
Embedded Linux and kernel engineering

From raw to refined:
The evolution of raw flash
support in Linux
Miquèl Raynal
miquel.raynal@bootlin.com

Embedded Linux Conference Europe 2025

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!



Miquèl Raynal

‣ Embedded Linux engineer at Bootlin
🞄 Development, consulting and training about embedded Linux
🞄 Strong open-source focus

‣ Linux kernel contributor and maintainer
🞄 Maintainer of the NAND subsystem
🞄 Co-maintainer of the MTD subsystem
🞄 Co-maintainer of the IEEE 802.15.4 subsystem

‣ User and sporadic contributor of U-Boot, Zephyr, Buildroot…
‣ Living in Toulouse, France

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/47

https://bootlin.com


Evolution of the flash market

‣ Parallel NORs
🞄 Block erasable
🞄 Random accesses, can be used for

code execution
🞄 Rapidly cheaper than original

EEPROMs
🞄 drivers/mtd/{chips,devices,maps}/?
🞄 -ETOOYOUNG

‣ Parallel NANDs
🞄 Cheaper as density is higher
🞄 Page reads/writes
🞄 Less stable (need error correction)
🞄 ONFI and JEDEC specification
🞄 drivers/mtd/nand/raw/

‣ SPI NORs
🞄 Easier to route
🞄 Known bus, controllers already

supported
🞄 JEDEC specification
🞄 drivers/spi/spi-mem.c & drivers/

mtd/spi-nor/

‣ SPI NANDs
🞄 “Best of all worlds”?
🞄 Yet, no actual industry standard?
🞄 drivers/spi/spi-mem.c & drivers/

mtd/nand/spi/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/47

https://bootlin.com


Embedded Linux and kernel engineering

Storage improvements

‣ One Time Programmable areas
‣ (Problems with) high densities



OTP support

‣ Factory OTP is not writeable
🞄 Typically stores unique factory identifiers

‣ User OTP are writeable and can be locked (more than one time programmable…)
🞄 MAC addresses?
🞄 Device serial numbers?

‣ MTD features various OTP callbacks:
(get_infos, erase, write, read and lock)
🞄 SPI NOR has support for user OTP areas since v5.13 (no factory OTP support)
🞄 Macronix raw NAND chip driver has received OTP support in v6.5
🞄 SPI NAND has gotten support for user and factory (read-only) OTP in v6.15

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/47

https://bootlin.com


NAND: SLC, MLC, TLC

A NAND cell may store:
‣ 1 bit of data (2 states): Single Level Cells (SLC)

🞄 Supported since the beginning
‣ 2 bits of data (4 states): Multi-Level Cells (MLC)

🞄 Partially supported! (see next slide)
‣ 3+ bits per cell (TLC, QLC) and other

technologies
🞄 No support, typically only available through a

vendor FTL

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/47

https://bootlin.com


NAND: MLC support issues

‣ Deep Knowledge of the chip is required
🞄 Each cell stores one bit from 2 non contiguous pages, pairing scheme must be known
🞄 Very sensitive to power cuts or write abortions
🞄 High risk of disturbances, requires stronger corrections
🞄 Overall, an order of magnitude less stable than SLC

‣ Reported as “a nightmare” by the former NAND maintainer

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/47

https://bootlin.com


NAND: MLC support in Linux

‣ Adopted solution was to enable a pseudo SLC mode
🞄 Halves the capacity of the chip
🞄 Gets rid of the biggest stability issues

■ slc-mode DT property
■ Pairing scheme must be known by Linux and ubinize
■ Run ubihealthd

‣ Has been an out of tree patch set for quite some time, eventually merged in v5.8

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/47

https://bootlin.com


NAND: Retention issues?

‣ Reading a NAND page typically returns a small amount of bitflips (or none, ideally)
‣ Data retention issues may sometimes lead to more charge loss than ECC can correct

🞄 Typical with MLC NANDs
🞄 Also possible with SLC NANDs

■ “Bad” MLC batches may be rebranded as SLC as well

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/47

https://bootlin.com


NAND: Read retry!

