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whoami

‣ Alexis Lothoré

‣ Linux engineer and trainer @ Bootlin during the day
🞄 Engineering company specialized in Embedded Linux 

and Zephyr

🞄 28 people, mostly in France

🞄 Very strong open-source focus

🞄 We are hiring, including interns

‣ Hacker at night
🞄 electronics

🞄 (embedded) software

🞄 CAO/3d printing
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Embedded Linux and kernel engineering

The project: Neon Beat Buzzer



Neon Beat

‣ a custom Blind Test platform
🞄 each player or team gets a buzzer (physical button)

🞄 all buttons connect to the Neon Beat controller (NBC) hosting the game logic

🞄 a game master drives the game through a dedicated web interface

🞄 players can follow the game on a shared screen

🞄 players compete for the highest score
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The Buzzer

‣ custom electronics
🞄 core: Xiao esp32c3

🞄 battery: 3.7V lithium 

battery, 320mAh

🞄 button: keyboard switch

🞄 led: WS2812

🞄 (coming soon: a proper 

PCB)

‣ custom casing
🞄 current: FreeCAD + 3D 

printing

🞄 WIP: wood work + 

molding
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The challenge: oxydizing the firmware

‣ The buzzer already runs a full custom firmware based on 

esp-idf (C)

‣ That’s a perfect sandbox to practice no_std Rust
🞄 Rust, but without alloc, the fancy types, filesystems, 

concurrency, etc
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The challenge: oxydizing the firmware

‣ The buzzer already runs a full custom firmware based on 

esp-idf (C)

‣ That’s a perfect sandbox to practice no_std Rust
🞄 Rust, but without alloc, the fancy types, filesystems, 

concurrency, etc

‣ Expected outcome
🞄 Will the firmware become safe and bug-free ? => NO

🞄 Will the firmware become blazingly fast ? => NO

🞄 Will it be fun ? => LIKELY !

🞄 Will I learn things ? => DEFINITELY !
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Embedded Linux and kernel engineering

Host and project setup



High level SBOM

‣ esp-hal crate
🞄 safe APIs for peripherals access

‣ esp_radio

🞄 exposes wifi/ble

🞄 needs esp-hal unstable feature

🞄 needs an alloc crate: esp-alloc

🞄 needs esp-rtos

‣ embassy to write async code
🞄 esp-rtos provides the glue between esp-hal and embassy

‣ plenty of docs and examples:
🞄 https://docs.espressif.com/projects/rust/

🞄 https://github.com/esp-rs/esp-hal/tree/main/examples#examples
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From zero to a working setup

‣ get and run rustup (Rust programming language installer): http://rustup.rs
🞄 installs rust: rustc, stdlib, cargo, additional tooling

🞄 follow post-install instructions to correctly set ENV variables

‣ get esp-generate: cargo install esp-generate --locked
🞄 used to generate a project from a template

‣ run esp-generate to create your project. A TUI will guide you to select:
🞄 the platform (eg: esp32c3)

🞄 the wanted features

🞄 some extra tooling like esp-flash or esp-config

‣ and voila, you now have a ready-to-flash example:
🞄 cargo run

🞄 will automatically download the needed target toolchain variant
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Default code (simplified)

#![no_std]

#![no_main]

#[panic_handler]

fn panic(_: &core::panic::PanicInfo) -> ! {

    loop {}

}

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

    let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());

    let peripherals = esp_hal::init(config);

    esp_rtos::start(timg0.timer0, sw_interrupt.software_interrupt0);

    let radio_init = esp_radio::init().expect("Failed to initialize Wi-Fi/BLE controller");

    let (mut _wifi_controller, _interfaces) = esp_radio::wifi::new(&radio_init, peripherals.WIFI, Default::default())

            .expect("Failed to initialize Wi-Fi controller");

    loop {

        Timer::after(Duration::from_secs(1)).await;

    }

}
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Embassy tasks

#[embassy_executor::task]

async fn keepalive_message(timeout: Duration) {

    loop {

        info!("Firmware is running...");

        Timer::after(timeout).await;

    }

}

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

    let duration = Duration::from_secs(5);

    if let Err(e) = spawner.spawn(keepalive_message(duration)) {

        warn!("Failed to spawn the keepalive task: {e}");

    }

    loop {

        Timer::after(Duration::from_secs(1)).await;

