% Embedded Linux and kernel engineering

From C to Rust on the

y
ESP32: A Developper's bOOtI IN

Journey into no_std

Alexis Lothoré

FOSDEM 2026

© Copyright 2004-2026, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions an d translations are welcome!

%Whoami

» Alexis Lothoré
» Linux engineer and trainer @ Bootlin during the day
e Engineering company specialized in Embedded Linux
and Zephyr
e 28 people, mostly in France
* Very strong open-source focus
* We are hiring, including interns
» Hacker at night
* electronics
* (embedded) software
e CAO/3d printing

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/38

https://bootlin.com
https://bootlin.com

Embedded Linux and kernel engineering

The project: Neon Beat Buzzer

bootlin

% Neon Beat

» a custom Blind Test platform
* each player or team gets a buzzer (physical button)
* all buttons connect to the Neon Beat controller (NBC) hosting the game logic
® a game master drives the game through a dedicated web interface
* players can follow the game on a shared screen
e players compete for the highest score

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/38

https://bootlin.com

Battery

On/Off button

<>

WS

buzzer button

» custom electronics

RGB led

core: Xiao esp32c3
battery: 3.7V lithium
battery, 320mAh
button: keyboard switch
led: WS2812

(coming soon: a proper
PCB)

» custom casing

current: FreeCAD + 3D
printing

WIP: wood work +
molding

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/38

https://bootlin.com

4@\1 The challenge: oxydizing the firmware

» The buzzer already runs a full custom firmware based on
esp-idf (C)
» That's a perfect sandbox to practice no_ std Rust

» Rust, but without alloc, the fancy types, filesystems,
concurrency, etc

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/38

https://bootlin.com

%The challenge: oxydizing the firmware

» The buzzer already runs a full custom firmware based on
esp-idf (C)
» That's a perfect sandbox to practice no__std Rust

» Rust, but without alloc, the fancy types, filesystems,
concurrency, etc

» Expected outcome
e Will the firmware become safe and bug-free 7 => NO
e Will the firmware become blazingly fast 7 => NO
e Will it be fun ? => LIKELY !
e Will | learn things ? => DEFINITELY !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/38

https://bootlin.com

Embedded Linux and kernel engineering

Host and project setup

bootlin

% High level SBOM

» esp-hal crate

o safe APIs for peripherals access
» esp radio
* exposes wifi/ble
* needs esp-hal unstable feature
®* needs an alloc crate: esp-alloc
®* needs esp-rtos
» embassy to write async code

® esp-rtos provides the glue between esp-hal and embassy

» plenty of docs and examples:
e https://docs.espressif.com/projects/rust/
e https://github.com/esp-rs/esp-hal/tree/main/examples#examples

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/38

https://docs.espressif.com/projects/rust/
https://github.com/esp-rs/esp-hal/tree/main/examples#examples
https://bootlin.com

4@} From zero to a working setup

» get and run rustup (Rust programming language installer): http://rustup.rs
e installs rust: rustc, stdlib, cargo, additional tooling
e follow post-install instructions to correctly set ENV variables
> get esp-generate: cargo install esp-generate --locked
e used to generate a project from a template
» run esp-generate to create your project. A TUI will guide you to select:
* the platform (eg: esp32c3)
* the wanted features
* some extra tooling like esp-flash or esp-config
» and voila, you now have a ready-to-flash example:
® Cargo run

e will automatically download the needed target toolchain variant

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

8/38

http://rustup.rs
https://bootlin.com

% Default code (simplified)

#![no_std]
#![no_main]

#[panic_handler]

fn panic(: &core::panic::PanicInfo) -> ! {
loop {}

}

#[esp rtos::main]
async fn main(spawner: Spawner) -> ! {

let config = esp hal::Config::default().with cpu clock(CpuClock::max());
let peripherals = esp hal::init(config);

esp rtos::start(timg0.timer0, sw interrupt.software interruptO);

let radio_init = esp radio::init().expect("Failed to initialize Wi-Fi/BLE controller");
let (mut wifi controller, interfaces) = esp radio::wifi::new(&radio init, peripherals.WIFI, Default::default())
.expect("Failed to initialize Wi-Fi controller");

loop {
Timer::after(Duration::from secs(1l)).await;

