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%Whoami

» Alexis Lothoré
» Linux engineer and trainer @ Bootlin during the day
e Engineering company specialized in Embedded Linux
and Zephyr
e 28 people, mostly in France
* Very strong open-source focus
* We are hiring, including interns
» Hacker at night
* electronics
* (embedded) software
e CAO/3d printing
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Embedded Linux and kernel engineering

The project: Neon Beat Buzzer

bootlin




% Neon Beat

» a custom Blind Test platform
* each player or team gets a buzzer (physical button)
* all buttons connect to the Neon Beat controller (NBC) hosting the game logic
® a game master drives the game through a dedicated web interface
* players can follow the game on a shared screen
e players compete for the highest score
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Battery

On/Off button

<>

WS

buzzer button

» custom electronics

RGB led

core: Xiao esp32c3
battery: 3.7V lithium
battery, 320mAh
button: keyboard switch
led: WS2812

(coming soon: a proper
PCB)

» custom casing

current: FreeCAD + 3D
printing

WIP: wood work +
molding
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4@\1 The challenge: oxydizing the firmware

» The buzzer already runs a full custom firmware based on
esp-idf (C)
» That's a perfect sandbox to practice no_ std Rust

» Rust, but without alloc, the fancy types, filesystems,
concurrency, etc
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%The challenge: oxydizing the firmware

» The buzzer already runs a full custom firmware based on
esp-idf (C)
» That's a perfect sandbox to practice no__std Rust

» Rust, but without alloc, the fancy types, filesystems,
concurrency, etc

» Expected outcome
e Will the firmware become safe and bug-free 7 => NO
e Will the firmware become blazingly fast 7 => NO
e Will it be fun ? => LIKELY !
e Will | learn things ? => DEFINITELY !
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Host and project setup
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% High level SBOM

» esp-hal crate

o safe APIs for peripherals access
» esp radio
* exposes wifi/ble
* needs esp-hal unstable feature
®* needs an alloc crate: esp-alloc
®* needs esp-rtos
» embassy to write async code

® esp-rtos provides the glue between esp-hal and embassy

» plenty of docs and examples:
e https://docs.espressif.com/projects/rust/
e https://github.com/esp-rs/esp-hal/tree/main/examples#examples
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4@} From zero to a working setup

» get and run rustup (Rust programming language installer): http://rustup.rs
e installs rust: rustc, stdlib, cargo, additional tooling
e follow post-install instructions to correctly set ENV variables
> get esp-generate: cargo install esp-generate --locked
e used to generate a project from a template
» run esp-generate to create your project. A TUI will guide you to select:
* the platform (eg: esp32c3)
* the wanted features
* some extra tooling like esp-flash or esp-config
» and voila, you now have a ready-to-flash example:
® Cargo run

e will automatically download the needed target toolchain variant
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% Default code (simplified)

#![no_std]
#![no_main]

#[panic_handler]

fn panic( : &core::panic::PanicInfo) -> ! {
loop {}

}

#[esp rtos::main]
async fn main(spawner: Spawner) -> ! {

let config = esp hal::Config::default().with cpu clock(CpuClock::max());
let peripherals = esp hal::init(config);

esp rtos::start(timg0.timer0, sw interrupt.software interruptO);

let radio_init = esp radio::init().expect("Failed to initialize Wi-Fi/BLE controller");
let (mut wifi controller, interfaces) = esp radio::wifi::new(&radio init, peripherals.WIFI, Default::default())
.expect("Failed to initialize Wi-Fi controller");

loop {
Timer::after(Duration::from secs(1l)).await;

}
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% Embassy tasks

#[embassy executor::task]
async fn keepalive message(timeout: Duration) {
loop {
info! ("Firmware is running...");
Timer::after(timeout) .await;

#[esp rtos::main]
async fn main(spawner: Spawner) -> ! {

let duration = Duration::from secs(5);
if let Err(e) = spawner.spawn(keepalive message(duration)) {
warn!("Failed to spawn the keepalive task: {e}");

}
loop {

Timer::after(Duration::from secs(1l)).await;
}
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Implementation
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% Basic wifi connection (1/2)

#[embassy executor::task]
async fn net task(mut runner: Runner<'static, WifiDevice<'static>>) {
runner.run().await

