
Embedded Linux and kernel engineering

From C to Rust on the

ESP32: A Developper’s

Journey into no_std

Alexis Lothoré

FOSDEM 2026

© Copyright 2004-2026, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

whoami

‣ Alexis Lothoré

‣ Linux engineer and trainer @ Bootlin during the day
🞄 Engineering company specialized in Embedded Linux

and Zephyr

🞄 28 people, mostly in France

🞄 Very strong open-source focus

🞄 We are hiring, including interns

‣ Hacker at night
🞄 electronics

🞄 (embedded) software

🞄 CAO/3d printing

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/38

https://bootlin.com
https://bootlin.com

Embedded Linux and kernel engineering

The project: Neon Beat Buzzer

Neon Beat

‣ a custom Blind Test platform
🞄 each player or team gets a buzzer (physical button)

🞄 all buttons connect to the Neon Beat controller (NBC) hosting the game logic

🞄 a game master drives the game through a dedicated web interface

🞄 players can follow the game on a shared screen

🞄 players compete for the highest score

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/38

https://bootlin.com

The Buzzer

‣ custom electronics
🞄 core: Xiao esp32c3

🞄 battery: 3.7V lithium

battery, 320mAh

🞄 button: keyboard switch

🞄 led: WS2812

🞄 (coming soon: a proper

PCB)

‣ custom casing
🞄 current: FreeCAD + 3D

printing

🞄 WIP: wood work +

molding

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/38

https://bootlin.com

The challenge: oxydizing the firmware

‣ The buzzer already runs a full custom firmware based on

esp-idf (C)

‣ That’s a perfect sandbox to practice no_std Rust
🞄 Rust, but without alloc, the fancy types, filesystems,

concurrency, etc

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/38

https://bootlin.com

The challenge: oxydizing the firmware

‣ The buzzer already runs a full custom firmware based on

esp-idf (C)

‣ That’s a perfect sandbox to practice no_std Rust
🞄 Rust, but without alloc, the fancy types, filesystems,

concurrency, etc

‣ Expected outcome
🞄 Will the firmware become safe and bug-free ? => NO

🞄 Will the firmware become blazingly fast ? => NO

🞄 Will it be fun ? => LIKELY !

🞄 Will I learn things ? => DEFINITELY !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/38

https://bootlin.com

Embedded Linux and kernel engineering

Host and project setup

High level SBOM

‣ esp-hal crate
🞄 safe APIs for peripherals access

‣ esp_radio

🞄 exposes wifi/ble

🞄 needs esp-hal unstable feature

🞄 needs an alloc crate: esp-alloc

🞄 needs esp-rtos

‣ embassy to write async code
🞄 esp-rtos provides the glue between esp-hal and embassy

‣ plenty of docs and examples:
🞄 https://docs.espressif.com/projects/rust/

🞄 https://github.com/esp-rs/esp-hal/tree/main/examples#examples

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/38

https://docs.espressif.com/projects/rust/
https://github.com/esp-rs/esp-hal/tree/main/examples#examples
https://bootlin.com

From zero to a working setup

‣ get and run rustup (Rust programming language installer): http://rustup.rs
🞄 installs rust: rustc, stdlib, cargo, additional tooling

🞄 follow post-install instructions to correctly set ENV variables

‣ get esp-generate: cargo install esp-generate --locked
🞄 used to generate a project from a template

‣ run esp-generate to create your project. A TUI will guide you to select:
🞄 the platform (eg: esp32c3)

🞄 the wanted features

🞄 some extra tooling like esp-flash or esp-config

‣ and voila, you now have a ready-to-flash example:
🞄 cargo run

🞄 will automatically download the needed target toolchain variant

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/38

http://rustup.rs
https://bootlin.com

Default code (simplified)

#![no_std]

#![no_main]

#[panic_handler]

fn panic(_: &core::panic::PanicInfo) -> ! {

 loop {}

}

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

 let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());

 let peripherals = esp_hal::init(config);

 esp_rtos::start(timg0.timer0, sw_interrupt.software_interrupt0);

 let radio_init = esp_radio::init().expect("Failed to initialize Wi-Fi/BLE controller");

 let (mut _wifi_controller, _interfaces) = esp_radio::wifi::new(&radio_init, peripherals.WIFI, Default::default())

 .expect("Failed to initialize Wi-Fi controller");

 loop {

 Timer::after(Duration::from_secs(1)).await;