}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/38

https://bootlin.com

% Embassy tasks

#[embassy executor::task]
async fn keepalive message(timeout: Duration) {
loop {
info! ("Firmware is running...");
Timer::after(timeout) .await;

#[esp rtos::main]
async fn main(spawner: Spawner) -> ! {

let duration = Duration::from secs(5);
if let Err(e) = spawner.spawn(keepalive message(duration)) {
warn!("Failed to spawn the keepalive task: {e}");

}
loop {

Timer::after(Duration::from secs(1l)).await;
}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/38

https://bootlin.com

Embedded Linux and kernel engineering

Implementation

bootlin

% Basic wifi connection (1/2)

#[embassy executor::task]
async fn net task(mut runner: Runner<'static, WifiDevice<'static>>) {
runner.run().await

}

#[embassy executor::task]
async fn connection(mut controller: WifiController<'static>) {
loop {
if esp radio::wifi::sta state() == WifiStaState::Connected {
controller.wait for event(WifiEvent::StaDisconnected).await;
}
if !matches!(controller.is started(), Ok(true)) {
let client config = ModeConfig::Client(ClientConfig::default()
.with ssid("nb_ap".into())
.with password("nb apl4789".into()),
);
controller.set config(&client config).unwrap();
controller.start async().await.unwrap();

if let Err(e) = controller.connect async().await {
info! ("Failed to connect to wifi: {e:?}");

} else {
info! ("Wifi connected!");

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

12/38

https://bootlin.com

% Basic wifi connection (2/2)

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

/* L...1 */

let esp radio ctrl = &*mk static!(Controller<'static>, esp radio::init().unwrap());
let (controller, interfaces) = esp radio::wifi::new(&esp radio ctrl, peripherals.WIFI, Default::default()).unwrap();

let config = embassy net::Config::dhcpv4(Default::default());
let rng = Rng::new();
let seed = (rng.random() as u64) << 32 | rng.random() as u64;

let (stack, runner) = embassy net::new(interfaces.sta, config, mk static!(StackResources<3>, StackResources::<3>::new()),
seed);

spawner.spawn(connection(controller)).expect("Can not spawn net task");
spawner.spawn(net task(runner)).expect("Can not spawn wifi task");

while stack.config v4().is none() {
Timer::after(Duration::from millis(500)).await;

}

info! ("Buzzer connected to NBC");

loop { /* [...] */ }

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/38

https://bootlin.com

4@\/ False start

ESP-ROM:esp32c3-apil-20210207

Build:Feb 7 2021

rst:0x15 (USB_UART CHIP RESET),boot:0x9 (SPI_FAST FLASH BOOT)
Saved PC:0x40380862

SPIWP:0Oxee

mode:DIO0, clock div:2

load:0x3fcd5820,len:0x15c4

load:0x403cbf10, len:0xc84

load:0x403ce710, len:0x2fdO

entry 0x403cbfla

[...]

PANIC
panicked at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62:5:
Function called via syscall table is not implemented!

Backtrace:
0x42039cc8

esp_rom_sys::syscall::not_implemented
at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62

» reproducible with examples/wifi/embassy dhcp from esp-hal

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/38

https://bootlin.com

Implement __ _getreent in esp-rom-sys #4426 Newissue

© Closed

Jnees
Tropicao E .

[~ bugadani

Bug description

| am writing a custom firmware relying on a connection to a custom wireless Access point, and | observe that it systematically
crashes during the connection attempt:

About to connect...

is not

Backtrace:

0x4203a2f6
esp_rom_: 11: :not_implemented
at / eon-beat/

The weird thing is that it crashes only with my custom access point (configuration below): if | rather try to connect to my ISP box,
everything goes well. When trying to connect to my custom AP, instead of getting a connection failure in the logs, | have this panic,
which makes it difficult to investigate. | fortunately managed to reproduce it with the emb:

dnhcp example, in esp_hal on commit

My target is a Xiao ESP32C3. I'd gladly help to debug it furt but I'm still learning about the tooling.