}

#[embassy executor::task]
async fn connection(mut controller: WifiController<'static>) {
loop {
if esp radio::wifi::sta state() == WifiStaState::Connected {
controller.wait for event(WifiEvent::StaDisconnected).await;
}
if !matches!(controller.is started(), Ok(true)) {
let client config = ModeConfig::Client( ClientConfig::default()
.with ssid("nb_ap".into())
.with password("nb apl4789".into()),
);
controller.set config(&client config).unwrap();
controller.start async().await.unwrap();

if let Err(e) = controller.connect async().await {
info! ("Failed to connect to wifi: {e:?}");

} else {
info! ("Wifi connected!");
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% Basic wifi connection (2/2)

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

/* L...1 */

let esp radio ctrl = &*mk static!(Controller<'static>, esp radio::init().unwrap());
let (controller, interfaces) = esp radio::wifi::new(&esp radio ctrl, peripherals.WIFI, Default::default()).unwrap();

let config = embassy net::Config::dhcpv4(Default::default());
let rng = Rng::new();
let seed = (rng.random() as u64) << 32 | rng.random() as u64;

let (stack, runner) = embassy net::new(interfaces.sta, config, mk static!(StackResources<3>, StackResources::<3>::new()),
seed);

spawner.spawn(connection(controller)).expect("Can not spawn net task");
spawner.spawn(net task(runner)).expect("Can not spawn wifi task");

while stack.config v4().is none() {
Timer::after(Duration::from millis(500)).await;

}

info! ("Buzzer connected to NBC");

loop { /* [...] */ }
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4@\/ False start

ESP-ROM:esp32c3-apil-20210207

Build:Feb 7 2021

rst:0x15 (USB_UART CHIP RESET),boot:0x9 (SPI_FAST FLASH BOOT)
Saved PC:0x40380862

SPIWP:0Oxee

mode:DIO0, clock div:2

load:0x3fcd5820,len:0x15c4

load:0x403cbf10, len:0xc84

load:0x403ce710, len:0x2fdO

entry 0x403cbfla

[...]

PANIC
panicked at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62:5:
Function called via syscall table is not implemented!

Backtrace:
0x42039cc8

esp_rom_sys::syscall::not_implemented
at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62

» reproducible with examples/wifi/embassy dhcp from esp-hal
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Implement __ _getreent in esp-rom-sys #4426 Newissue

© Closed

Jnees
Tropicao E .

[~ bugadani

Bug description

| am writing a custom firmware relying on a connection to a custom wireless Access point, and | observe that it systematically
crashes during the connection attempt:

About to connect...

is not

Backtrace:

0x4203a2f6
esp_rom_: 11: :not_implemented
at / eon-beat/

The weird thing is that it crashes only with my custom access point (configuration below): if | rather try to connect to my ISP box,
everything goes well. When trying to connect to my custom AP, instead of getting a connection failure in the logs, | have this panic,
which makes it difficult to investigate. | fortunately managed to reproduce it with the emb:

dnhcp example, in esp_hal on commit

My target is a Xiao ESP32C3. I'd gladly help to debug it furt but I'm still learning about the tooling.

Code with agent mode
To Reproduce 2

esp-rom-sys: Add very basic '__getreent’

= Start a basic host access point impl

network interface: usb dongle Tp-link AC1300 archer t3u+
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% Espressif chips ROM code

)

\_ FLASH (firmware) )
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@6 Espressif chips ROM code

[ ROM ]
Your firmware (
can call ROM

functions \

\ FLASH (firmware) /
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@6 Espressif chips ROM code

ROM

ROM code calls
Your firmware "syscalls" in your
can call ROM firmware too !
functions 3

\_ FLASH (firmware) /
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Espressif chips ROM code

ROM

Your firmware
can call ROM
functions

(

2

ROM code calls
"syscalls" in your
firmware too !

(

syscall table (esp-rom-sys)
- syscall_1(...);

- syscall _2(...);

- unimplemented -> panic!

- syscall_4(...);

- syscall _N(...)

3

\\

J

\___ FLASH (firmware)

J
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% Espressif help

» after a few rounds on Github, and in a bit less than two weeks:

e jssue is identified in esp-rom-sys
e the (getreent syscall is implemented

* new tests show that malloc r and free r also need to be implemented

e finally:

ESP-ROM:esp32c3-apil-20210207
Build:Feb 7 2021
rst:0x15 (USB_UART CHIP RESET),boot:0x8 (SPI FAST FLASH BOOT)

looo
(1
(2

HH H H

]
14)
18)

(220)
(235)

I (235)

INFO
INFO
INFO
INFO
INFO

INFO

esp_image: segment 2: paddr=00030020 vaddr=42020020 size=71e68h (466536) map
esp_image: segment 3: paddr=000ale90 vaddr=3fc8a6al® size=00ffOh ( 4080) load
esp_image: segment 4: paddr=000a2e88 vaddr=40380000 size=09784h ( 38788) load
boot: Loaded app from partition at offset 0x10000

boot: Disabling RNG early entropy source...

