Embedded Linux and kernel engineering

Unpacking the Linux WiFi

stac
wire

<: Writing and integrating

ess drivers

Alexis Lothoré

alexis.lothore@bootlin.com

Embedded Linux Conference Europe 2025

© Copyright 2004-2025, Bootlin.

Creative Commons
Corrections, su gges

BY-SA 3.0 license.

tions, contributions an d trans lations are we Icome!

bootlin

4@} Alexis Lothoré

» Embedded Linux engineer and trainer at Bootlin since 2023
e Expertise in Embedded Linux
* Development, consulting and training
e Strong open-source focus

» Working on embedded systems since 2016

» BSP, device drivers, networking, wireless, Cl, eBPF
e Microchip WILC1000
e Microchip WILC3000

» Teaching training courses

» Living in Toulouse, south of France

» alexis.lothore@bootlin.com

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/46

mailto:alexis.lothore@bootlin.com
https://bootlin.com

4@} Agenda

802.11 basics

Linux wireless stack
Implementing wireless drivers
Userspace tools / testing
Debugging

vV v v v Vv

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/46

https://bootlin.com

Embedded Linux and kernel engineering

802.11 basics

bootlin

4@}802.11

» “Wi-Fi” is a marketing name
» |EEE standard, first released in 1997, with many revisions and amendments:
e 802.11b: 11Mb/s
e 802.11a: 5Ghz band, 54Mb/s
e 802.11g: Data Rate Extension in 2.4Ghz
e 802.11n (“Wi-Fi 4"): MIMO, 72 Mb/s, 600 Mb/s
e 802.11ac (“Wi-Fi 5"): Data Rate Extension in 5GHz, MU-MIMO
e 802.11ax (“Wi-Fi 6/6E"): new 6GHz band, higher data rates
e 802.11be (“Wi-Fi 7"): MLO, higher data rates

» |IEEE task group aims to release Wi-Fi 8 specification (802.11bn) in 2028

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/46

https://bootlin.com

4@} 802.11 layers

» PHY layer
 different modulations, depending on the version (mostly
OFDM for modern devices)

o different frequency operating bands (2.4GHz, 5GHz,
6GHz ..)

» MAC layer
» CSMA-CA
* 3 types of “frames”: Management, Control, Data

® scanning, authentication, association, network
maintenance, security, power saving...

Application

Presentation

Session

Transport

Network

[] Data Link
IEEE 802.11
Physical

802.11 place in the OSI model

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/46

https://bootlin.com

4@\/ 802.11 networks

» Infrastructure (BSS): one or many stations (STA)
connected to a special station called Access Point (AP) @

» Other types of networks available:

* Ad Hoc (/BSS): no Access Point. Each station can only
communicate with direct neighbors
e Mesh (802.11s): multi-hop networks

A simple infrastructure network

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/46

https://bootlin.com

4@} The hardware

» Wide variety of platforms:
o Supporting different 802.11 standards

» exposed through different buses: PCl, USB, SDIO, uart...
* sometimes with multiple features: e.g. WLAN/BT

» generally depends on a firmware to operate

A Microchip module

» Identifying some exact hardware/upstream support is sometimes a challenge !
e Ezurio LWB5+ -> Laird LWB5+ -> Infineon Airoc CYW43439

= former Cypress -> former Broadcom -> brcmfmac

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/46

https://bootlin.com

Embedded Linux and kernel engineering

Linux Wireless Stack

bootlin

%Full MAC / Soft MAC

Not all chips/drivers handle the same amount of features:

» FullMAC devices handle both PHY and MAC
e The MAC layer is handled by the device firmware
e [+] performance level may be higher
e [—] hardware is more complex/expensive
e [—] if there is a bug in the mac layer, it is harder to identify and fix

» SoftMAC devices only handle the PHY part, the MAC part is handled by the kernel:

e [+] simpler/cheaper hardware
e [+] all softmac devices benefit from 802.11 MAC layer improvements and fixes

e [—] the overall wireless performance may be CPU bound.