Code with agent mode
To Reproduce 2

esp-rom-sys: Add very basic '__getreent’

= Start a basic host access point impl

network interface: usb dongle Tp-link AC1300 archer t3u+

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/38

https://github.com/esp-rs/esp-hal/issues/4426
https://bootlin.com

% Espressif chips ROM code

)

_ FLASH (firmware))

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

@6 Espressif chips ROM code

[ROM]
Your firmware (
can call ROM

functions \

\ FLASH (firmware) /

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

@6 Espressif chips ROM code

ROM

ROM code calls
Your firmware "syscalls" in your
can call ROM firmware too !
functions 3

_ FLASH (firmware) /

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

Espressif chips ROM code

ROM

Your firmware
can call ROM
functions

(

2

ROM code calls
"syscalls" in your
firmware too !

(

syscall table (esp-rom-sys)
- syscall_1(...);

- syscall _2(...);

- unimplemented -> panic!

- syscall_4(...);

- syscall _N(...)

3

\\

J

___ FLASH (firmware)

J

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

16/38

https://bootlin.com

% Espressif help

» after a few rounds on Github, and in a bit less than two weeks:

e jssue is identified in esp-rom-sys
e the (getreent syscall is implemented

* new tests show that malloc r and free r also need to be implemented

e finally:

ESP-ROM:esp32c3-apil-20210207
Build:Feb 7 2021
rst:0x15 (USB_UART CHIP RESET),boot:0x8 (SPI FAST FLASH BOOT)

looo
(1
(2

HH H H

]
14)
18)

(220)
(235)

I (235)

INFO
INFO
INFO
INFO
INFO

INFO

esp_image: segment 2: paddr=00030020 vaddr=42020020 size=71e68h (466536) map
esp_image: segment 3: paddr=000ale90 vaddr=3fc8a6al® size=00ffOh (4080) load
esp_image: segment 4: paddr=000a2e88 vaddr=40380000 size=09784h (38788) load
boot: Loaded app from partition at offset 0x10000

boot: Disabling RNG early entropy source...

IPv4: DOWN

- Waiting on link up...
- Waiting on link up...
- Waiting on link up...
- Waiting on link up...
INFO -
INFO -
- Wifi connected!
INFO -

link up = true
IPv4: DOWN

Buzzer connected to NBC

@bugadani
@JurajSadel
OMabezDev

| owe you a beer ¢

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

17/38

https://bootlin.com

4@\/ Targeting specific crates revisions

» fixes are merged but not released yet on crates.io
» no problem, we can use temporary remotes:

in Cargo.toml

[patch.crates-io]

esp-hal = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-rtos = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }
esp-bootloader-esp-idf = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151alb285665587a3d5dd" }
esp-alloc = { git "https://github.com/esp-rs/esp-hal", rev="223815270092663682al151alb285665587a3d5dd" }

esp-radio { git "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151al1b285665587a3d5dd" }

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/38

https://bootlin.com

% Basic socket management

loop {
/* Don't do this at home, please be gentle with your stack */
let mut rx buffer:[u8;512] = [0;512];
let mut tx buffer:[u8;512] = [0;512];

let mut socket = TcpSocket::new(stack, &mut rx buffer, &mut tx buffer);
socket.set timeout(Some(Duration::from secs(10)));
socket.set keep alive(Some(Duration::from secs(8)));
let remote = (Ipv4Addr::new(192, 168, 66, 1), 80);
let res = socket.connect(remote).await;
if let Err(e) = res {
error! ("Failed to connect to TCP server: {:?}", e);

continue;

}

while socket.state() == embassy net::tcp::State::Established {
info! ("Waiting for some data...");
Timer::after(Duration::from secs(5)).await;

}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/38

https://bootlin.com

% Rust inflexibitity strength

» many parts of the firwmare want to send/receive data
» but only one task can own the socket
» let's use channels to share the transport layer

Main task

y 4

1

Transport task

Polling
loop

socket

1

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/38

https://bootlin.com

_ First attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<NoopRawMutex, Command, 1>,

) {
loop {
match select(socket.read(&mut buf), tx chan.receive()).await {
Either::First(count) => {
info! ("Received {count} bytes");
7% laaall 5/
rx_chan.send(Command: :LedOn) .await;
},
Either::Second(status) => {
info! ("Sending {status} to NBC");
7% ool 5/
socket.write(&buf).await.expect("Failed to send message");
}
}
}
}

#[derive(Debug)]

enum Message {
Identify,
Buzz,

}

#[derive(Debug)]
enum Command {

LedOn,

LedOff,
}
let tx = Channel::new();
let rx = Channel::new();
spawner

.spawn(socket task(stack,
tx.receiver(),
rx.sender()))