IPv4: DOWN

- Waiting on link up...
- Waiting on link up...
- Waiting on link up...
- Waiting on link up...
INFO -
INFO -
- Wifi connected!
INFO -

link up = true
IPv4: DOWN

Buzzer connected to NBC

@bugadani
@JurajSadel
OMabezDev

| owe you a beer ¢
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4@\/ Targeting specific crates revisions

» fixes are merged but not released yet on crates.io
» no problem, we can use temporary remotes:

# in Cargo.toml

[patch.crates-io]

esp-hal = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-rtos = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }
esp-bootloader-esp-idf = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151alb285665587a3d5dd" }
esp-alloc = { git "https://github.com/esp-rs/esp-hal", rev="223815270092663682al151alb285665587a3d5dd" }

esp-radio { git "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151al1b285665587a3d5dd" }
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% Basic socket management

loop {
/* Don't do this at home, please be gentle with your stack */
let mut rx buffer:[u8;512] = [0;512];
let mut tx buffer:[u8;512] = [0;512];

let mut socket = TcpSocket::new(stack, &mut rx buffer, &mut tx buffer);
socket.set timeout(Some(Duration::from secs(10)));
socket.set keep alive(Some(Duration::from secs(8)));
let remote = (Ipv4Addr::new(192, 168, 66, 1), 80);
let res = socket.connect(remote).await;
if let Err(e) = res {
error! ("Failed to connect to TCP server: {:?}", e);

continue;

}

while socket.state() == embassy net::tcp::State::Established {
info! ("Waiting for some data...");
Timer::after(Duration::from secs(5)).await;

}
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% Rust inflexibitity strength

» many parts of the firwmare want to send/receive data
» but only one task can own the socket
» let's use channels to share the transport layer

Main task

y 4

1

Transport task

Polling
loop

socket

1
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_ First attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<NoopRawMutex, Command, 1>,

) {
loop {
match select(socket.read(&mut buf), tx chan.receive()).await {
Either::First(count) => {
info! ("Received {count} bytes");
7% laaall 5/
rx_chan.send(Command: :LedOn) .await;
},
Either::Second(status) => {
info! ("Sending {status} to NBC");
7% ool 5/
socket.write(&buf).await.expect("Failed to send message");
}
}
}
}

#[derive(Debug) ]

enum Message {
Identify,
Buzz,

}

#[derive(Debug) ]
enum Command {

LedOn,

LedOff,
}
let tx = Channel::new();
let rx = Channel::new();
spawner

.spawn(socket task(stack,
tx.receiver(),
rx.sender()))

.expect("Failed to spawn tcp task");

V0 oo llF/
tx.send(Message: :Identify).await;

Note the select call: socket.read() and tx chan.receive() return Futures ! We have to await them !
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4@}50 it begins

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[EOQ726]: implicit elided lifetime not allowed here
--> src/main.rs:123:14

123 tx_chan: embassy sync::channel::Receiver<NoopRawMutex, Message, 1>,

help: indicate the anonymous lifetime
I

123 | tx _chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
| +++

error[EQ726]: implicit elided lifetime not allowed here
--> src/main.rs:124:14

124 rx_chan: embassy sync::channel::Sender<NoopRawMutex, Command, 1>,

help: indicate the anonymous lifetime

I
124 | rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,
| +++
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Q} Second attempt

#[embassy executor::task]
pub async fn socket task(
stack: embassy net::Stack,

tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

23/38


https://bootlin.com

4@} Second attempt

#[embassy executor::task]
pub async fn socket task(
stack: embassy net::Stack,

tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,
) {
/* [...1 */
}

Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error: Arguments for tasks must live forever. Try using the " ‘'static® lifetime.
--> src/main.rs:123:46

123 | tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,

| AN

error: Arguments for tasks must live forever. Try using the "‘'static™ lifetime.
--> src/main.rs:124:44
I

124 | rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,

| AN
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Q} Third attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<'static, NoopRawMutex, Command, 1>,
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4@} Third attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[EO597]: "tx " does not live long enough
--> src/main.rs:98:35