» ~35 SoftMAC drivers and ~9 FullMAC drivers upstream

e see drivers/net/wireless

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/46

https://elixir.bootlin.com/linux/v6.16/source/drivers/net/wireless
https://bootlin.com

4@} The wireless stack in
-~

network manager / custom application

\\§ J
4 ¢ ¢ N\
wpa_supplicant } [hostap
\& x =)
— —)
e N
ni80211
g J
(¢ N\
cfg80211
¢ K
<
mac80211
. J
¢ Y
(N\
SoftMac Driver [FullMac Driver }
k d /
A A
Y A
Wireless HW

cfg80211 is the core subsystem handling

wireless configuration
* interacts directly with fullmac drivers

e or goes through mac80211 for softmac drivers

mac80211 layer is a software implementation
of IEEES0211 MAC

frames crafting and parsing
encryption /decryption
queues management

rate control

multiple state machines implementing IEEE
802.11 MAC

userspace interacts with cfg80211 through
nl80211 command and events

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

10/46

https://bootlin.com

%The wireless phy and virtual interfaces

» The hardware is represented by a wiphy, on top
of which multiple virtual interfaces (VIFs) can

coexist concurrently phy0

» concurrent VIF combinations depend on the
driver, and on the hardware/firmware for
FullMac

» you generally want/have at least one STA VIF

wlan1
(monitor)

automatically created
. A single wiphy with two VIFs
» additional VIFs can be created from userspace

(e.g with iw)

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/46

https://bootlin.com

Embedded Linux and kernel engineering

Implementing wireless drivers

bootlin

4@} The struct wiphy

» Represents the physical wireless device and its

capabilities

» Drivers need to allocate and configure a struct wiphy
for each wireless device:
e supported modes 7 (STA, AP, monitor, P2P...)
e supported bands and channels ?
* non-standard capabilities and constraints ?
* supported concurrent interfaces combinations ?

enum nl80211 iftype {

NL80211 IFTYPE UNSPECIFIED,
NL80211 IFTYPE ADHOC,
NL80211 IFTYPE STATION,
NL80211 IFTYPE AP,

NL80211 IFTYPE AP VLAN,
NL80211 IFTYPE WDS,
NL80211 IFTYPE MONITOR,
NL80211 IFTYPE MESH POINT,
NL80211 IFTYPE P2P CLIENT,
NL80211 IFTYPE P2P GO,
NL80211 IFTYPE P2P DEVICE,
NL80211 IFTYPE OCB,
NL80211 IFTYPE NAN,

Bl

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

13/46

https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://bootlin.com

Q} SoftMac drivers

SoftMAC drivers use the mac80211 kernel API, exposed by include/net/mac80211.h
> ieee80211_alloc_hw:
® consumes a struct 1eee80211_ops
* allocates a struct ieee80211_hw
» the struct ieee80211_hw contains members to be configured by the driver:
e a struct wiphy
* an additional flags fields describing driver capabilities or offloaded features
» ieee80211 _register_hw: registers the wireless interface
e automatically creates a STA net device (if relevant)

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/46

https://elixir.bootlin.com/linux/v6.16/source/include/net/mac80211.h
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_alloc_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_register_hw
https://bootlin.com

4@} The struct ieee80211_ops

» Contains the basic driver ops that mac80211 layer will call
» Checked by mac80211 at allocation time
» Plenty of ops, with a minimal mandatory set:

int (*start) (struct ieee80211 hw *hw);

void (*stop)(struct ieee80211 hw *hw, bool suspend);

int (*add interface)(struct ieee80211 hw *hw, struct ieee80211 vif *vif);

void (*remove interface)(struct ieee80211 hw *hw, struct ieee80211 vif *vif);

void (*tx)(struct ieee80211 hw *hw, struct ieee80211 tx control *control,
struct sk _buff *skb);

void (*wake tx queue)(struct ieee80211 hw *hw, struct ieee80211 txq *txq);

int (*config) (struct ieee80211 hw *hw, u32 changed);

void (*configure filter)(struct ieee80211 hw *hw, unsigned int changed flags,

unsigned int *total flags, u64 multicast);