‣ Need for a retry mechanism, where the sensing circuitry adapts its thresholds

‣ Read retry support for raw NANDs since v3.14
‣ Available in SPI NAND since v6.15! (Macronix chips)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/47

https://bootlin.com


Embedded Linux and kernel engineering

Speed improvements

‣ Host side optimizations
‣ Flash side optimizations
‣ Bus optimizations



MTD speed benchmarks and pitfalls

‣ flash_speed -c10 /dev/mtdX
🞄 Reads the clock, does I/O, reads the clock again
🞄 Sensitive to system load

■ System must be idle
■ Task priority must be tuned for better repeatability (chrt -f 50 <benchmark>)
■ CPU power management must be disabled for allowing meaningful comparisons (no cpufreq/
cpuidle)

Flame Graph Search ic

finis..
__sch..

c..

cpu_..

spinand_mtd_read

spi..

sc..

spinand_w..

__idmap_text_end

__p..

swapper

mtdchar_read

cpu_sta..

flash_speed_2p
start_k..

spi_mem_dirmap_read
mxic_spi_mem_dirmap_read

[libc.so.6]

c..

sched..

__cpuid..

cl..

rpm..

spi_mem..

[unk..

__..

mmiocpy

seco..

mtd_read_oob

spinand_read_from_cache_op

mtd_read

vfs_read
ksys_read

spi_mem_p..

fi..
__..

spinand_read_page

rp..

mx..

Flame Graph Search ic

_..

flash_speed_2p
[libc.so.6]

swapper

finish_tas..

mxic_spi_mem_dirmap_read

r..

mmiocpy

finis..

sp..

s..

spinand_mtd_read
mtd_read_oob

schedule_idle

mtd_read

ksys_read
vfs_read

_..

sp..

cpu_startup..

mtdchar_read

sp..

s..

secon..

sp..

spinand_read_from_cache_op

sched..
cpu_s..

sp..

__cpuidle_t..__idmap_text_end

r..

__sched_te..

sp..
spi..

spi_mem_dirmap_read

start_kernel

__sch..

[unkn..

‣ Amount of data transferred matters a lot (values coming next are based on page reads, unless stated differently)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/47

https://bootlin.com


Hardware connections

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/47

https://bootlin.com


Reading from flash

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/47

https://bootlin.com


Bottlenecks behind a flash read

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/47

https://bootlin.com


Embedded Linux and kernel engineering

Host side optimizations



SPI memories: Direct mappings

‣ Modern SPI controllers can map portions of SPI memories in the CPU address space
‣ May bring performance improvements
‣ Offloading to hardware the creation and sending of the SPI messages
‣ All SPI memory operations use dirmaps

🞄 There is actually a fallback on the classical spi_mem_exec_op() helper if dirmaps are not
supported

‣ Available since Linux v5.0

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/47

https://bootlin.com


Parallel NANDs: ECC engines

‣ Raw NAND controllers commonly feature pipelined ECC engines
🞄 By far the default ECC engine pick

‣ Support for Hamming and BCH software ECC engines is also available
🞄 DT properties: nand-use-soft-ecc-engine, nand-ecc-algo, nand-ecc-strength/nand-

ecc-step-size
🞄 Fundamentally slower, but may be helpful in some situations:

■ Workaround hardware limitations (see Arasan NAND controller driver page read
implementation)

■ Enable the use of chips with stronger ECC needs than the controllers are capable of
■ Useful in extreme environments (high temperature or space)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/47

https://bootlin.com


SPI NANDs: Mostly on die ECC engines

‣ SPI controllers historically do not feature any
correction capability

‣ Most SPI NAND chips feature an on-die ECC
engine
🞄 A bit slow
🞄 Barely configurable
🞄 Makes the chip more expensive
🞄 Wastes silicon on the flash chip

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/47

https://bootlin.com


SPI NANDs: Offloading external ECC engines

‣ On host hardware ECC engines are now
supported!
🞄 Sometimes the same engine is shared between

the parallel NAND controller and the SPI
controller

🞄 Can either be pipelined (faster) or external
‣ Independent ECC engine drivers have been

contributed! (drivers/mtd/nand/ecc-*.c)
🞄 Simple API:

->init_ctx(), ->cleanup_ctx(),
->prepare_io_req(), ->finish_io_req()

🞄 Macronix in v5.18, then Mediatek and
Qualcomm, soon Realtek!

