
Embedded Linux and kernel engineering

Linux Power Management
Features, Part 2
Théo Lebrun
theo.lebrun@bootlin.com

Embedded Linux Conference
Europe 2025

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Théo Lebrun

‣ Embedded Linux engineer and trainer at Bootlin
‣ Joined Bootlin in 2022, following an internship

🞄 Linux kernel driver development on embedded systems
■ Suspend-to-RAM for TI J7200 SoC
■ Upstreaming of Mobileye SoCs

🞄 PipeWire ecosystem
🞄 Open-source focus

‣ Current maintainer of elixir.bootlin.com
‣ Living in Lyon, not-south-nor-north east of France
‣ theo.lebrun@bootlin.com

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/34

https://elixir.bootlin.com/
mailto:theo.lebrun@bootlin.com
https://bootlin.com

Agenda

Audience: kernel driver developers
Goal: spread the word about existing device PM APIs

Covered last year:
‣ System-wide suspend
‣ Runtime power management
‣ Interactions between the two

This year:
1. How to reason about PM?
2. Linux PM features

‣ Runtime PM features
‣ Power domains
‣ PM QoS

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/34

https://bootlin.com

Embedded Linux and kernel engineering

How to reason about PM?

How to reason about PM?

‣ What is it?
🞄 Turning off unneeded hardware capabilities
🞄 Or slowing it down

‣ Why we care?
🞄 Mostly to last longer on batteries

‣ How to do it?
🞄 It is a tradeoff
🞄 Either hardware resources are available now
🞄 Or they are accessible after some latency amount

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/34

https://bootlin.com

How to reason about PM?

‣ Is it complex?
🞄 Yes

‣ Throttling makes this more than a one dimension axis
🞄 HW is running at reduced speed
🞄 Do you keep it as is when a request comes in?
🞄 Or you pay the transition cost to get full HW capabilities?

‣ Decisions are platform dependent
🞄 What can your hardware do?
🞄 What is most efficient?
🞄 Slow and steady? Race to halt?

‣ Decisions are project dependent
🞄 What is your workload?
🞄 Can you measure it?
🞄 What is acceptable?

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/34

https://bootlin.com

How to reason about PM?

‣ Some more issues?
🞄 Yes

‣ Making non-platform specific code is hard
🞄 For a given device, each resource can be in a few different states
🞄 Platform state is exponentially large
🞄 Current solution: under-define power states
🞄 Example: network switch over PCI. What does “it is runtime suspended” mean?

‣ The “we aren’t alone” problem
🞄 Boards aren’t single-CPU anymore
🞄 Sharing resources is hard
🞄 Don’t assume we have full knowledge
🞄 Don’t assume we are making decisions

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/34

https://bootlin.com

Embedded Linux and kernel engineering

Runtime PM

Runtime PM: introduction

‣ Per device operations
‣ Suspend & resume
‣ Refcount-based
‣ Tree device hierarchy

include/linux/pm.h

// Device API
struct dev_pm_ops {
 /* Device is active but not needed anymore. */
 int (*runtime_suspend)(struct device *dev);
 /* Device is suspended but needed. */
 int (*runtime_resume)(struct device *dev);
 /* ... */
};

include/linux/pm_runtime.h

// Consumer API
void pm_runtime_enable(struct device *dev);
void pm_runtime_disable(struct device *dev);
int pm_runtime_get(struct device *dev);
int pm_runtime_get_sync(struct device *dev);
int pm_runtime_put(struct device *dev);
int pm_runtime_put_sync(struct device *dev);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/34

https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm.h#L286
https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm_runtime.h#L73
https://bootlin.com

Runtime PM: dummy example

static int x_probe(struct platform_device *pdev)
{
 pm_runtime_enable(&pdev->dev);
 pm_runtime_get_sync(&pdev->dev);
 return 0;
}

static int x_runtime_suspend(struct device *dev) { /* ... */ }
static int x_runtime_resume(struct device *dev) { /* ... */ }

static const struct dev_pm_ops x_dev_pm_ops = {
 RUNTIME_PM_OPS(x_runtime_suspend, x_runtime_resume, NULL)
};

static struct platform_driver x_driver = {
 .probe = x_probe,
 .driver.pm = pm_ptr(&x_dev_pm_ops),
};
module_platform_driver(x_driver);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/34

https://bootlin.com

Runtime PM without callbacks

‣ What about runtime PM without callbacks registered?