 }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/38

https://bootlin.com

Embassy tasks

#[embassy_executor::task]

async fn keepalive_message(timeout: Duration) {

 loop {

 info!("Firmware is running...");

 Timer::after(timeout).await;

 }

}

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

 let duration = Duration::from_secs(5);

 if let Err(e) = spawner.spawn(keepalive_message(duration)) {

 warn!("Failed to spawn the keepalive task: {e}");

 }

 loop {

 Timer::after(Duration::from_secs(1)).await;

 }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/38

https://bootlin.com

Embedded Linux and kernel engineering

Implementation

Basic wifi connection (1/2)

#[embassy_executor::task]

async fn net_task(mut runner: Runner<'static, WifiDevice<'static>>) {

 runner.run().await

}

#[embassy_executor::task]

async fn connection(mut controller: WifiController<'static>) {

 loop {

 if esp_radio::wifi::sta_state() == WifiStaState::Connected {

 controller.wait_for_event(WifiEvent::StaDisconnected).await;

 }

 if !matches!(controller.is_started(), Ok(true)) {

 let client_config = ModeConfig::Client(ClientConfig::default()

 .with_ssid("nb_ap".into())

 .with_password("nb_ap14789".into()),

);

 controller.set_config(&client_config).unwrap();

 controller.start_async().await.unwrap();

 }

 if let Err(e) = controller.connect_async().await {

 info!("Failed to connect to wifi: {e:?}");

 } else {

 info!("Wifi connected!");

 }

 }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/38

https://bootlin.com

Basic wifi connection (2/2)

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

 /* [...] */

 let esp_radio_ctrl = &*mk_static!(Controller<'static>, esp_radio::init().unwrap());

 let (controller, interfaces) = esp_radio::wifi::new(&esp_radio_ctrl, peripherals.WIFI, Default::default()).unwrap();

 let config = embassy_net::Config::dhcpv4(Default::default());

 let rng = Rng::new();

 let seed = (rng.random() as u64) << 32 | rng.random() as u64;

 let (stack, runner) = embassy_net::new(interfaces.sta, config, mk_static!(StackResources<3>, StackResources::<3>::new()),

 seed);

 spawner.spawn(connection(controller)).expect("Can not spawn net task");

 spawner.spawn(net_task(runner)).expect("Can not spawn wifi task");

 while stack.config_v4().is_none() {

 Timer::after(Duration::from_millis(500)).await;

 }

 info!("Buzzer connected to NBC");

 loop { /* [...] */ }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/38

https://bootlin.com

False start

ESP-ROM:esp32c3-api1-20210207

Build:Feb 7 2021

rst:0x15 (USB_UART_CHIP_RESET),boot:0x9 (SPI_FAST_FLASH_BOOT)

Saved PC:0x40380862

SPIWP:0xee

mode:DIO, clock div:2

load:0x3fcd5820,len:0x15c4

load:0x403cbf10,len:0xc84

load:0x403ce710,len:0x2fd0

entry 0x403cbf1a

[...]

====================== PANIC ======================

panicked at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62:5:

Function called via syscall table is not implemented!

Backtrace:

0x42039cc8

esp_rom_sys::syscall::not_implemented

 at /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/esp-rom-sys-0.1.3/src/syscall/mod.rs:62

‣ reproducible with examples/wifi/embassy_dhcp from esp-hal

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/38

https://bootlin.com

Calling for help

https://github.com/esp-rs/esp-hal/issues/4426

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/38

https://github.com/esp-rs/esp-hal/issues/4426
https://bootlin.com

Espressif chips ROM code

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

Espressif chips ROM code

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

Espressif chips ROM code

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

Espressif chips ROM code

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/38

https://bootlin.com

Espressif help

‣ after a few rounds on Github, and in a bit less than two weeks:
🞄 issue is identified in esp-rom-sys

🞄 the __getreent syscall is implemented

🞄 new tests show that _malloc_r and _free_r also need to be implemented

🞄 finally:

ESP-ROM:esp32c3-api1-20210207

Build:Feb 7 2021

rst:0x15 (USB_UART_CHIP_RESET),boot:0x8 (SPI_FAST_FLASH_BOOT)

[...]