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://bootlin.com

4@} The struct ieee80211_ops

> add_interface/remove_interface
e called when a virtual interface creation or deletion is requested
e this is really about vif init and deinit
» start/stop
 called before first vif is enabled / after last vif is disabled
* this is really about wireless hardware init/deinit
e you must perform all needed initialization needed to make the hardware able to run

open open close close
userspace add wlan0 add wlan1 wlano wilan1 wlano wlan1 del wlan1 del wlant
- >

00\\ l o°Q¢ ¢ ¢ 1{006\\ ¢ ‘\oc'

2 Q N))
. .\0\0‘ 9&0‘\ \QQ o /\{\\ 0/\((‘
Y% R QJ ot o
i 7 o® A ‘0& ‘0(0
Q"o' Q"ﬂ' 9’1 gﬂ
0 [3) OQ OQ

mac80211 hw/vif management

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://bootlin.com

4@\/ The struct ieee80211_ops

» tX
* mac80211 “pushes” a struct sk_buff to the driver [mac80211 } [driver }
e the driver must call ieee80211_tx_status_skb
once TX is done, or ieece80211_free_txskb if
status can't get deduced (e.g. TX failure)

ops->wake_tx_queue()

ieee80211_handle_wake_tx_queue() |

» wake tx queue

ops->tx()

* notification to ask driver to “pull” packets from
mac80211 5
= use ieee80211_tx_dequeue to pull struct sk_buff process TX
= optionally, use ieee80211_next_txqg to let mac80211 :

balance TX queues
e drivers can use ieee80211_handle_wake_tx_queue
as a default implementation: mac80211 will then call

ieee80211_tx_status_skb()

the tx ops mac80211 driver simplified TX path

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_tx_status_skb
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_free_txskb
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_tx_dequeue
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_next_txq
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_handle_wake_tx_queue
https://bootlin.com

4@} The struct ieee80211_ops

» config
o called when hardware needs to be reconfigured: monitor flag set, device is now idle,
channel change requested, etc
* receives a enum ieee80211_conf_changed bitfield defining what should be reconfigured
* also called on first interface being enabled
» configure filter: ask driver/hw to configure the RX frame filter, ie additional
frames to be passed to mac 80211

o useful for example for the monitor mode to see frames that would otherwise be handled
directly by the hardware/the driver

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_conf_changed
https://bootlin.com

% RX path

» multiple APls to pass received frames to mac80211:
e ieee80211_rx: the default RX callback, passes a single struct sk_buff
o ieee80211_rx_list: passes a list of SKBs to mac80211, they are processed but not
passed yet to the stack, drivers need to call netif_receive_skb_list
® ieee80211_rx_napi: to be used if your driver using NAPI to handle RX
* ieee80211_rx_ni: when RX is done in process context (e.g. workqueue)
e ieee80211_rx_irgsafe: when RX is done in hard interrupt context

» Those callbacks expect a 802.11 header in front of passed SKBs

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

19/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_list
https://elixir.bootlin.com/linux/v6.16/A/ident/netif_receive_skb_list
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_napi
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_ni
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_irqsafe
https://bootlin.com

4@} SoftMac drivers

struct ieee80211 ops my ieee80211 ops {

IiE

.start =

.stop =
.add_interface =
.remove_interface
.config =

X =

.wake tx_queue =
.configure filter

my start,

my stop,

my add interface,

my remove interface,
my config,

my tx,

my wake tx queue,

my configure filter

int my driver probe(struct pci device *pdev)

{

struct ieee80211 hw *hw;

[...]

priv->rx wq = alloc workqueue("rx wq", WQ BH, 0);

INIT WORK(&priv->rx work, my rx work handler);

ret = request irq(pdev->irq, irq handler, IRQF SHARED,
"my device", NULL);

[...]

hw = ieee80211 alloc hw(sizeof(struct my priv),

my ieee80211 ops);

SET IEEE80211 DEV(hw, &pdev->dev);