    }

}
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Embedded Linux and kernel engineering

Implementation



Basic wifi connection (1/2)

#[embassy_executor::task]

async fn net_task(mut runner: Runner<'static, WifiDevice<'static>>) {

    runner.run().await

}

#[embassy_executor::task]

async fn connection(mut controller: WifiController<'static>) {

    loop {

        if esp_radio::wifi::sta_state()  == WifiStaState::Connected {

                controller.wait_for_event(WifiEvent::StaDisconnected).await;

        }

        if !matches!(controller.is_started(), Ok(true)) {

            let client_config = ModeConfig::Client( ClientConfig::default()

                    .with_ssid("nb_ap".into())

                    .with_password("nb_ap14789".into()),

            );

            controller.set_config(&client_config).unwrap();

            controller.start_async().await.unwrap();

        }

        if let Err(e) = controller.connect_async().await {

            info!("Failed to connect to wifi: {e:?}");

        } else {

            info!("Wifi connected!");

        }

    }

}
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Basic wifi connection (2/2)

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

    /* [...] */

    let esp_radio_ctrl = &*mk_static!(Controller<'static>, esp_radio::init().unwrap());

    let (controller, interfaces) = esp_radio::wifi::new(&esp_radio_ctrl, peripherals.WIFI, Default::default()).unwrap();

    let config = embassy_net::Config::dhcpv4(Default::default());

    let rng = Rng::new();

    let seed = (rng.random() as u64) << 32 | rng.random() as u64;

    let (stack, runner) = embassy_net::new(interfaces.sta, config, mk_static!(StackResources<3>, StackResources::<3>::new()),

        seed);

    spawner.spawn(connection(controller)).expect("Can not spawn net task");

    spawner.spawn(net_task(runner)).expect("Can not spawn wifi task");

    while stack.config_v4().is_none() {

        Timer::after(Duration::from_millis(500)).await;

    }

    info!("Buzzer connected to NBC");

    loop { /* [...] */ }

}
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False start

ESP-ROM:esp32c3-api1-20210207

Build:Feb  7 2021

rst:0x15 (USB_UART_CHIP_RESET),boot:0x9 (SPI_FAST_FLASH_BOOT)

Saved PC:0x40380862

SPIWP:0xee

mode:DIO, clock div:2

load:0x3fcd5820,len:0x15c4

load:0x403cbf10,len:0xc84

load:0x403ce710,len:0x2fd0

entry 0x403cbf1a

[...]

====================== PANIC ======================

panicked at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62:5:

Function called via syscall table is not implemented!

Backtrace:

0x42039cc8

esp_rom_sys::syscall::not_implemented

    at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62

‣ reproducible with examples/wifi/embassy_dhcp from esp-hal
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Calling for help

https://github.com/esp-rs/esp-hal/issues/4426
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Espressif chips ROM code
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Espressif chips ROM code

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com


Espressif help

‣ after a few rounds on Github, and in a bit less than two weeks:
🞄 issue is identified in esp-rom-sys

🞄 the __getreent syscall is implemented

🞄 new tests show that _malloc_r and _free_r also need to be implemented

🞄 finally:

ESP-ROM:esp32c3-api1-20210207

Build:Feb  7 2021

rst:0x15 (USB_UART_CHIP_RESET),boot:0x8 (SPI_FAST_FLASH_BOOT)

[...]

I (114) esp_image: segment 2: paddr=00030020 vaddr=42020020 size=71e68h (466536) map

I (218) esp_image: segment 3: paddr=000a1e90 vaddr=3fc8a6a0 size=00ff0h (  4080) load

I (220) esp_image: segment 4: paddr=000a2e88 vaddr=40380000 size=09784h ( 38788) load

I (235) boot: Loaded app from partition at offset 0x10000

I (235) boot: Disabling RNG early entropy source...

INFO - IPv4: DOWN

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - link_up = true

INFO - IPv4: DOWN

INFO - Wifi connected!