I (114) esp_image: segment 2: paddr=00030020 vaddr=42020020 size=71e68h (466536) map

I (218) esp_image: segment 3: paddr=000a1e90 vaddr=3fc8a6a0 size=00ff0h (4080) load

I (220) esp_image: segment 4: paddr=000a2e88 vaddr=40380000 size=09784h (38788) load

I (235) boot: Loaded app from partition at offset 0x10000

I (235) boot: Disabling RNG early entropy source...

INFO - IPv4: DOWN

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - Waiting on link up...

INFO - link_up = true

INFO - IPv4: DOWN

INFO - Wifi connected!

INFO - Buzzer connected to NBC

@bugadani

@JurajSadel

@MabezDev

I owe you a beer 🍻

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/38

https://bootlin.com

Targeting specific crates revisions

‣ fixes are merged but not released yet on crates.io

‣ no problem, we can use temporary remotes:

in Cargo.toml

[patch.crates-io]

esp-hal = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-rtos = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-bootloader-esp-idf = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-alloc = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

esp-radio = { git = "https://github.com/esp-rs/esp-hal", rev="223815270092663682a151a1b285665587a3d5dd" }

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/38

https://bootlin.com

Basic socket management

loop {

 /* Don't do this at home, please be gentle with your stack */

 let mut rx_buffer:[u8;512] = [0;512];

 let mut tx_buffer:[u8;512] = [0;512];

 let mut socket = TcpSocket::new(stack, &mut rx_buffer, &mut tx_buffer);

 socket.set_timeout(Some(Duration::from_secs(10)));

 socket.set_keep_alive(Some(Duration::from_secs(8)));

 let remote = (Ipv4Addr::new(192, 168, 66, 1), 80);

 let res = socket.connect(remote).await;

 if let Err(e) = res {

 error!("Failed to connect to TCP server: {:?}", e);

 continue;

 }

 while socket.state() == embassy_net::tcp::State::Established {

 info!("Waiting for some data...");

 Timer::after(Duration::from_secs(5)).await;

 }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/38

https://bootlin.com

Rust inflexibility strength

‣ many parts of the firwmare want to send/receive data

‣ but only one task can own the socket

‣ let’s use channels to share the transport layer

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/38

https://bootlin.com

First attempt

#[embassy_executor::task]

pub async fn socket_task(

 stack: embassy_net::Stack,

 tx_chan: embassy_sync::channel::Receiver<NoopRawMutex, Message, 1>,

 rx_chan: embassy_sync::channel::Sender<NoopRawMutex, Command, 1>,

) {

 loop {

 match select(socket.read(&mut buf), tx_chan.receive()).await {

 Either::First(count) => {

 info!("Received {count} bytes");

 /* [...] */

 rx_chan.send(Command::LedOn).await;

 },

 Either::Second(status) => {

 info!("Sending {status} to NBC");

 /* [...] */

 socket.write(&buf).await.expect("Failed to send message");

 }

 }

 }

}

#[derive(Debug)]

enum Message {

 Identify,

 Buzz,

}

#[derive(Debug)]

enum Command {

 LedOn,

 LedOff,

}

let tx = Channel::new();

let rx = Channel::new();

spawner

 .spawn(socket_task(stack,

 tx.receiver(),

 rx.sender()))

 .expect("Failed to spawn tcp task");

/*[...]*/

tx.send(Message::Identify).await;

Note the select call: socket.read() and tx_chan.receive() return Futures ! We have to await them !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/38

https://bootlin.com

So it begins

 Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0726]: implicit elided lifetime not allowed here

 --> src/main.rs:123:14

 |

123 | tx_chan: embassy_sync::channel::Receiver<NoopRawMutex, Message, 1>,

 | ^^^ expected lifetime parameter

 |

help: indicate the anonymous lifetime

 |

123 | tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

 | +++

error[E0726]: implicit elided lifetime not allowed here

 --> src/main.rs:124:14

 |

124 | rx_chan: embassy_sync::channel::Sender<NoopRawMutex, Command, 1>,

 | ^^^ expected lifetime parameter

 |

help: indicate the anonymous lifetime

 |

124 | rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

 | +++

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/38

https://bootlin.com

Second attempt

#[embassy_executor::task]

pub async fn socket_task(

 stack: embassy_net::Stack,

 tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

 rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

) {

 /* [...] */

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/38

https://bootlin.com

Second attempt

#[embassy_executor::task]

pub async fn socket_task(

 stack: embassy_net::Stack,

 tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

 rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

) {

 /* [...] */

}

 Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error: Arguments for tasks must live forever. Try using the `'static` lifetime.