static int x_probe(struct platform_device *pdev)
{
 pm_runtime_enable(&pdev->dev);
 pm_runtime_get_sync(&pdev->dev);
 return 0;
}

static struct platform_driver x_driver = {
 .probe = x_probe,
};
module_platform_driver(x_driver);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/34

https://bootlin.com

Runtime PM without callbacks: device model hierarchy

‣ First reason: waking up the device model hierarchy

‣ Apart from calling callbacks, runtime PM has other side effects:
parent devices might? get resumed as pm_runtime_get(dev) calls
pm_runtime_get(dev->parent)
🞄 ? not if parent is already active
🞄 ? not if parent is disabled
🞄 ? not if parent ignores his children

‣ The parent refcount, dev->power.usage_count, is always incremented however

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/34

https://bootlin.com

Runtime PM without callbacks: device model hierarchy

‣ Example: dw_spi_pci, a SPI controller driver on the PCI bus.
‣ It has no ->runtime_suspend|resume() callbacks.

drivers/spi/spi-dw-pci.c

static SIMPLE_DEV_PM_OPS(dw_spi_pci_pm_ops, dw_spi_pci_suspend, dw_spi_pci_resume);

static struct pci_driver dw_spi_pci_driver = {
 .name = DRIVER_NAME,
 .id_table = dw_spi_pci_ids,
 .probe = dw_spi_pci_probe,
 .remove = dw_spi_pci_remove,
 .driver = {
 .pm = &dw_spi_pci_pm_ops,
 },
};
module_pci_driver(dw_spi_pci_driver);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/34

https://elixir.bootlin.com/linux/v6.16.2/source/drivers/spi/spi-dw-pci.c#L200
https://bootlin.com

Runtime PM without callbacks: device model hierarchy

‣ It asks the SPI subsystem to do runtime PM operations on its behalf.

drivers/spi/spi-dw-core.c

struct spi_controller *host = spi_alloc_host(dev, 0);
if (!host)
 return -ENOMEM;

// ...
host->max_speed_hz = dws->max_freq;
host->flags = SPI_CONTROLLER_GPIO_SS;
host->auto_runtime_pm = true;
// ...

ret = spi_register_controller(host);
if (ret) {
 dev_err_probe(dev, ret, "problem registering spi host\n");
 goto err_dma_exit;
}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/34

https://elixir.bootlin.com/linux/v6.16.2/source/drivers/spi/spi-dw-core.c#L954
https://bootlin.com

Runtime PM without callbacks: device model hierarchy

‣ And finishes its probe by enabling runtime PM.

drivers/spi/spi-dw-pci.c

static int dw_spi_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
 // ...

 pm_runtime_set_autosuspend_delay(&pdev->dev, 1000);
 pm_runtime_use_autosuspend(&pdev->dev);
 pm_runtime_put_autosuspend(&pdev->dev);
 pm_runtime_allow(&pdev->dev);

 return 0;

err_free_irq_vectors:
 pci_free_irq_vectors(pdev);
 return ret;
}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/34

https://elixir.bootlin.com/linux/v6.16.2/source/drivers/spi/spi-dw-pci.c#L140
https://bootlin.com

Runtime PM without callbacks: device model hierarchy

‣ Conclusion?
🞄 dw_spi_pci asks its framework subsystem (SPI) to pm_runtime_get|put() automatically

on requests.
🞄 This in turn signals to parent devices, ie the PCI bus controller, when the bus can be

safely shut down.
🞄 Autosuspend will kick in to delay the suspend. This minimises wasteful suspend/resume

cycles during bursts of operations. Parent might have its own autosuspend delay.

‣ No ->runtime_suspend|resume() implementation required inside dw_spi_pci.

‣ Remember the device model is recursive.
Think GPIO expander over I2C over USB over PCI over platform bus.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/34

https://bootlin.com

Runtime PM without callbacks: device links

‣ Second reason: trigger implicit behavior reacting to runtime PM refcount.

‣ That is done through struct device_link with DL_FLAG_PM_RUNTIME.
See also DL_FLAG_RPM_ACTIVE.