INFO - Buzzer connected to NBC

@bugadani

@JurajSadel

@MabezDev

I owe you a beer 🍻

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/38

https://bootlin.com


Targeting specific crates revisions

‣ fixes are merged but not released yet on crates.io

‣ no problem, we can use temporary remotes:

# in Cargo.toml

[patch.crates-io]

esp-hal = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-rtos = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-bootloader-esp-idf = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-alloc = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-radio = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }
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Basic socket management

loop {

    /* Don't do this at home, please be gentle with your stack */

    let mut rx_buffer:[u8;512] = [0;512];

    let mut tx_buffer:[u8;512] = [0;512];

    let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer);

    socket.set_timeout(Some(Duration::from_secs(10)));

    socket.set_keep_alive(Some(Duration::from_secs(8)));

    let remote = (Ipv4Addr::new(192, 168, 66, 1), 80);

    let res = socket.connect(remote).await;

    if let Err(e) = res {

        error!("Failed to connect to TCP server: {:?}", e);

        continue;

    }

    while socket.state() == embassy_net::tcp::State::Established {

        info!("Waiting for some data...");

        Timer::after(Duration::from_secs(5)).await;

    }

}
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Rust inflexibility strength

‣ many parts of the firwmare want to send/receive data

‣ but only one task can own the socket

‣ let’s use channels to share the transport layer
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First attempt

#[embassy_executor::task]

pub async fn socket_task(

    stack: embassy_net::Stack,

    tx_chan: embassy_sync::channel::Receiver<NoopRawMutex, Message, 1>,

    rx_chan: embassy_sync::channel::Sender<NoopRawMutex, Command, 1>,

) {

    loop {

        match select(socket.read(&mut buf), tx_chan.receive()).await {

            Either::First(count) => {

                info!("Received {count} bytes");

                /* [...] */

                rx_chan.send(Command::LedOn).await;

            },

            Either::Second(status) => {

                info!("Sending {status} to NBC");

                /* [...] */

                socket.write(&buf).await.expect("Failed to send message");

            }

        }

    }

}

#[derive(Debug)]

enum Message {

    Identify,

    Buzz,

}

#[derive(Debug)]

enum Command {

    LedOn,

    LedOff,

}

let tx = Channel::new();

let rx = Channel::new();

spawner

    .spawn(socket_task(stack, 

                       tx.receiver(),

                       rx.sender()))

    .expect("Failed to spawn tcp task");

/*[...]*/

tx.send(Message::Identify).await;

Note the select call: socket.read() and tx_chan.receive() return Futures ! We have to await them !
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So it begins

   Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0726]: implicit elided lifetime not allowed here

   --> src/main.rs:123:14

    |

123 |     tx_chan: embassy_sync::channel::Receiver<NoopRawMutex, Message, 1>,

    |              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected lifetime parameter

    |

help: indicate the anonymous lifetime

    |

123 |     tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

    |                                              +++

error[E0726]: implicit elided lifetime not allowed here

   --> src/main.rs:124:14

    |

124 |     rx_chan: embassy_sync::channel::Sender<NoopRawMutex, Command, 1>,

    |              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected lifetime parameter

    |

help: indicate the anonymous lifetime

    |

124 |     rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

    |                                            +++
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Second attempt

#[embassy_executor::task]

pub async fn socket_task(

    stack: embassy_net::Stack,

    tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

    rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

) {

  /* [...] */

}
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Second attempt

#[embassy_executor::task]

pub async fn socket_task(

    stack: embassy_net::Stack,

    tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

    rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

) {

  /* [...] */

}

    Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error: Arguments for tasks must live forever. Try using the `'static` lifetime.

   --> src/main.rs:123:46

    |

123 |     tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

    |                                              ^^

error: Arguments for tasks must live forever. Try using the `'static` lifetime.

   --> src/main.rs:124:44

    |

124 |     rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

    |                                            ^^
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Third attempt

#[embassy_executor::task]

pub async fn socket_task(

    stack: embassy_net::Stack,

    tx_chan: embassy_sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,

    rx_chan: embassy_sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

) {

  /* [...] */

}
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Third attempt

#[embassy_executor::task]

pub async fn socket_task(

    stack: embassy_net::Stack,

    tx_chan: embassy_sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,

    rx_chan: embassy_sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

) {

  /* [...] */

}

   Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0597]: `tx` does not live long enough

   --> src/main.rs:98:35

    |

 95 |     let tx = Channel::new();

    |         -- binding `tx` declared here

...