 --> src/main.rs:123:46

 |

123 | tx_chan: embassy_sync::channel::Receiver<'_, NoopRawMutex, Message, 1>,

 | ^^

error: Arguments for tasks must live forever. Try using the `'static` lifetime.

 --> src/main.rs:124:44

 |

124 | rx_chan: embassy_sync::channel::Sender<'_, NoopRawMutex, Command, 1>,

 | ^^

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/38

https://bootlin.com

Third attempt

#[embassy_executor::task]

pub async fn socket_task(

 stack: embassy_net::Stack,

 tx_chan: embassy_sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,

 rx_chan: embassy_sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

) {

 /* [...] */

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/38

https://bootlin.com

Third attempt

#[embassy_executor::task]

pub async fn socket_task(

 stack: embassy_net::Stack,

 tx_chan: embassy_sync::channel::Receiver<'static, NoopRawMutex, Message, 1>,

 rx_chan: embassy_sync::channel::Sender<'static, NoopRawMutex, Command, 1>,

) {

 /* [...] */

}

 Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0597]: `tx` does not live long enough

 --> src/main.rs:98:35

 |

 95 | let tx = Channel::new();

 | -- binding `tx` declared here

...

 98 | .spawn(socket_task(stack, tx.receiver(), rx.sender()))

 | -------------------^^-------------------------

 | | |

 | | borrowed value does not live long enough

 | argument requires that `tx` is borrowed for `'static`

[...]

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/38

https://bootlin.com

Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

/* [...] */

spawner

 .spawn(socket_task(stack, TX.receiver(), RX.sender()))

 .expect("Failed to spawn tcp task");

TX.send(Message::Buzz);

Hmmm, why did we decide to stop coding in C, again ?

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/38

https://bootlin.com

Fourth attempt

static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

static RX: Channel<NoopRawMutex, Command, 1> = Channel::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

/* [...] */

spawner

 .spawn(socket_task(stack, TX.receiver(), RX.sender()))

 .expect("Failed to spawn tcp task");

TX.send(Message::Buzz);

Hmmm, why did we decide to stop coding in C, again ?

 Checking neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

error[E0277]: `*mut ()` cannot be shared between threads safely

 --> src/main.rs:51:12

 |

 51 | static TX: Channel<NoopRawMutex, Message, 1> = Channel::new();

 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `*mut ()` cannot be shared between threads safely

 |

 = help: within `NoopRawMutex`, the trait `Sync` is not implemented for `*mut ()`

note: required because it appears within the type `PhantomData<*mut ()>`

 --> /home/alexis/src/rustup/toolchains/stable-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/marker.rs:822:12

 |

822 | pub struct PhantomData<T: PointeeSized>;

 | ^^^^^^^^^^^

note: required because it appears within the type `NoopRawMutex`

 --> /home/alexis/src/cargo/registry/src/index.crates.io-1949cf8c6b5b557f/embassy-sync-0.7.2/src/blocking_mutex/raw.rs:70:12

 |

 70 | pub struct NoopRawMutex {

 | ^^^^^^^^^^^^

 = note: required for `embassy_sync::blocking_mutex::Mutex<NoopRawMutex, RefCell<embassy_sync::channel::ChannelState<Message, 1>>>` to implement `Sync`

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/38

https://bootlin.com

Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>> = StaticCell::new();

static RX: StaticCell<Channel<NoopRawMutex, Command, 1>> = StaticCell::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

let tx: &'static mut _ = TX.init(Channel::new());

let rx: &'static mut _ = RX.init(Channel::new());

spawner

 .spawn(socket_task(stack, tx.receiver(), rx.sender()))

 .expect("Failed to spawn tcp task");

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/38

https://bootlin.com

Fifth (and final) attempt

static TX: StaticCell<Channel<NoopRawMutex, Message, 1>> = StaticCell::new();

static RX: StaticCell<Channel<NoopRawMutex, Command, 1>> = StaticCell::new();

#[esp_rtos::main]

async fn main(spawner: Spawner) -> ! {

let tx: &'static mut _ = TX.init(Channel::new());

let rx: &'static mut _ = RX.init(Channel::new());

spawner

 .spawn(socket_task(stack, tx.receiver(), rx.sender()))