‣ Example usage:

drivers/net/phy/phy_device.c

/**
 * If the external phy used by current mac interface is managed by
 * another mac interface, so we should create a device link between
 * phy dev and mac dev.
 */
if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/DL_FLAG_PM_RUNTIME
https://elixir.bootlin.com/linux/v6.16.2/A/ident/DL_FLAG_RPM_ACTIVE
https://elixir.bootlin.com/linux/v6.16.2/source/drivers/net/phy/phy_device.c#L1644
https://bootlin.com

Runtime PM without callbacks: device links

‣ Subsystem using device links with DL_FLAG_PM_RUNTIME are:

🞄 drivers/net/phy/ for attaching MAC0 to MAC1 if MAC0 uses MAC1′s PHY;
🞄 pinctrl supports linking pin controllers to all their consumers; the flag link_consumers is

used by pinctrl-stmfx.c and stm32/pinctrl-stm32.c;
🞄 pci for attaching quirked multi-function devices together;
🞄 dev->dev_pm_domain;
🞄 pmdomain, ie Generic PM Domain;
🞄 ~36 drivers calling it directly.

I was starting to pull this, and then tried to figure out
what the heck “genpd” is.

— Linus

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/DL_FLAG_PM_RUNTIME
https://elixir.bootlin.com/linux/v6.16.2/A/ident/link_consumers
https://lore.kernel.org/lkml/CAHk-=wg0gc4Cc90OL29Vr5gDtd4mnsKD+TxtoNtQbAryaWHkZQ@mail.gmail.com/
https://bootlin.com

Embedded Linux and kernel engineering

Power domains

Power domains: dev_pm_domain

‣ dev_pm_domain is a field inside struct device.
‣ It got introduced prior to the Git history.
‣ Of interest to us are dev->dev_pm_domain.ops.runtime_suspend|resume().

include/linux/pm.h

struct dev_pm_domain {
 struct dev_pm_ops ops;
 int (*start)(struct device *dev);
 void (*detach)(struct device *dev, bool power_off);
 int (*activate)(struct device *dev);
 void (*sync)(struct device *dev);
 void (*dismiss)(struct device *dev);
 int (*set_performance_state)(struct device *dev, unsigned int state);
};

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/34

https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm.h#L743
https://bootlin.com

Power domains: dev_pm_domain

Limitations of dev_pm_domain:

‣ One domain per device.

‣ Not straight-forward to implement.

‣ Not fitting the object model.
🞄 The domain is not a device and,
🞄 No device is marked as providing the domain.

‣ It therefore cannot fit in with hardware description (ie devicetree).

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/34

https://bootlin.com

Power domains: pmdomain

‣ Limitations are addressed by pmdomain, a subsystem that is implemented by
piggybacking on dev->dev_pm_domain. It used to be called genpd.

‣ Upstreamed by Rafael J. Wysocki in July 2011.

‣ Providers must register themselves:

include/linux/pm_domain.h

int of_genpd_add_provider_simple(struct device_node *np,
 struct generic_pm_domain *genpd);
int of_genpd_add_provider_onecell(struct device_node *np,
 struct genpd_onecell_data *data);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/34

https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm_domain.h#L421
https://bootlin.com

Power domains: pmdomain

‣ Consumers aren’t expected to use an API (other than runtime suspend/resume);
binding is done through devicetree properties & phandles (pinctrl style).

arch/arm64/boot/dts/ti/k3-j7200-mcu-wakeup.dtsi

k3_pds: power-controller {
 compatible = "ti,sci-pm-domain";
 #power-domain-cells = <2>;
 bootph-all;
};

wkup_vtm0: temperature-sensor@42040000 {
 compatible = "ti,j7200-vtm";
 reg = <0x00 0x42040000 0x00 0x350>,
 <0x00 0x42050000 0x00 0x350>;
 power-domains = <&k3_pds 154 TI_SCI_PD_EXCLUSIVE>;
 #thermal-sensor-cells = <1>;
 bootph-pre-ram;
};

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/34

https://elixir.bootlin.com/linux/v6.16.2/source/arch/arm64/boot/dts/ti/k3-j7200-mcu-wakeup.dtsi#L21
https://bootlin.com

Power domains: pmdomain

commit 17f88151ff190b9357f473d7704eee7ae3097d11
Author: Franklin S Cooper Jr <fcooper@ti.com>
Date: Mon Sep 11 15:11:44 2017 -0500

 i2c: davinci: Add PM Runtime Support

 66AK2G has I2C instances that are not apart of the ALWAYS_ON power domain
 unlike other Keystone 2 SoCs and OMAPL138. Therefore, pm_runtime
 is required to insure the power domain used by the specific I2C instance is
 properly turned on along with its functional clock.