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/47

https://bootlin.com


Embedded Linux and kernel engineering

Flash side optimizations



SPI NOR: Full serialization is slow

‣ Lack of responsiveness as
writes are slow
🞄 page write speed:

■ 247 KiB/s
🞄 page read speed:

■ 902 KiB/s
‣ All further operations blocked

until the flash is ready again

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/47

https://bootlin.com


SPI NOR: Read while write (RWW)

‣ Read While Write feature
introduced in v6.4

‣ Supported on Macronix chips
🞄 May also be useful during

updates (downloading while
keeping the rootfs available)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/47

https://bootlin.com


SPI NOR: Read while write benchmark

‣ Additional option added to flash_speed:
🞄 -k, --sec-peb <num>

Start of secondary block to measure RWW latency (requires -d)

$ flash_speed -b0 -k0 -c1 -d /dev/mtd0 # Same die
[...]
testing read while write latency
read while write took 7ms, read ended after 7ms

$ flash_speed -b0 -k4096 -c1 -d /dev/mtd0 # Different dies
[...]
testing read while write latency
read while write took 7ms, read ended after 5ms

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/47

https://bootlin.com


NAND: Sequential accesses?

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/47

https://bootlin.com


NAND: Sequential cached reads/continuous reads!

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/47

https://bootlin.com


Raw NAND: Sequential cached reads/continuous reads: results

‣ Raw NAND support for sequential cached reads: v6.3
🞄 Received several fixes until v6.8
🞄 Read speed comparison on an i.MX6 with a Macronix MX30LF2G (2kiB pages) NAND:

kiB/s Regular read Continuous read

 1 page 15515 15875

 2 pages 15398 16253

64 pages 15633 18285

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/47

https://bootlin.com


SPI NAND: Sequential cached reads/continuous reads: results

‣ Speed benchmark on an i.MX6 with a Macronix MX35LF2G (2kiB pages) NAND

‣ Feature merged in v6.12

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/47

https://bootlin.com


Embedded Linux and kernel engineering

Bus optimizations



Parallel NANDs: Data interface (past)

Support for the timing modes has been there forever:
‣ “speed” mode ranging from 0 (all chips start in mode 0) up to mode 5
‣ Chips advertise the supported modes in their parameter page
‣ Controllers must be configured to comply with the picked mode and acknowledge the

switch
‣ Chips normally support changing timing mode with GET_FEATURE and SET_FEATURE

commands
🞄 Some chips do not support these commands
🞄 Some chips support the commands but do not advertise them in their parameter page
🞄 Some chips support SET_FEATURE but not GET_FEATURE, leaving us in the dark regarding

the actual timing mode on the chip side, so we currently assume the switch was
successful

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/47

https://bootlin.com


Parallel NANDs: Data interface (present)

‣ Management of the whole data interface instead of just the timing mode
‣ New callback called ->choose_interface_config() (Linux v5.10)

🞄 Allows to pick the best commonly supported configuration between SDR and NV-DDR
timing modes

■ NV-DDR modes also range from 0 to 5
■ Synchronous modes (as opposed to SDR)

‣ NV-DDR timings introduced in Linux v5.14, with support for the Arasan NAND
controller
🞄 Speed benchmark reading one 16kiB NAND page:

kiB/s SDR mode 5 NV-DDR mode 5

Read 8094 16062

Write 7013 24824

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/47

https://bootlin.com


SPI memories: Single SPI just works

‣ Single SPI is slow! don’t tell Mark

🞄 In Linux we represent regular single SPI
transaction with: 1-1-1

■ # of data lines for the command opcode
■ # of data lines for the address byte(s)
■ # of data lines for the data cycles

,

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/47

https://bootlin.com


SPI memories: Parallelism again?