.expect("Failed to spawn tcp task");

V0 oo llF/
tx.send(Message: :Identify).await;

Note the select call: socket.read() and tx chan.receive() return Futures ! We have to await them !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/38

https://bootlin.com

4@}50 it begins

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[EOQ726]: implicit elided lifetime not allowed here
--> src/main.rs:123:14

123 tx_chan: embassy sync::channel::Receiver<NoopRawMutex, Message, 1>,

help: indicate the anonymous lifetime
I

123 | tx _chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
| +++

error[EQ726]: implicit elided lifetime not allowed here
--> src/main.rs:124:14

124 rx_chan: embassy sync::channel::Sender<NoopRawMutex, Command, 1>,

help: indicate the anonymous lifetime

I
124 | rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,
| +++

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/38

https://bootlin.com

Q} Second attempt

#[embassy executor::task]
pub async fn socket task(
stack: embassy net::Stack,

tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

23/38

https://bootlin.com

4@} Second attempt

#[embassy executor::task]
pub async fn socket task(
stack: embassy net::Stack,

tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,
) {
/* [...1 */
}

Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error: Arguments for tasks must live forever. Try using the " ‘'static® lifetime.
--> src/main.rs:123:46

123 | tx_chan: embassy sync::channel::Receiver<' , NoopRawMutex, Message, 1>,

| AN

error: Arguments for tasks must live forever. Try using the "‘'static™ lifetime.
--> src/main.rs:124:44
I

124 | rx_chan: embassy sync::channel::Sender<' , NoopRawMutex, Command, 1>,

| AN

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/38

https://bootlin.com

Q} Third attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/38

https://bootlin.com

4@} Third attempt

#[embassy executor::task]

pub async fn socket task(
stack: embassy net::Stack,
tx_chan: embassy sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,
rx_chan: embassy sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[EO597]: "tx " does not live long enough
--> src/main.rs:98:35

95 | let tx = Channel::new();
| -- binding “tx' declared here

98

| .spawn(socket task(stack, tx.receiver(), rx.sender()))
| ___________________ R oo occooconoococooc0000000 0
I | I
| | borrowed value does not live long enough
| argument requires that "tx" is borrowed for " 'static®
[...]

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/38

https://bootlin.com

% Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1>
static RX: Channel<NoopRawMutex, Command, 1>

Channel::new();
Channel::new();

#[esp rtos::main]

async fn main(spawner: Spawner) -> ! {

/X L.001 %/

spawner
.spawn(socket task(stack, TX.receiver(), RX.sender()))
.expect("Failed to spawn tcp task");

TX.send(Message: :Buzz);

Hmmm, why did we decide to stop coding in C, again ?

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/38

https://bootlin.com

% Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();
static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp rtos::main]

async fn main(spawner: Spawner) -> ! {

7% aoall %7

spawner
.spawn(socket task(stack, TX.receiver(), RX.sender()))
.expect("Failed to spawn tcp task");

TX.send(Message: :Buzz);

Hmmm, why did we decide to stop coding in C, again ?

Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
error[E0277]1: “*mut () cannot be shared between threads safely
--> src/main.rs:51:12
I
51 | static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();
| AANANAANANANANNANANNANNNNANANNANN ¥ mut () cannot be shared between threads safely
I
= help: within “NoopRawMutex', the trait "Sync® is not implemented for “*mut ()°
note: required because it appears within the type “PhantomData<*mut ()>"
--> /home/alexis/src/rustup/toolchains/stable-x86 64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/marker.rs:822:12

|
822 | pub struct PhantomData<T: PointeeSized>;

I ANNANNNNANNNAN
note: required because it appears within the type “NoopRawMutex®
--> /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/embassy-sync-0.7.2/src/blocking mutex/raw.rs:70:12

|
70 | pub struct NoopRawMutex {

I AAAAAAAAAAAA

= note: required for “embassy sync::blocking mutex::Mutex<NoopRawMutex, RefCell<embassy sync::channel::ChannelState<Message, 1>>>" to implement “Sync’

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/38

https://bootlin.com

Q} Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>>
static RX: StaticCell<Channel<NoopRawMutex, Command, 1>>

StaticCell::new();
StaticCell::new();

