
Lee Jones - Linaro
Team Lead, ST-Ericsson Landing Team

May 2011

Upstreaming

 Maintainers & current contributers
 Would be upstreamers
 Don't know what upstreaming is
 People against upstreaming

Who turned up?

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Repository hierarchy

 Theoretical hierarchy of repositories
 Git maintained
 Each repository specialises in one topic (902)
 One maintainer per topic (505)

arm cris mips ata base dma

sh x86 … (24) i2c usb … (90)

Repository hierarchy
Mainline

Architectures Driver Sub-Systems

Sub-arches

ndk sam

omap ?
Could be you

...

mxc

More specific driver subsystems

power ioat

scx200 ohci ...

promise

Dev

arm

Repository tree hierarchy
Mainline

Architectures

Sub-arches

arm

ndk

Dev

Repository tree hierarchy

Architectures

Sub-arches

Private trees

Dev

U
ps

tr
ea

m

ndk

arm

Mainline

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Maintainers

 Subsystem code owners
 Gatekeepers
 Upstreaming responsibilities

Maintainer hierarchy

M1

M2.1 M2.2 M2.3

M3.2 M3.4 M3.6M3.1 M3.3 M3.5 M3.7

M4.1 M4.2 M4.3

arm cris mips ata base dma

sh x86 ... i2c usb ...

Repository tree hierarchy
Mainline

Architectures Driver Sub-Systems

Sub-arches

arm

arm ndk sam

omap ?
Could be you

...

mxc

More specific driver subsystems

arm power ioat

scx200 ohci ...

promise

M1

M2 M2

M3 M3

arm cris
Mikael Starvik

mips
Ralf Baechle

ata
Jeff Garzik

base
Greg K-H

dma
Dan Williams

sh
Paul Mundt

x86
Thomas Gleixner

... i2c
Jean Delvare

usb
Greg K-H

...

Maintainer hierarchy
Mainline

Linus Torvalds

Architectures Driver Sub-Systems

Sub-arches

arm
Russell King

ndk
Linus Walleij
ST-Ericsson

sam
Kukjin Kim
Samsung

omap
Tony Lindgren

TI

?
Could be you

...

mxc
Sascha Hauer

Freescale

More specific driver subsystems

arm power
Pavel Machek

ioat
Dan Williams

scx200
Jim Cromie

acm
Oliver Neukum

...

promise
Mikael Pettersson

Dev
ST-Ericsson

M1

M2 M2

M3 M3

Maintainers

 Stats
 505 unique maintainers

 902 subsystems/topics

 LINUX/MAINTAINERS
ARM/NOMADIK ARCHITECTURE

M: Linus Walleij <linus.walleij@stericsson.com>

M: Alessandro Rubini <rubini@unipv.it>

M: STEricsson <STEricsson_nomadik_linux@list.st.com>

L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)

S: Maintained

F: arch/arm/mach-nomadik/

F: arch/arm/plat-nomadik/

F: drivers/i2c/busses/i2c-nomadik.c

T: git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does upstreaming take?

Benefits of upstreaming

 Current attitude to upstreaming
 Waste of resources

 Time
 Engineering power

 Giving away work to competitors

Benefits of upstreaming

 Maintainability
 Responsibility

 Forward porting
 Future proof

Future proof

+n

Rewrite =

Benefits to upstreaming

 Maintainability
 Quality Assurance

Benefits to upstreaming

 Quality Assurance
 Compulsory reviews

 Programmed correctly
 Optimised
 Less bugs

 Testing and validation on a massive scale
 Direct user feedback

 Bug reports
 Contact email in file header
 `git log` or `git blame`

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream your code
 How long does it take?

How to upstream your code

 Preparation
 Plan

 Discuss unknowns with the MLs

 Author
 LINUX/Documentation/CodingStyle

How to upstream your code

 Create patches
 `git format-patch` or `diff -purN`
 Logical groups of functionality

 Individually compilable

 Keep small & upstream often
 Easier to understand & review
 Easier to make amendments and resubmit
 Identifies fundamental issues early

How to upstream your code

 Preparation
 Review

How to upstream your code

 Review
 Ensure they compile on the latest kernel
 Test functionality
 Run LINUX/scripts/checkpatch.pl
 Send to internal mailing lists
 Once complete add Signed-off-by

How to upstream your code

 Preparation
 Review
 Submission

How to upstream your code

 Submission
 RTFM and take heed

 LINUX/Documentation/SubmitChecklist

 LINUX/Documentation/SubmittingPatches

 Locate e-mail destination
 Browse LINUX/MAINTAINERS

 Run LINUX/scripts/get_maintainer.pl
 Maintainer's e-mail address

 Mailing list address

 Affected or interested parties

 CC LKML linux-kernel@vger.kernel.org

mailto:linux-kernel@vger.kernel.org

How to upstream your code

 Submission
 Sending patches

 `git send-email`
 Email client

 LINUX/Documentation/email-clients.txt

How to upstream your code

 Submission
 Single patch

 Patch set

Dealing with the mailing lists

 Be patient
 Your patch may not be reviewed immediately

 Be polite and don't take offense
 Some maintainers are hard to work with

 Straight talking and non-diplomatic
 Explain the reasons for your decisions

 Maintainers aren't _always_ right
 If you don't understand, ask

 "He who asks a question is a fool for a minute;
he who does not, remains a fool forever." --
Chinese proverb

Dealing with the mailing lists

 Getting flamed
 “Christoph said my code is buggy, my office

smells and my hair looks strange. He said it
on linux-kernel and everybody saw it..”,
kenelnewbies

 Congratulations!

How to upstream your code

 Preparation
 Review
 Submission
 Make changes & re-submit

How to upstream your code

 Make suggested changes & re-submit
 Unlikely to be correct first attempt
 Don't be discouraged
 Typical reasons for change requests

 Use or overuse of #ifdefs
 Coding style
 Use of MACROs instead of 'static inline'
 Use of char* instead of const
 Incorrect use of APIs or hacky code

Topics

 Repository hierarchy
 Maintainers
 Benefits of upstreaming
 How to upstream you code
 How long does upstreaming take?

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Merge window

How long does upstreaming take

 Merge window
 Usually every 8-10 weeks
 Open for 2 weeks

Merge window

arm

Mainline

Architectures

Sub-arches

arm

ndk

Private trees

dev

U
ps

tr
ea

m

Waiting for
merge window

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Next merge window
 Depth in maintainer hierarchy

How long does upstreaming take?

M1

M2.1 M2.2 M2.3

M3.2 M3.4 M3.6M3.1 M3.3 M3.5 M3.7

M4.1 M4.2 M4.3

PatchesPatchesPatches

PatchesPatchesPatches PatchesPatchesPatches

PatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches

PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches PatchesPatchesPatchesPatchesPatchesPatches

PatchesPatchesPatches

How long does upstreaming take?

 Factors
 Code corrections

 How much needs to be changed
 Change complexity

 Maintainer count
 Next merge window
 How you're perceived on the MLs

To conclude

 Non-propitiatory code is always worth upstreaming
 Upstream little and often

 Constant, world class reviews
 Avoid large re-writes
 Enjoy the process

 Act professional and knowledgeable on the MLs –
make people want to help you

 Enjoy the process

Questions?

