@unipv.it>

M: STEricsson <STEricsson_nomadik_linux@list.st.com>

L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)

S: Maintained

F: arch/arm/mach-nomadik/

F: arch/arm/plat-nomadik/

F: drivers/i2c/busses/i2c-nomadik.c

T: git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Benefits of upstreaming

 Current attitude to upstreaming
 Waste of resources

 Time
 Engineering power

 Giving away work to competitors

Benefits of upstreaming

 Maintainability
 Responsibility

 Forward porting
 Future proof

Future proof

+n

Rewrite =

Benefits to upstreaming

 Maintainability
 Quality Assurance

Benefits to upstreaming

 Quality Assurance
 Compulsory reviews

 Programmed correctly
 Optimised
 Less bugs

 Testing and validation on a massive scale
 Direct user feedback

 Bug reports
 Contact email in file header
 `git log` or `git blame`

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does it take?

How to upstream your code

 Preparation
 Plan

 Discuss unknowns with the MLs

 Author
 LINUX/Documentation/CodingStyle

How to upstream your code

 Create patches
 `git format-patch` or `diff -purN`
 Logical groups of functionality

 Individually compilable

 Keep small & upstream often
 Easier to understand & review
 Easier to make amendments and resubmit
 Identifies fundamental issues early

How to upstream your code

 Preparation
 Review

How to upstream your code

 Review
 Ensure they compile on the latest kernel
 Test functionality
 Run LINUX/scripts/checkpatch.pl
 Send to internal mailing lists
 Once complete add Signed-off-by

How to upstream your code

 Preparation
 Review
 Submission

How to upstream your code

 Submission
 RTFM and take heed

 LINUX/Documentation/SubmitChecklist

 LINUX/Documentation/SubmittingPatches

 Locate e-mail destination
 Browse LINUX/MAINTAINERS

 Run LINUX/scripts/get_maintainer.pl
 Maintainer's e-mail address

 Mailing list address

 Affected or interested parties

 CC LKML linux-kernel@vger.kernel.org

mailto:linux-kernel@vger.kernel.org

How to upstream your code

 Submission
 Sending patches

 `git send-email`
 Email client

 LINUX/Documentation/email-clients.txt

How to upstream your code

 Submission
 Single patch

 Patch set

Dealing with the mailing lists

 Be patient
 Your patch may not be reviewed immediately

 Be polite and don't take offense
 Some maintainers are hard to work with

 Straight talking and non-diplomatic
 Explain the reasons for your decisions

 Maintainers aren't _always_ right
 If you don't understand, ask

 "He who asks a question is a fool for a minute;
he who does not, remains a fool forever." --
Chinese proverb

Dealing with the mailing lists

 Getting flamed
 “Christoph said my code is buggy, my office

smells and my hair looks strange. He said it
on linux-kernel and everybody saw it..”,
kenelnewbies

 Congratulations!

How to upstream your code

 Preparation
 Review
 Submission
 Make changes & re-submit

How to upstream your code

 Make suggested changes & re-submit
 Unlikely to be correct first attempt
 Don't be discouraged
 Typical reasons for change requests

 Use or overuse of #ifdefs
 Coding style
 Use of MACROs instead of 'static inline'
 Use of char* instead of const
 Incorrect use of APIs or hacky code

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream you code
 How long does upstreaming take?

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Merge window

How long does upstreaming take

 Merge window
 Usually every 8-10 weeks
 Open for 2 weeks

Merge window

arm

Mainline

Architectures

Sub-arches

arm

ndk

Private trees

dev

U
ps

tr
ea

m

Waiting for
merge window

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Next merge window
 Depth in maintainer hierarchy

How long does upstreaming take?

M1

M2.1 M2.2 M2.3

M3.2 M3.4 M3.6M3.1 M3.3 M3.5 M3.7

M4.1 M4.2 M4.3

PatchesPatchesPatches

PatchesPatchesPatches PatchesPatchesPatches

PatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches

PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches

PatchesPatchesPatches

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Maintainer count
 Next merge window
 How you're perceived on the MLs

To conclude

 Non-propitiatory code is always worth upstreaming
 Upstream little and often

 Constant, world class reviews
 Avoid large re-writes
 Enjoy the process

 Act professional and knowledgeable on the MLs –
make people want to help you

 Enjoy the process

Questions?