SET IEEE80211 PERM ADDR(hw, mac_addr);

ieeeB80211 hw set(hw, HAS RATE CONTROL);

ieee80211 hw set(hw, SUPPORT PS);

ieee80211 hw set(hw, SIGNAL DBM);

hw->wiphy->interface modes = BIT(NL80211 IFTYPE STATION)

BIT(NL80211 IFTYPE AP);

hw->wiphy->bands[NL80211 BAND 2GHZ] = &my supported bands;

[...]

ret = ieee80211 register hw(hw);

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/46

https://bootlin.com

Q} SoftMac drivers

static irqreturn_t irq handler(int irq, void *arg)
{

[...]

queue work(priv->rx _wq, priv->rx _work);

[...]

static void my rx work handler(struct work struct *work)

{
struct my priv *priv = container of(work, struct my priv, rx work);
char buffer[MAX RAW DATA LEN];
struct sk buff *skb;

read packet(priv, &buffer);
// mac80211 expects a 802.11 header in front of the SKB
skb = prepare 80211 skb(buffer)

[...]
ieee80211 rx(priv->hw, skb);

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/46

https://bootlin.com

% FullMac drivers

» the driver must handle many aspects that were managed by mac80211:
e struct i1eee80211_ops -> struct cfg80211_ops
e struct ieee80211_hw -> bare struct wiphy
e ieee80211_alloc_hw -> struct wiphy_new
* the core manipulates VIFs through struct wireless_dev
» the driver must allocate and register a struct net_device to get a default interface
e net devices and wireless dev are linked through the ieee80211 ptr field in the net device

structure

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_alloc_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy_new
https://elixir.bootlin.com/linux/v6.16/A/ident/wireless_dev
https://elixir.bootlin.com/linux/v6.16/A/ident/net_device
https://bootlin.com

_FullMac drivers

'Q

» struct cfg80211 _ops exposes a lot of ops (128 !), but no strict mandatory list
» As a starter, for STA:

struct wireless dev * (*add virtual intf) (struct wiphy *wiphy, const char *name,

int
int
int
int
int

int

int

unsigned char name assign type, enum nl80211 iftype type,
struct vif params *params);
(*del virtual intf)(struct wiphy *wiphy, struct wireless dev *wdev);
(*scan) (struct wiphy *wiphy, struct cfg80211 scan request *request);
(*connect) (struct wiphy *wiphy, struct net device *dev, struct cfg80211 connect params *sme);
(*disconnect) (struct wiphy *wiphy, struct net device *dev, ulé reason code);
(*add key) (struct wiphy *wiphy, struct net device *netdev, int link id, u8 key index, bool pairwise,
const u8 *mac_addr, struct key params *params);
(*del key) (struct wiphy *wiphy, struct net device *netdev, int link id, u8 key index, bool pairwise,
const u8 *mac addr);
(*set default key) (struct wiphy *wiphy, struct net device *netdev, int link id, u8 key index,
bool unicast, bool multicast);

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/46

https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://elixir.bootlin.com/linux/v6.16/source/include/net/cfg80211.h#L4612
https://bootlin.com

4@} FullMac drivers

» The driver needs to implement a struct net_device_ops

int (*ndo open) (struct net device *dev);
int (*ndo_stop) (struct net device *dev);
netdev tx t (*ndo_start xmit) (struct sk buff *skb, struct net device *dev);

» Received frames are passed to the network stack through netif_rx or
napi_gro_receive
e exception: userspace can register to specific 802.11 frames, those should be passed with
cfg80211_rx_mgmt

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/46

https://elixir.bootlin.com/linux/v6.16/A/ident/net_device_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/netif_rx
https://elixir.bootlin.com/linux/v6.16/A/ident/napi_gro_receive
https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_rx_mgmt
https://bootlin.com

4@} Firmware management
Y

» Wireless devices need some firmware to operate
» Generally published and hosted in the 1inux-firmware repository
» Drivers fetch the needed firmware through the request_firmware API
» Firmwares can be stored in different places:

* in the root filesystem/an initramfs (/lib/firmware)