95 | let tx = Channel::new();
| -- binding “tx' declared here

98

| .spawn(socket task(stack, tx.receiver(), rx.sender()))
| ___________________ R oo occooconoococooc0000000 0
I | I
| | borrowed value does not live long enough
| argument requires that "tx" is borrowed for " 'static®
[...]
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% Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1>
static RX: Channel<NoopRawMutex, Command, 1>

Channel::new();
Channel::new();

#[esp rtos::main]

async fn main(spawner: Spawner) -> ! {

/X L.001 %/

spawner
.spawn(socket task(stack, TX.receiver(), RX.sender()))
.expect("Failed to spawn tcp task");

TX.send(Message: :Buzz);

Hmmm, why did we decide to stop coding in C, again ?
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% Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();
static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp rtos::main]

async fn main(spawner: Spawner) -> ! {

7% aoall %7

spawner
.spawn(socket task(stack, TX.receiver(), RX.sender()))
.expect("Failed to spawn tcp task");

TX.send(Message: :Buzz);

Hmmm, why did we decide to stop coding in C, again ?

Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[E0277]1: “*mut ()  cannot be shared between threads safely
--> src/main.rs:51:12
I
51 | static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();
| AANANAANANANANNANANNANNNNANANNANN ¥ mut () cannot be shared between threads safely
I
= help: within “NoopRawMutex', the trait "Sync® is not implemented for “*mut ()°
note: required because it appears within the type “PhantomData<*mut ()>"
--> /home/alexis/src/rustup/toolchains/stable-x86 64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/marker.rs:822:12

|
822 | pub struct PhantomData<T: PointeeSized>;

I ANNANNNNANNNAN
note: required because it appears within the type “NoopRawMutex®
--> /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/embassy-sync-0.7.2/src/blocking mutex/raw.rs:70:12

|
70 | pub struct NoopRawMutex {

I AAAAAAAAAAAA

= note: required for “embassy sync::blocking mutex::Mutex<NoopRawMutex, RefCell<embassy sync::channel::ChannelState<Message, 1>>>" to implement “Sync’
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Q} Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>>
static RX: StaticCell<Channel<NoopRawMutex, Command, 1>>

StaticCell::new();
StaticCell::new();

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

let tx: &'static mut
let rx: &'static mut _
spawner
.spawn(socket task(stack, tx.receiver(), rx.sender()))
.expect("Failed to spawn tcp task");

TX.init(Channel: :new());
RX.init(Channel::new());
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4@\/ Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>>
static RX: StaticCell<Channel<NoopRawMutex, Command, 1>>

StaticCell::new();
StaticCell::new();

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

let tx: &'static mut
let rx: &'static mut _
spawner
.spawn(socket task(stack, tx.receiver(), rx.sender()))
.expect("Failed to spawn tcp task");

TX.init(Channel: :new());
RX.init (Channel: :new());

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
Finished "dev’ profile [optimized + debuginfo] target(s) in 0.24s

Alleluia
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4@\/ Button management: finally something simple

use embassy sync::{blocking mutex::raw::NoopRawMutex, channel::Sender};
use esp _hal::gpio::{AnyPin, Input, InputConfig, Pull};
use log::info;

#[embassy executor::task]
pub async fn button task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {
let config = InputConfig::default().with pull(Pull::Up);
Llet mut button = Input::new(pin, config);
loop {
button.wait for falling edge().await;
info! ("Button pushed!");
sender.send(true).await;

» esp-hal exposes async APIs for GPIOs
» it even handles automatically interrupt configuration !
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4@} Button management: finally something simple almost simple

const DEBOUNCE_MS: u64 = 100;

#[embassy executor::task]

pub async fn button task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {
let config = InputConfig::default().with pull(Pull::Up);
let mut pushed = false;
let mut button = Input::new(pin, config);

loop {
button.wait for falling edge().await;
if !pushed {
info! ("Button pushed!");
sender.send(true).await;
}

/* Quick and dirty deboucing, enough as long as we only need to
* detect single, short presses
*/

Timer::after millis(DEBOUNCE MS).await;

pushed = button.is low();
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4@} LED management

» WS2812 is controlled with a specific serial protocol
» Most ESP32 chips have a RMT peripheral available

* Generally used to control infrared transceivers

e disable carrier modulation, and voila, you know how to talk to a led
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4@} LED management

» WS2812 is controlled with a specific serial protocol
» Most ESP32 chips have a RMT peripheral available