 Signed-off-by: Franklin S Cooper Jr <fcooper@ti.com>
 Acked-by: Sekhar Nori <nsekhar@ti.com>
 Signed-off-by: Wolfram Sang <wsa@the-dreams.de>

 drivers/i2c/busses/i2c-davinci.c | 67 +++++++++++++++++++++++++++++++++-------
 1 file changed, 55 insertions(+), 12 deletions(-)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/34

https://bootlin.com

Power domains: pmdomain

‣ Mainly, a pmdomain is two callbacks; power-on and power-off.

‣ Power-on is called implicitly when going from zero consumer devices active to one.

‣ Power-off is called whenever all devices inside the domain are runtime suspended.

include/linux/pm_domain.h

struct generic_pm_domain {
 struct device dev;
 struct dev_pm_domain domain; /* PM domain operations */
 // ...
 int (*power_off)(struct generic_pm_domain *domain);
 int (*power_on)(struct generic_pm_domain *domain);
 // ...
};

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/34

https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm_domain.h#L168
https://bootlin.com

Power domains: pmdomain

Benefits of pmdomain compared to raw dev->dev_pm_domain:

‣ Straight forward to implement (example: imx/imx93-pd.c).
‣ Fitting the object model: provider is an identified device.
‣ Mark resources inside devicetree (as it should be).
‣ Still one domain per device but we can implement domain hierarchy.

🞄 Kevin Hilman has a series to add support for it in DT.
🞄 Issue with flat firmware-provided PM domains, as scmi.

‣ Zero code inside ->runtime_suspend|resume() for consumers.
🞄 Transparent to consumer drivers, if they do runtime PM.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/34

https://elixir.bootlin.com/linux/v6.16.2/source/drivers/pmdomain/imx/imx93-pd.c
https://lore.kernel.org/all/20250613-pmdomain-hierarchy-onecell-v3-1-5c770676fce7@baylibre.com/
https://bootlin.com

Power domains: pmdomain

Some more pmdomain features:

‣ GENPD_FLAG_PM_CLK / pm_clk_* infrastructure. Attaches clocks to a given power
domain, and those are enabled/prepared implicitly.

‣ Callbacks when devices get attached. Example usage: drivers use the PM_CLK
infrastructure to attach device clocks coming from devicetree.

int (*attach_dev)(struct generic_pm_domain *domain, struct device *dev);
void (*detach_dev)(struct generic_pm_domain *domain, struct device *dev);

‣ GENPD_FLAG_ACTIVE_WAKEUP for handling power domains on the system-wide suspend
wakeup path.

‣ GENPD_FLAG_RPM_ALWAYS_ON for some (broken?) platforms.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/GENPD_FLAG_PM_CLK
https://elixir.bootlin.com/linux/v6.16.2/source/drivers/clk/davinci/psc.c#L176
https://elixir.bootlin.com/linux/v6.16.2/A/ident/GENPD_FLAG_ACTIVE_WAKEUP
https://elixir.bootlin.com/linux/v6.16.2/A/ident/GENPD_FLAG_RPM_ALWAYS_ON
https://bootlin.com

Embedded Linux and kernel engineering

PM QoS

PM QoS: introduction

‣ PM QoS (Quality of Service) is about registering performance expectations.
‣ Per-device PM QoS is about requests to respect a maximum resume latency.
‣ All requests are aggregated into a single resume latency to respect.

include/linux/pm_qos.h

enum dev_pm_qos_req_type {
 DEV_PM_QOS_RESUME_LATENCY = 1, // set max PM resume latency
 DEV_PM_QOS_LATENCY_TOLERANCE, // value interpreted by driver
 DEV_PM_QOS_MIN_FREQUENCY, // passed to cpufreq
 DEV_PM_QOS_MAX_FREQUENCY, // passed to cpufreq
 DEV_PM_QOS_FLAGS,
};

int dev_pm_qos_add_request(struct device *dev, struct dev_pm_qos_request *req,
 enum dev_pm_qos_req_type type, s32 value);
int dev_pm_qos_update_request(struct dev_pm_qos_request *req, s32 new_value);
int dev_pm_qos_remove_request(struct dev_pm_qos_request *req);
s32 dev_pm_qos_read_value(struct device *dev, enum dev_pm_qos_req_type type);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/34

https://elixir.bootlin.com/linux/v6.16.2/source/include/linux/pm_qos.h#L99
https://bootlin.com

PM QoS: impact on runtime suspend
‣ If resume_latency is zero, never runtime suspend; rpm_check_suspend_allowed().
‣ Otherwise, we might? runtime suspend if we know the operation is quick enough.