 .expect("Failed to spawn tcp task");

Compiling neon-beat-buzzer v0.1.0 (/home/alexis/src/neon-beat/neon-beat-buzzer)

 Finished `dev` profile [optimized + debuginfo] target(s) in 0.24s

Alleluia

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/38

https://bootlin.com

Button management: finally something simple

use embassy_sync::{blocking_mutex::raw::NoopRawMutex, channel::Sender};

use esp_hal::gpio::{AnyPin, Input, InputConfig, Pull};

use log::info;

#[embassy_executor::task]

pub async fn button_task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {

 let config = InputConfig::default().with_pull(Pull::Up);

 let mut button = Input::new(pin, config);

 loop {

 button.wait_for_falling_edge().await;

 info!("Button pushed!");

 sender.send(true).await;

 }

}

‣ esp-hal exposes async APIs for GPIOs

‣ it even handles automatically interrupt configuration !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/38

https://bootlin.com

Button management: finally something simple almost simple

const DEBOUNCE_MS: u64 = 100;

#[embassy_executor::task]

pub async fn button_task(pin: AnyPin<'static>, sender: Sender<'static, NoopRawMutex, bool, 1>) {

 let config = InputConfig::default().with_pull(Pull::Up);

 let mut pushed = false;

 let mut button = Input::new(pin, config);

 loop {

 button.wait_for_falling_edge().await;

 if !pushed {

 info!("Button pushed!");

 sender.send(true).await;

 }

 /* Quick and dirty deboucing, enough as long as we only need to

 * detect single, short presses

 */

 Timer::after_millis(DEBOUNCE_MS).await;

 pushed = button.is_low();

 }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/38

https://bootlin.com

LED management

‣ WS2812 is controlled with a specific serial protocol

‣ Most ESP32 chips have a RMT peripheral available
🞄 Generally used to control infrared transceivers

🞄 disable carrier modulation, and voila, you know how to talk to a led

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/38

https://bootlin.com

LED management

‣ WS2812 is controlled with a specific serial protocol

‣ Most ESP32 chips have a RMT peripheral available
🞄 Generally used to control infrared transceivers

🞄 disable carrier modulation, and voila, you know how to talk to a led

‣ Once again, let’s benefit from existing crates:

cargo add smart-leds

cargo add esp-hal-smartled

use esp_hal_smartled::{SmartLedsAdapterAsync, smart_led_buffer};

use smart_leds::{RGB, brightness, SmartLedsWriteAsync};

let mut buffer = smart_led_buffer!(1);

let rmt = Rmt::new(peripherals.RMT, Rate::from_mhz(80)).expect("Failed to initialize RMT controller");

let red: RGB<u8> = RGB::new(255, 0, 0);

let mut led = SmartLedsAdapterAsync::new(rmt.into_async().channel0, peripherals.GPIO3, &mut buffer);

led.write(brightness([red].into_iter(), 255)).await.expect("Failed to set led on");

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/38

https://bootlin.com

Exchanging messages with the NBC

‣ The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

‣ The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

‣ wouldn’t it be nice to have a crate/framework to automatically {de}serialize

messages ?

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/38

https://bootlin.com

Exchanging messages with the NBC

‣ The buzzer sends status messages to the controller:

{"type":"identification","id":"64e833b6ab18"}

‣ The controller send LED commands over websocket as json payloads:

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

‣ wouldn’t it be nice to have a crate/framework to automatically {de}serialize

messages ?

Time for some Serde goodness !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/38

https://bootlin.com

Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types

‣ serde_json: a serde-based {de}serializer
🞄 allows “anonymous” or “strongly types” deserialization

🞄 depends on std by default

🞄 can work without std, but still needs alloc

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

Serde

‣ allows {de}serializing plenty of standard formats (json, CBOR, Yaml, CSV, toml…)

‣ you can also write your own {de}serializer

‣ serde: the main crate
🞄 contains the Serialize and Deserialize traits

🞄 able to handle plenty of standard types

‣ serde_json: a serde-based {de}serializer
🞄 allows “anonymous” or “strongly types” deserialization

🞄 depends on std by default

🞄 can work without std, but still needs alloc

‣ serde_json_core: a no_std, no alloc, serde-based {de}serializer
🞄 only supports “strongly typed” deserialization

🞄 does not handle as many types as full serde

🞄 but hey, we’re doing embedded development !