‣ Memories typically
🞄 read data from the DI pin on the clock rising edge
🞄 write data (or status) on the DO pin on the clock falling edge

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/47

https://bootlin.com


SPI memories: Dual SPI is better!

‣ No hardware implications, just re-use a temporarily unused pin!
🞄 1-1-2, 1-2-2 (Command opcode is always transferred in single SPI mode)

‣ Has been supported forever in SPI NOR, like ~v3.12
🞄 Way before the introduction of spi-mem in v4.18

‣ Support in SPI NAND is more recent, this was present at subsystem creation (v4.19)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/47

https://bootlin.com


SPI memories: Quad is faster!

‣ “What are WP and HOLD for again? What about moar speed instead?”
🞄 1-1-4, 1-4-4

‣ Dual and Quad support were introduced at the same time as they are very similar

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/47

https://bootlin.com


SPI memories: Single/Dual/Quad comparison

Speed comparison on Nuvoton MA35D1 dev kit with a Winbond W25N02JW NAND:

kiB/s 1-1-1 1-2-2 1-4-4

Read 1097 1229 1433

Write 2012 - 2253

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/47

https://bootlin.com


SPI memories: But what about Octal?

‣ This time our hardware colleagues have more work
🞄 8 data lines
🞄 usually a RESET pin to make sure we start on a common ground

‣ Introduced in v5.1 in SPI NOR
‣ Supported in v6.17 in SPI NAND (Winbond only so far)!

Speed comparison on TI AM62A LP starter kit with a Winbond W35N01JW NAND:

kiB/s 1-1-1 1-1-8 1-8-8

Read 2342 10711 10711

Write 2028 - 7293

Lack of difference in read speed between the two octal modes comes from the fact that the 7 saved clock cycles when sending the address only represent an extra delay of 0.24us at
30MHz, once per page.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/47

https://bootlin.com


SPI memories: Double Transfer Rates
‣ Use both sides of the clock
‣ Many SPI controllers have DTR support

🞄 A new soup of possible variants (S: Single Data Rate, D: Double Transfer Rate)
■ 1S-1D-1D, 1S-1S-1D
■ 1S-1S-2D, 1S-1D-2D, 1S-2S-2D, 1S-2D-2D
■ 1S-1S-4D, 1S-1D-4D, 1S-4S-4D, 1S-4D-4D

‣ SPI NOR has support for DTR since v5.11
🞄 Mixed modes (S-S-D or S-D-D) are not supported

‣ SPI NAND support introduced in v6.14 (Winbond quad and octal chips)
🞄 DTR stateful modes (D-D-D) are not supported

‣ Read comparison on the Nuvoton platform with a quad capable NAND chip:

kiB/s Single Dual Quad

SDR (1S-XS-XS) 1097 1229 1433

DTR (1S-XD-XD) 1568 1681 1810
 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/47

https://bootlin.com


SPI memories: What about Octal DTR (ODDR) modes?

‣ SPI NOR supports it, part of the package since v5.11
🞄 Stateful support refused on memories without a proper reset pin
🞄 SPI NOR benchmark on Xilinx Zynq ZC702 @ 16.6MHz with a Macronix

MX25UW12845G:

kiB/s 1S-1S-1S 8D-8D-8D

Read 1040 1287

Write 547 664

‣ The SPI NAND core is not ready for stateful modes
🞄 Important rework required
🞄 In the pipe, RFC hopefully for end of 2025

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/47

https://bootlin.com


SPI memories: Increasing the bus speed

‣ Increasing the bus speed has
limitations

‣ Flashes require a minimum
amount of time to internally
process the host requests
🞄 No extra Read/Busy bin

like in the parallel world
🞄 Dummy cycles to the

rescue

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/47

https://bootlin.com


SPI memories: Flexible dummy cycles

‣ Flash drivers may provide several variants for the same operation with varying dummy
cycles and maximum frequencies

‣ The theoretical benefit is derived in the spi-mem layer when picking the best available
variant:
🞄 Page read in 1S-8S-8S mode @ 86MHz with 8 dummy cycles: 49us

■ Empirically, 11377 kiB/s
🞄 Page read in 1S-8S-8S mode @ 166MHz with 20 dummy cycles: 25us

■ Empirically, 9516 kiB/s, because bus is at its maximum frequency already
‣ Support for flexible dummy cycles in v6.17

🞄 Already used in SPI NAND, soon in SPI NOR probably

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/47

https://bootlin.com


SPI memories: Push the car accelerator!

