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Upstreaming



  Maintainers & current contributers
  Would be upstreamers
  Don't know what upstreaming is
  People against upstreaming 

Who turned up?



Topics

  Repository hierarchy
  Maintainers
  Benefits of upstreaming
  How to upstream your code
  How long does upstreaming take?



Repository hierarchy

 Theoretical hierarchy of repositories 
 Git maintained
 Each repository specialises in one topic (902) 
 One maintainer per topic (505)
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Maintainers

 Subsystem code owners
 Gatekeepers
 Upstreaming responsibilities 
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Maintainers

 Stats
 505 unique maintainers

 902 subsystems/topics

 LINUX/MAINTAINERS
ARM/NOMADIK ARCHITECTURE

M:      Linus Walleij <linus.walleij@stericsson.com>

M:      Alessandro Rubini <rubini@unipv.it>

M:      STEricsson <STEricsson_nomadik_linux@list.st.com>

L:      linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)

S:      Maintained

F:      arch/arm/mach-nomadik/

F:      arch/arm/plat-nomadik/

F:      drivers/i2c/busses/i2c-nomadik.c

T:      git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git
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Benefits of upstreaming

 Current attitude to upstreaming
 Waste of resources

 Time
 Engineering power

 Giving away work to competitors



Benefits of upstreaming

 Maintainability
 Responsibility

 Forward porting
 Future proof
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Benefits to upstreaming

 Quality Assurance
 Compulsory reviews

 Programmed correctly
 Optimised
 Less bugs

 Testing and validation on a massive scale
 Direct user feedback

 Bug reports
 Contact email in file header
 `git log` or `git blame`
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How to upstream your code

 Preparation
 Plan

 Discuss unknowns with the MLs

 Author
 LINUX/Documentation/CodingStyle



How to upstream your code

 Create patches
 `git format-patch` or `diff -purN`
 Logical groups of functionality 

 Individually compilable

  Keep small & upstream often
 Easier to understand & review
 Easier to make amendments and resubmit
 Identifies fundamental issues early



How to upstream your code
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How to upstream your code

 Review
 Ensure they compile on the latest kernel
 Test functionality
 Run LINUX/scripts/checkpatch.pl
 Send to internal mailing lists
 Once complete add Signed-off-by



How to upstream your code

 Preparation
 Review
 Submission



How to upstream your code

 Submission
 RTFM and take heed

 LINUX/Documentation/SubmitChecklist

 LINUX/Documentation/SubmittingPatches

 Locate e-mail destination
 Browse LINUX/MAINTAINERS

 Run LINUX/scripts/get_maintainer.pl
 Maintainer's e-mail address

 Mailing list address

 Affected or interested parties

 CC LKML linux-kernel@vger.kernel.org

mailto:linux-kernel@vger.kernel.org


How to upstream your code

 Submission
 Sending patches

 `git send-email`
 Email client

 LINUX/Documentation/email-clients.txt



How to upstream your code

 Submission
 Single patch

 Patch set



Dealing with the mailing lists

 Be patient
 Your patch may not be reviewed immediately

 Be polite and don't take offense
 Some maintainers are hard to work with

 Straight talking and non-diplomatic
 Explain the reasons for your decisions

 Maintainers aren't _always_ right
 If you don't understand, ask

 "He who asks a question is a fool for a minute; 
he who does not, remains a fool forever." -- 
Chinese proverb



Dealing with the mailing lists

 Getting flamed
 “Christoph said my code is buggy, my office 

smells and my hair looks strange. He said it 
on linux-kernel and everybody saw it..”, 
kenelnewbies

 Congratulations!



How to upstream your code

 Preparation
 Review
 Submission
 Make changes & re-submit



How to upstream your code

 Make suggested changes & re-submit
 Unlikely to be correct first attempt
 Don't be discouraged
 Typical reasons for change requests

 Use or overuse of #ifdefs
 Coding style
 Use of MACROs instead of 'static inline'
 Use of char* instead of const
 Incorrect use of APIs or hacky code
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How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Merge window



How long does upstreaming take

 Merge window
 Usually every 8-10 weeks
 Open for 2 weeks



Merge window
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How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Next merge window
 Depth in maintainer hierarchy



How long does upstreaming take?
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How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Maintainer count
 Next merge window
 How you're perceived on the MLs



To conclude

 Non-propitiatory code is always worth upstreaming
 Upstream little and often 

 Constant, world class reviews
 Avoid large re-writes
 Enjoy the process

 Act professional and knowledgeable on the MLs – 
make people want to help you

 Enjoy the process



Questions?