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

let tx: &'static mut
let rx: &'static mut _
spawner
.spawn(socket task(stack, tx.receiver(), rx.sender()))
.expect("Failed to spawn tcp task");

TX.init(Channel: :new());
RX.init(Channel::new());

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/38

https://bootlin.com

4@\/ Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>>
static RX: StaticCell<Channel<NoopRawMutex, Command, 1>>

StaticCell::new();
StaticCell::new();

#[esp rtos::main]
async fn main(spawner: Spawner) -> | {

let tx: &'static mut
let rx: &'static mut _
spawner
.spawn(socket task(stack, tx.receiver(), rx.sender()))
.expect("Failed to spawn tcp task");

TX.init(Channel: :new());
RX.init (Channel: :new());

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)
Finished "dev’ profile [optimized + debuginfo] target(s) in 0.24s

Alleluia

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/38

https://bootlin.com

4@\/ Button management: finally something simple

use embassy sync::{blocking mutex::raw::NoopRawMutex, channel::Sender};
use esp _hal::gpio::{AnyPin, Input, InputConfig, Pull};
use log::info;

#[embassy executor::task]
pub async fn button task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {
let config = InputConfig::default().with pull(Pull::Up);
Llet mut button = Input::new(pin, config);
loop {
button.wait for falling edge().await;
info! ("Button pushed!");
sender.send(true).await;

» esp-hal exposes async APIs for GPIOs
» it even handles automatically interrupt configuration !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/38

https://bootlin.com

4@} Button management: finally something simple almost simple

const DEBOUNCE_MS: u64 = 100;

#[embassy executor::task]

pub async fn button task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {
let config = InputConfig::default().with pull(Pull::Up);
let mut pushed = false;
let mut button = Input::new(pin, config);

loop {
button.wait for falling edge().await;
if !pushed {
info! ("Button pushed!");
sender.send(true).await;
}

/* Quick and dirty deboucing, enough as long as we only need to
* detect single, short presses
*/

Timer::after millis(DEBOUNCE MS).await;

pushed = button.is low();

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/38

https://bootlin.com

4@} LED management

» WS2812 is controlled with a specific serial protocol
» Most ESP32 chips have a RMT peripheral available

* Generally used to control infrared transceivers

e disable carrier modulation, and voila, you know how to talk to a led

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/38

https://bootlin.com

4@} LED management

» WS2812 is controlled with a specific serial protocol
» Most ESP32 chips have a RMT peripheral available

* Generally used to control infrared transceivers

e disable carrier modulation, and voila, you know how to talk to a led

» Once again, let's benefit from existing crates:

cargo add smart-leds
cargo add esp-hal-smartled

use esp_hal smartled::{SmartLedsAdapterAsync, smart led buffer};
use smart leds::{RGB, brightness, SmartlLedsWriteAsync};

let mut buffer = smart led buffer!(1l);
let rmt = Rmt::new(peripherals.RMT, Rate::from mhz(80)).expect("Failed to initialize RMT controller");
let red: RGB<u8> = RGB::new(255, 0, 0);

let mut led = SmartLedsAdapterAsync::new(rmt.into async().channel®, peripherals.GPI03, &mut buffer);
led.write(brightness([red].into iter(), 255)).await.expect("Failed to set led on");

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/38

https://bootlin.com

4@} Exchanging messages with the NBC

» The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

» The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

» wouldn't it be nice to have a crate/framework to automatically {de}serialize
messages

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/38

https://bootlin.com

4@} Exchanging messages with the NBC

» The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

» The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

» wouldn't it be nice to have a crate/framework to automatically {de}serialize
messages

Time for some Serde goodness !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/38

https://bootlin.com

4@} Serde

» allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml...)
» you can also write your own {de}serializer

» serde: the main crate
e contains the Serialize and Deserialize traits
* able to handle plenty of standard types

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

4@} Serde

> allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml...)
» you can also write your own {de}serializer
» serde: the main crate
e contains the Serialize and Deserialize traits
e able to handle plenty of standard types
» serde json: a serde-based {de}serializer
e allows “anonymous” or “strongly types” deserialization
* depends on std by default
e can work without std, but still needs alloc

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

4@} Serde

» allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml..)
» you can also write your own {de}serializer
» serde: the main crate
e contains the Serialize and Deserialize traits
* able to handle plenty of standard types
» serde json: a serde-based {de}serializer
e allows “anonymous” or “strongly types” deserialization
* depends on std by default
e can work without std, but still needs alloc
» serde json core: a no_std, no alloc, serde-based {de}serializer
e only supports “strongly typed” deserialization
* does not handle as many types as full serde
* but hey, we're doing embedded development !