‣ Many designs accept frequencies in the 20-60MHz range
🞄 Certain chips support way more (eg. Winbond: 166MHz)

‣ What about higher frequencies?
‣ Need to fine tune timings for the data to remain reliably transferred in both

directions

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/47

https://bootlin.com


SPI memories: High frequencies, problem statement, Tx

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/47

https://bootlin.com


SPI memories: High frequencies, problem statement, Rx

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/47

https://bootlin.com


SPI memories: High frequencies, problem statement, Reference clock

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/47

https://bootlin.com


SPI memories: PHY calibration

‣ Second RFC sent by Santhosh Kumar from TI mid-
August for the TI/Cadence controller:
🞄 https://lore.kernel.org/linux-spi/

20250811193219.731851-1-s-k6@ti.com/
🞄 Currently only in the read path, write path to come

‣ Speed benchmark on the TI platform in octal mode:

kiB/s Single,
No calibration

Octal,
No calibration

Octal,
With calibration

Read 2342 10711 34133

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/47

https://lore.kernel.org/linux-spi/20250811193219.731851-1-s-k6@ti.com/
https://lore.kernel.org/linux-spi/20250811193219.731851-1-s-k6@ti.com/
https://bootlin.com


Future

‣ Imagine a world full of serial NAND chips (that’s already great)…
🞄 Supporting continuous reads
🞄 and octal DTR stateful mode
🞄 on a PHY calibration enabled platform

Let’s call this, 2026?

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/47

https://bootlin.com


Thank you!
Questions?

Miquèl Raynal
miquel.raynal@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/47

https://bootlin.com/pub/conferences/
https://bootlin.com

	Miquèl Raynal
	Evolution of the flash market
	Storage improvements
	OTP support
	NAND: SLC, MLC, TLC
	NAND: MLC support issues
	NAND: MLC support in Linux
	NAND: Retention issues?
	NAND: Read retry!

	Speed improvements
	MTD speed benchmarks and pitfalls
	Hardware connections
	Reading from flash
	Bottlenecks behind a flash read
	Host side optimizations
	SPI memories: Direct mappings
	Parallel NANDs: ECC engines
	SPI NANDs: Mostly on die ECC engines
	SPI NANDs: Offloading external ECC engines

	Flash side optimizations
	SPI NOR: Full serialization is slow
	SPI NOR: Read while write (RWW)
	SPI NOR: Read while write benchmark
	NAND: Sequential accesses?
	NAND: Sequential cached reads/continuous reads!
	Raw NAND: Sequential cached reads/continuous reads: results
	SPI NAND: Sequential cached reads/continuous reads: results

	Bus optimizations
	Parallel NANDs: Data interface (past)
	Parallel NANDs: Data interface (present)
	SPI memories: Single SPI just works
	SPI memories: Parallelism again?
	SPI memories: Dual SPI is better!
	SPI memories: Quad is faster!
	SPI memories: Single/Dual/Quad comparison
	SPI memories: But what about Octal?
	SPI memories: Double Transfer Rates
	SPI memories: What about Octal DTR (ODDR) modes?
	SPI memories: Increasing the bus speed
	SPI memories: Flexible dummy cycles
	SPI memories: Push the car accelerator!
	SPI memories: High frequencies, problem statement, Tx
	SPI memories: High frequencies, problem statement, Rx
	SPI memories: High frequencies, problem statement, Reference clock
	SPI memories: PHY calibration
	Future