 98 |         .spawn(socket_task(stack, tx.receiver(), rx.sender()))

    |                -------------------^^-------------------------

    |                |                  |

    |                |                  borrowed value does not live long enough

    |                argument requires that `tx` is borrowed for `'static`

[...]
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Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

/* [...] */

spawner

    .spawn(socket_task(stack, TX.receiver(), RX.sender()))

    .expect("Failed to spawn tcp task");

TX.send(Message::Buzz);

Hmmm, why did we decide to stop coding in C, again ?
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Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

/* [...] */

spawner

    .spawn(socket_task(stack, TX.receiver(), RX.sender()))

    .expect("Failed to spawn tcp task");

TX.send(Message::Buzz);

Hmmm, why did we decide to stop coding in C, again ?

    Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0277]: `*mut ()` cannot be shared between threads safely

   --> src/main.rs:51:12

    |

 51 | static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

    |            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `*mut ()` cannot be shared between threads safely

    |

    = help: within `NoopRawMutex`, the trait `Sync` is not implemented for `*mut ()`

note: required because it appears within the type `PhantomData<*mut ()>`

   --> /home/alexis/src/rustup/toolchains/stable-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/marker.rs:822:12

    |

822 | pub struct PhantomData<T: PointeeSized>;

    |            ^^^^^^^^^^^

note: required because it appears within the type `NoopRawMutex`

   --> /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/embassy-sync-0.7.2/src/blocking_mutex/raw.rs:70:12

    |

 70 | pub struct NoopRawMutex {

    |            ^^^^^^^^^^^^

    = note: required for `embassy_sync::blocking_mutex::Mutex<NoopRawMutex, RefCell<embassy_sync::channel::ChannelState<Message, 1>>>` to implement `Sync`
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Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>> = StaticCell::new();

static RX: StaticCell<Channel<NoopRawMutex, Command, 1>> = StaticCell::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

let tx: &'static mut _ = TX.init(Channel::new());

let rx: &'static mut _ = RX.init(Channel::new());

spawner

    .spawn(socket_task(stack, tx.receiver(), rx.sender()))

    .expect("Failed to spawn tcp task");
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Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>> = StaticCell::new();

static RX: StaticCell<Channel<NoopRawMutex, Command, 1>> = StaticCell::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

let tx: &'static mut _ = TX.init(Channel::new());

let rx: &'static mut _ = RX.init(Channel::new());

spawner

    .spawn(socket_task(stack, tx.receiver(), rx.sender()))

    .expect("Failed to spawn tcp task");

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

 Finished `dev` profile [optimized + debuginfo] target(s) in 0.24s

Alleluia
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Button management: finally something simple

use embassy_sync::{blocking_mutex::raw::NoopRawMutex, channel::Sender};

use esp_hal::gpio::{AnyPin, Input, InputConfig, Pull};

use log::info;

#[embassy_executor::task]

pub async fn button_task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {

    let config = InputConfig::default().with_pull(Pull::Up);

    let mut button = Input::new(pin, config);

    loop {

        button.wait_for_falling_edge().await;

        info!("Button pushed!");

        sender.send(true).await;

    }

}

‣ esp-hal exposes async APIs for GPIOs

‣ it even handles automatically interrupt configuration !
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Button management: finally something simple almost simple

const DEBOUNCE_MS: u64 = 100;

#[embassy_executor::task]

pub async fn button_task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {

    let config = InputConfig::default().with_pull(Pull::Up);

    let mut pushed = false;

    let mut button = Input::new(pin, config);

    loop {

        button.wait_for_falling_edge().await;

        if !pushed {

            info!("Button pushed!");

            sender.send(true).await;

        }

        /* Quick and dirty deboucing, enough as long as we only need to

         * detect single, short presses

         */

        Timer::after_millis(DEBOUNCE_MS).await;

        pushed = button.is_low();

    }

}
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LED management

‣ WS2812 is controlled with a specific serial protocol

‣ Most ESP32 chips have a RMT peripheral available
🞄 Generally used to control infrared transceivers

🞄 disable carrier modulation, and voila, you know how to talk to a led
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LED management

‣ WS2812 is controlled with a specific serial protocol

‣ Most ESP32 chips have a RMT peripheral available
🞄 Generally used to control infrared transceivers