— cargo add serde && cargo add serde json core

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

Q} Handling status and commands (1/3)

"pattern":{
"type":"blink",
"details":{
"duration ms":1000,
"period ms":200,
"dc":0.5,
"color":{ f—
"h":125.0,
"s":1.0,
"v'":1.0

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow)]
pattern: MessagelLedType<'a>,

}

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: MessageledDetails,

}

#[derive(Deserialize, Debug)]
struct MessagelLedDetails {
duration ms: u32,
period ms: u32,
dc: 32,
color: MessagelLedColor,

}

#[derive(Deserialize, Debug)]
struct MessagelLedColor {

h: 32,
s: f32,
v: 32,

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/38

https://bootlin.com

4@} Handling status and commands (2/3)

» to parse a received command:

let cmd = serde json core::from slice::<MessageLedPattern>(&[..msg len])
if emd.is err() { /* [...]1 */ }
match cmd.pattern.r#type {

“blink" => { /* [...] */ },

"wave" => { /* [...] */ },

_={/*[...1 ¥/}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/38

https://bootlin.com

4@} Handling status and commands (2/3)

» to parse a received command:

let cmd = serde json core::from slice::<MessagelLedPattern>(&[..msg len])
if emd.is err() { /* [...]1 */ }
match cmd.pattern.r#type {

“blink" => { /* [...] */ },

"wave" => { /* [...] */ },

_={/*[...1 ¥/}

» to serialize a status:

let mut buffer = [u8;512];
let ident = StatusMessageData {

struct StatusMessageData<'a, 'b> { r#type: "identification",
r#type: &'a str, id: "deadbeefcafe"
id: &'b str, +
} if let Ok(count) = serde json core::to slice(&ident, &mut buffer) {
socket.write(buffer[..count])
}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/38

https://bootlin.com

_ Handling status and commands (3/3)

» But some messages have a slightly different format !
{"pattern":{"type":"blink", "details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/38

https://bootlin.com

_ Handling status and commands (3/3)

» But some messages have a slightly different format !

{"pattern":{"type":"blink", "details":{"duration ms":1000, "period ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow)]
pattern: MessageledType<'a>,

} }

#[derive(Deserialize, Debug)]

pub struct MessagelLedPattern<'a> {
#[serde(borrow)]
pattern: MessageledType<'a>,

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: MessageledDetails,

#[derive(Deserialize, Debug)]
struct MessagelLedType<'a> {
r#type: &'a str,
details: Option(MessagelLedDetails)

} }
if value.pattern.type != "off" {
let details = value.pattern.details.ok or(PatternError::MissingDetails)?;
A N
}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/38

https://bootlin.com

Embedded Linux and kernel engineering

Show time

bootlin

cargo run

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/38

https://bootlin.com

4@} Next steps and improvements

> final binary size (1.3MB)

» better websocket management

» more idiomatic error management
> tests !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/38

https://bootlin.com

Thank you!

Questions?

https://github.com /neon-beat/neon-beat-buzzer-fw.git

Alexis Lothoré
Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/38

https://github.com/neon-beat/neon-beat-buzzer-fw.git
https://bootlin.com/pub/conferences/
https://bootlin.com

	whoami
	Neon Beat
	The Buzzer
	The challenge: oxydizing the firmware
	High level SBOM
	From zero to a working setup
	Default code (simplified)
	Embassy tasks
	Basic wifi connection (1/2)
	Basic wifi connection (2/2)
	False start
	Calling for help
	Espressif chips ROM code
	Espressif help
	Targeting specific crates revisions
	Basic socket management
	Rust inflexibility strength
	First attempt
	So it begins
	Second attempt
	Third attempt
	Fourth attempt
	Fifth (and final) attempt
	Button management: finally something simple
	Button management: finally something simple almost simple
	LED management
	Exchanging messages with the NBC
	Serde
	Handling status and commands (1/3)
	Handling status and commands (2/3)
	Handling status and commands (3/3)
	Show time
	Next steps and improvements