* embedded directly in the kernel image (less common, and less convenient)
» Drivers are responsible of loading and starting the firmware

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/46

https://docs.kernel.org/driver-api/firmware/core.html
https://elixir.bootlin.com/linux/v6.16/A/ident/request_firmware
https://bootlin.com

%Security / key management

» the linux wireless stack only handles basic connection modes:
* open
* shared key (WEP)
» standard connection methods (WPA2, WPA3) are deferred to userspace (e.g.
wpa_supplicant)
* the supplicant then handles the authent/assoc/handshake state machine through nl80211
commands and events
» some features may be offloaded to the firmware (stated in wiphy->ext features):
o NL80211 EXT FEATURE 4WAY HANDSHAKE STA PSK: is able to handle the WPA handshake
when set as STA
° NL80211 EXT FEATURE 4WAY HANDSHAKE STA 1X: is able to handle 802.1x handshake
e NL80211 EXT FEATURE 4WAY HANDSHAKE AP PSK: is able to handle the WPA handshake
when set as AP

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

26/46

https://bootlin.com

_ Regulatory

» wireless devices must follow per-country regulatory rules:
e usable radio bands
e max X power
® misc constraints
» the official source of regulatory domains rules for linux is wireless_regdb

country NL: DFS-ETSI

(2400 - 2483.5 @ 40), (100 mw)
(5150 - 5250 @ 80), (200 mW), NO-OUTDOOR, AUTO-BW, wmmrule=ETSI

(5250 5350 @ 80), (100 mW), NO-OUTDOOR, DFS, AUTO-BW, wmmrule=ETSI
(5470 - 5725 @ 160), (500 mW), DFS, wmmrule=ETSI

short range devices (ETSI EN 300 440-1)

(5725 - 5875 @ 80), (25 mW)

WiFi 6E

(5945 - 6425 @ 320), (23), NO-OUTDOOR, wmmrule=ETSI

60 GHz band channels 1-4 (ETSI EN 302 567)

(57000 - 66000 @ 2160), (40)

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/46

https://git.kernel.org/pub/scm/linux/kernel/git/wens/wireless-regdb.git/
https://bootlin.com

% Regulatory

» cfg80211 requests regulatory database when cfg80211 is initialized, through
reg_query_database
e expects a regulatory.db file installed in /lib/firmware

> userspace can initiate a change in regulatory domain:

iw reg set NL

» kernel will then enforce the corresponding rules on each wiphy

» by default the kernel apply the “world” regulatory to new devices until a specific
regulatory domain is set

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/46

https://elixir.bootlin.com/linux/v6.16/A/ident/reg_query_database
https://bootlin.com

4@\/ Regulatory

» drivers can be notified about updates with the wiphy->reg notifier callback

» drivers can hint the kernel with a specific domain by issuing a regulatory_hint call
(e.g. for the initial regulatory configuration)

» drivers can also enforce specific regulatory management, described through flags in

the struct wiphy:
e REGULATORY CUSTOM REG
e REGULATORY STRICT REG
e REGULATORY WIPHY SELF MANAGED

» General focus (for both drivers and wireless core): it must be impossible for the
final user to unknowingly fail to comply with local regulations.

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/46

https://elixir.bootlin.com/linux/v6.16/A/ident/regulatory_hint
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://bootlin.com

4@} Power save
9

STA

NULL frame E
=

» Battery-powered station devices can periodically sleep 5

beacon (m: 0)

o STA sends a NULL frame, AP reacts by: L ramerorsma
sleep ‘_beacon (m:ﬁ)’ ;4/

= setting a “pending messages” bit in beacon frames - ’”

beacon (m: 1)

" putting any pending messages into a buffer

» Periodically, STA will wake, read beacons, and send a PS-

—
—_
—_

Poll frame to ask for the pending messages T _beacon (m:)
* When leaving power save mode, station sends a new s pal
NULL frame with the updated power save status '

frame for STA

=

sleep

STA entering power-save

bOOUI'n - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/46

https://bootlin.com

4@\1 Power save
9

» SoftMAC drivers set the TEEE80211 HW SUPPORTS PS flag to let mac80211 know that

they support power save.