🞄 That is coming from past experience: how slow were the worst runtime suspend/resume?
🞄 ? only if device belongs to PM domain
🞄 ? only if PM domain has a governor

‣ See default_suspend_ok() in drivers/pmdomain/governor.c.

dev.effective_constraint_ns = dev.resume_latency
for child_dev in dev.children:
 if child_dev.effective_constraint_ns < dev.effective_constraint_ns:
 effective_constraint_ns = child_dev.effective_constraint_ns

worst past measurements
dev.effective_constraint_ns -= dev.suspend_latency_ns
dev.effective_constraint_ns -= dev.resume_latency_ns

if dev.effective_constraint_ns >= 0:
 dev.suspend()

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/resume_latency
https://elixir.bootlin.com/linux/v6.16.2/A/ident/rpm_check_suspend_allowed
https://elixir.bootlin.com/linux/v6.16.2/A/ident/default_suspend_ok
https://bootlin.com

PM QoS: impact on runtime suspend

‣ suspend_latency_ns is time for dev->runtime_suspend() and pmdomain->stop(dev).

‣ resume_latency_ns is time for pmdomain->stop(dev) and dev->runtime_suspend().

‣ Notice: this does not include the pmdomain->power_on() and
pmdomain->power_off() duration, as it isn’t per-device.
🞄 Depending on the platform, it might be the biggest time sink.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/suspend_latency_ns
https://elixir.bootlin.com/linux/v6.16.2/A/ident/resume_latency_ns
https://bootlin.com

PM QoS: PM domains

‣ PM domains QoS is done through separate measurements:
power_on_latency_ns and power_off_latency_ns.
🞄 Behavior is similar to suspend_latency_ns and resume_latency_ns.
🞄 Accounts for PM subdomains.
🞄 Accounts for children devices known suspend/resume timings.

‣ Values can come from devicetree; in that case, further ->power_on|off() are not
timed.

‣ See __default_power_down_ok() in drivers/pmdomain/governor.c.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/34

https://elixir.bootlin.com/linux/v6.16.2/A/ident/power_on_latency_ns
https://elixir.bootlin.com/linux/v6.16.2/A/ident/power_off_latency_ns
https://elixir.bootlin.com/linux/v6.16.2/A/ident/__default_power_down_ok
https://bootlin.com

Embedded Linux and kernel engineering

Conclusion

More features (in bulk)

‣ cpufreq configures CPU frequencies; it gets configured through QoS APIs.

‣ cpuidle picks from its list of idle states the deepest acceptable state.
See Monday talk by Dhruva Gole (TI) and Kevin Hilman (BayLibre).

‣ PM domains provide OPP: “The set of discrete tuples consisting of frequency and
voltage pairs that the device will support per domain are called Operating
Performance Points”. Documentation. Contributed in 2010 by Nishanth Menon (TI).

‣ PM domains have set_hwmode_dev() / get_hwmode_dev() for toggling hardware
controlled PM. Only one user (Qualcomm GDSC).

‣ Related ongoing work: The Case for an SoC Power Management Driver — Stephen
Boyd, Google (2024).

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/34

https://osseu2025.sched.com/event/25Vlk/
https://www.kernel.org/doc/html/latest/power/opp.html
https://elixir.bootlin.com/linux/v6.16.2/A/ident/set_hwmode_dev
https://elixir.bootlin.com/linux/v6.16.2/A/ident/get_hwmode_dev
https://www.youtube.com/watch?v=FLeXBSjPHt8
https://bootlin.com

Thank you!
Questions?

Théo Lebrun
theo.lebrun@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/34

https://bootlin.com/pub/conferences/
https://bootlin.com

	Théo Lebrun
	Agenda
	How to reason about PM?
	How to reason about PM?

	Runtime PM
	Runtime PM: introduction
	Runtime PM: dummy example
	Runtime PM without callbacks
	Runtime PM without callbacks: device model hierarchy
	Runtime PM without callbacks: device model hierarchy
	Runtime PM without callbacks: device model hierarchy
	Runtime PM without callbacks: device model hierarchy
	Runtime PM without callbacks: device model hierarchy
	Runtime PM without callbacks: device links
	Runtime PM without callbacks: device links

	Power domains
	Power domains: dev_pm_domain
	Power domains: dev_pm_domain
	Power domains: pmdomain

	PM QoS
	PM QoS: introduction
	PM QoS: impact on runtime suspend
	PM QoS: impact on runtime suspend
	PM QoS: PM domains

	Conclusion
	More features (in bulk)