⇒ cargo add serde && cargo add serde_json_core

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/38

https://bootlin.com

Handling status and commands (1/3)

{

 "pattern":{

 "type":"blink",

 "details":{

 "duration_ms":1000,

 "period_ms":200,

 "dc":0.5,

 "color":{

 "h":125.0,

 "s":1.0,

 "v":1.0

 }

 }

 }

}

⇒

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

 #[serde(borrow)]

 pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

 r#type: &'a str,

 details: MessageLedDetails,

}

#[derive(Deserialize, Debug)]

struct MessageLedDetails {

 duration_ms: u32,

 period_ms: u32,

 dc: f32,

 color: MessageLedColor,

}

#[derive(Deserialize, Debug)]

struct MessageLedColor {

 h: f32,

 s: f32,

 v: f32,

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/38

https://bootlin.com

Handling status and commands (2/3)

‣ to parse a received command:

let cmd = serde_json_core::from_slice::<MessageLedPattern>(&[..msg_len])

if cmd.is_err() { /* [...] */ }

match cmd.pattern.r#type {

 "blink" => { /* [...] */ },

 "wave" => { /* [...] */ },

 _ => { /* [...] */ }

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/38

https://bootlin.com

Handling status and commands (2/3)

‣ to parse a received command:

let cmd = serde_json_core::from_slice::<MessageLedPattern>(&[..msg_len])

if cmd.is_err() { /* [...] */ }

match cmd.pattern.r#type {

 "blink" => { /* [...] */ },

 "wave" => { /* [...] */ },

 _ => { /* [...] */ }

}

‣ to serialize a status:

struct StatusMessageData<'a, 'b> {

 r#type: &'a str,

 id: &'b str,

}

let mut buffer = [u8;512];

let ident = StatusMessageData {

 r#type: "identification",

 id: "deadbeefcafe"

};

if let Ok(count) = serde_json_core::to_slice(&ident, &mut buffer) {

 socket.write(buffer[..count])

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/38

https://bootlin.com

Handling status and commands (3/3)

‣ But some messages have a slightly different format !

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/38

https://bootlin.com

Handling status and commands (3/3)

‣ But some messages have a slightly different format !

{"pattern":{"type":"blink","details":{"duration_ms":1000,"period_ms":200,"dc":0.5,"color":{"h":125.0,"s":1.0,"v":1.0}}}}

{"pattern":{"type":"off"}}

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

 #[serde(borrow)]

 pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

 r#type: &'a str,

 details: MessageLedDetails,

}

⇒

#[derive(Deserialize, Debug)]

pub struct MessageLedPattern<'a> {

 #[serde(borrow)]

 pattern: MessageLedType<'a>,

}

#[derive(Deserialize, Debug)]

struct MessageLedType<'a> {

 r#type: &'a str,

 details: Option(MessageLedDetails)

}

if value.pattern.type != "off" {

 let details = value.pattern.details.ok_or(PatternError::MissingDetails)?;

 /* [...] */

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/38

https://bootlin.com

Embedded Linux and kernel engineering

Show time

Show time

cargo run

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/38

https://bootlin.com

Next steps and improvements

‣ final binary size (1.3MB 😳)

‣ better websocket management

‣ more idiomatic error management

‣ tests !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/38

https://bootlin.com

Thank you!
Questions?

https://github.com/neon-beat/neon-beat-buzzer-fw.git

Alexis Lothoré

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/38

https://github.com/neon-beat/neon-beat-buzzer-fw.git
https://bootlin.com/pub/conferences/
https://bootlin.com

	whoami
	Neon Beat
	The Buzzer
	The challenge: oxydizing the firmware
	High level SBOM
	From zero to a working setup
	Default code (simplified)
	Embassy tasks
	Basic wifi connection (1/2)
	Basic wifi connection (2/2)
	False start
	Calling for help
	Espressif chips ROM code
	Espressif help
	Targeting specific crates revisions
	Basic socket management
	Rust inflexibility strength
	First attempt
	So it begins
	Second attempt
	Third attempt
	Fourth attempt
	Fifth (and final) attempt
	Button management: finally something simple
	Button management: finally something simple almost simple
	LED management
	Exchanging messages with the NBC
	Serde
	Handling status and commands (1/3)
	Handling status and commands (2/3)
	Handling status and commands (3/3)
	Show time
	Next steps and improvements