🞄 disable carrier modulation, and voila, you know how to talk to a led

‣ Once again, let’s benefit from existing crates:

cargo add smart-leds

cargo add esp-hal-smartled

use esp_hal_smartled::{SmartLedsAdapterAsync, smart_led_buffer};

use smart_leds::{RGB, brightness, SmartLedsWriteAsync};

let mut buffer = smart_led_buffer!(1);

let rmt = Rmt::new(peripherals.RMT, Rate::from_mhz(80)).expect("Failed to initialize RMT controller");

let red: RGB<u8> = RGB::new(255, 0, 0);

let mut led = SmartLedsAdapterAsync::new(rmt.into_async().channel0, peripherals.GPIO3, &mut buffer);

led.write(brightness([red].into_iter(), 255)).await.expect("Failed to set led on");
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Exchanging messages with the NBC

‣ The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

‣ The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

‣ wouldn’t it be nice to have a crate/framework to automatically {de}serialize 

messages ?
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Exchanging messages with the NBC

‣ The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

‣ The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

‣ wouldn’t it be nice to have a crate/framework to automatically {de}serialize 

messages ?

Time for some Serde goodness !
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Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types
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Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types

‣ serde_json: a serde-based {de}serializer
🞄 allows “anonymous” or “strongly types” deserialization

🞄 depends on std by default

🞄 can work without std, but still needs alloc
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Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types

‣ serde_json: a serde-based {de}serializer
🞄 allows “anonymous” or “strongly types” deserialization

🞄 depends on std by default

🞄 can work without std, but still needs alloc

‣ serde_json_core: a no_std, no alloc, serde-based {de}serializer
🞄 only supports “strongly typed” deserialization

🞄 does not handle as many types as full serde

🞄 but hey, we’re doing embedded development !

⇒ cargo add serde && cargo add serde_json_core
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Handling status and commands (1/3)

{

  "pattern":{

    "type":"blink",

    "details":{

      "duration_ms":1000,

      "period_ms":200,

      "dc":0.5,

      "color":{

        "h":125.0,

        "s":1.0,

        "v":1.0

      }

    }

  }

}

⇒

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

    #[serde(borrow)]

    pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

    r#type: &'a str,

    details: MessageLedDetails,

}

#[derive(Deserialize, Debug)]

struct MessageLedDetails {

    duration_ms: u32,

    period_ms: u32,

    dc: f32,

    color: MessageLedColor,

}

#[derive(Deserialize, Debug)]

struct MessageLedColor {

    h: f32,

    s: f32,

    v: f32,

}
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Handling status and commands (2/3)

‣ to parse a received command:

let cmd = serde_json_core::from_slice::<MessageLedPattern>(&[..msg_len])

if cmd.is_err() { /* [...] */ }

match cmd.pattern.r#type {

  "blink" => { /* [...] */ },

  "wave" => { /* [...] */ },

  _ => { /* [...] */ }

}
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Handling status and commands (2/3)

‣ to parse a received command:

let cmd = serde_json_core::from_slice::<MessageLedPattern>(&[..msg_len])

if cmd.is_err() { /* [...] */ }

match cmd.pattern.r#type {

  "blink" => { /* [...] */ },

  "wave" => { /* [...] */ },

  _ => { /* [...] */ }

}

‣ to serialize a status:

struct StatusMessageData<'a, 'b> {

    r#type: &'a str,

    id: &'b str,

}

let mut buffer = [u8;512];

let ident = StatusMessageData {

    r#type: "identification",

    id: "deadbeefcafe"

};

if let Ok(count) = serde_json_core::to_slice(&ident, &mut buffer) {

  socket.write(buffer[..count])

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/38

https://bootlin.com


Handling status and commands (3/3)

‣ But some messages have a slightly different format !

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}
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Handling status and commands (3/3)

‣ But some messages have a slightly different format !

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

    #[serde(borrow)]

    pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

    r#type: &'a str,

    details: MessageLedDetails,

}

⇒

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

    #[serde(borrow)]

    pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

    r#type: &'a str,

    details: Option(MessageLedDetails)

}

if value.pattern.type != "off" {

  let details = value.pattern.details.ok_or(PatternError::MissingDetails)?;

  /* [...] */

}
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Embedded Linux and kernel engineering

Show time



Show time

cargo run
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Next steps and improvements

‣ final binary size ( 1.3MB 😳)

‣ better websocket management

‣ more idiomatic error management

‣ tests !
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Thank you!
Questions?

https://github.com/neon-beat/neon-beat-buzzer-fw.git

Alexis Lothoré

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/
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