* Generally used to control infrared transceivers

e disable carrier modulation, and voila, you know how to talk to a led

» Once again, let's benefit from existing crates:

cargo add smart-leds
cargo add esp-hal-smartled

use esp_hal smartled::{SmartLedsAdapterAsync, smart led buffer};
use smart leds::{RGB, brightness, SmartlLedsWriteAsync};

let mut buffer = smart led buffer!(1l);
let rmt = Rmt::new(peripherals.RMT, Rate::from mhz(80)).expect("Failed to initialize RMT controller");
let red: RGB<u8> = RGB::new(255, 0, 0);

let mut led = SmartLedsAdapterAsync::new(rmt.into async().channel®, peripherals.GPI03, &mut buffer);
led.write(brightness([red].into iter(), 255)).await.expect("Failed to set led on");
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4@} Exchanging messages with the NBC

» The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

» The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

» wouldn't it be nice to have a crate/framework to automatically {de}serialize
messages
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4@} Exchanging messages with the NBC

» The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

» The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

» wouldn't it be nice to have a crate/framework to automatically {de}serialize
messages

Time for some Serde goodness !
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4@} Serde

» allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml...)
» you can also write your own {de}serializer

» serde: the main crate
e contains the Serialize and Deserialize traits
* able to handle plenty of standard types
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4@} Serde

> allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml...)
» you can also write your own {de}serializer
» serde: the main crate
e contains the Serialize and Deserialize traits
e able to handle plenty of standard types
» serde json: a serde-based {de}serializer
e allows “anonymous” or “strongly types” deserialization
* depends on std by default
e can work without std, but still needs alloc
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4@} Serde

» allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml..)
» you can also write your own {de}serializer
» serde: the main crate
e contains the Serialize and Deserialize traits
* able to handle plenty of standard types
» serde json: a serde-based {de}serializer
e allows “anonymous” or “strongly types” deserialization
* depends on std by default
e can work without std, but still needs alloc
» serde json core: a no_std, no alloc, serde-based {de}serializer
e only supports “strongly typed” deserialization
* does not handle as many types as full serde
* but hey, we're doing embedded development !

— cargo add serde && cargo add serde json core
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Q} Handling status and commands (1/3)

"pattern":{
"type":"blink",
"details":{
"duration ms":1000,
"period ms":200,
"dc":0.5,
"color":{ f—
"h":125.0,
"s":1.0,
"v'":1.0

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow) ]
pattern: MessagelLedType<'a>,

}

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: MessageledDetails,

}

#[derive(Deserialize, Debug)]
struct MessagelLedDetails {
duration ms: u32,
period ms: u32,
dc: 32,
color: MessagelLedColor,

}

#[derive(Deserialize, Debug)]
struct MessagelLedColor {

h: 32,
s: f32,
v: 32,
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4@} Handling status and commands (2/3)

» to parse a received command:

let cmd = serde json core::from slice::<MessageLedPattern>(&[..msg len])
if emd.is err() { /* [...]1 */ }
match cmd.pattern.r#type {

“blink" => { /* [...] */ },

"wave" => { /* [...] */ },

_={/*[...1 ¥/}
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4@} Handling status and commands (2/3)

» to parse a received command:

let cmd = serde json core::from slice::<MessagelLedPattern>(&[..msg len])
if emd.is err() { /* [...]1 */ }
match cmd.pattern.r#type {

“blink" => { /* [...] */ },

"wave" => { /* [...] */ },

_={/*[...1 ¥/}

» to serialize a status:

let mut buffer = [u8;512];
let ident = StatusMessageData {

struct StatusMessageData<'a, 'b> { r#type: "identification",
r#type: &'a str, id: "deadbeefcafe"
id: &'b str, +
} if let Ok(count) = serde json core::to slice(&ident, &mut buffer) {
socket.write(buffer[..count])
}
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_ Handling status and commands (3/3)

» But some messages have a slightly different format !
{"pattern":{"type":"blink", "details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}
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_ Handling status and commands (3/3)

» But some messages have a slightly different format !

{"pattern":{"type":"blink", "details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow) ]
pattern: MessageledType<'a>,

} }

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow) ]
pattern: MessageledType<'a>,

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: MessageledDetails,

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: Option(MessagelLedDetails)

} }
if value.pattern.type != "off" {
let details = value.pattern.details.ok or(PatternError::MissingDetails)?;
A N
}
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Embedded Linux and kernel engineering

Show time

bootlin




cargo run
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4@} Next steps and improvements

> final binary size ( 1.3MB )

» better websocket management

» more idiomatic error management
> tests !
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Thank you!

Questions?

https://github.com /neon-beat/neon-beat-buzzer-fw.git

Alexis Lothoré
Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/
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