e The driver/hardware must:
* handle the NULL frames
= or ask the mac80211 to handle those with TEEE8021 HW PS NULLFUNC STACK

e TEEE80211 HW SUPPORTS DYNAMIC PS: the hardware can handle dynamic powersave
» FullMAC drivers directly set the set power mgmt callback in struct cfg80211_ops

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/46

https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://bootlin.com

4@} Power save
9

» Userspace can toggle power save:

iw dev wlan set power save on

» Caution: power save may be enabled by default !
o if driver has set WIPHY FLAG PS ON BY DEFAULT
e if the kernel is built with CONFIG_CFG80211_DEFAULT_PS

» It is worth disabling it in development/when debugging a specific issue

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/46

https://elixir.bootlin.com/linux/v6.16/A/ident/CONFIG_CFG80211_DEFAULT_PS
https://bootlin.com

4@} Design tips

» hardware should stay off “as long as possible”
e firmware should not run right at probe time
> init/register order matters: immediately after wiphy_register/
ieee80211 _register_hw, the kernel can start calling your ops
» if you must support different versions of your device (eg: revisions, or busses), make
sure to keep the core code separated from the

® create bus files
® create revision-specific files
» don't be scared by the amount of things to implement
e start small, you do not need to implement all the features
* implement stubs for basic ops, so you can learn when they are called

bOOUI'n - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/46

https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy_register
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_register_hw
https://bootlin.com

Embedded Linux and kernel engineering

Userspace tools/testing

bootlin

%iw
Y

» The default userspace tool to interact with wireless devices

» https://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git
» Uses the nl80211 layer to interact with the kernel

» CLI interface with various subcommands

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/46

https://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git
https://bootlin.com

%iw

» list known devices and properties:

$ iw phy

» add a virtual interface on a specific phy

¢ iw phy phy@ interface add wlanl type managed
» start a scan

$ 1w dev wlanl scan

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/46

https://bootlin.com

%iw

» connect to an AP (works only with open or WEP networks)
iw dev wlanl connect my ssid 6926366642517d785936792458
» get connection status

$ iw dev wlanl link

» monitor kernel userspace wireless messages

iw event

bOOUI'n - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/46

https://bootlin.com

% wpa_supplicant

» wpa_supplicant is the standard supplicant for Linux, supporting a wide range of
security standards and algorithms
> provides:

* the wpa supplicant daemon which interacts with the kernel with nl80211 messages
e wpa cli as a command line tool to control wpa supplicant

» alternative: iwd

bOOUI'ﬂ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/46

https://w1.fi/wpa_supplicant/
https://git.kernel.org/pub/scm/network/wireless/iwd.git/
https://bootlin.com

4@} wpa_supplicant

» prepare wpa_supplicant configuration

ctrl_interface=/var/run/wpa_supplicant
update config=1

» start wpa_supplicant
$ wpa_supplicant -Dnl80211 -iwlanl -c wpa supplicant.conf
> use wpa_cli to connect (here: a WPA2 network)

wpa_ cli

scan

scan_results

add network

set network 1 ssid my ssid
set network 1 psk 5up3r53cr3t
enable network 1

status

V V V V V V V &

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/46

https://bootlin.com

Embedded Linux and kernel engineering

Debugging

bootlin

4@} Logs and tracepoints

» mac80211 and cfgB80211 expose a lot of debug logs

¢ echo "module cfg80211 +p" > /proc/dynamic debug/control
¢ echo "module mac80211 +p" > /proc/dynamic debug/control

» they also come with plenty of tracepoints

$ trace-cmd record -e cfg80211 -e mac80211

<C-c>
$ trace-cmd report
wpa supplicant-879
wpa supplicant-879
wpa_supplicant-879
wpa_supplicant-879
wpa_supplicant-879
wpa supplicant-879
state: 0->1
wpa supplicant-879
wpa supplicant-879
[...]

[005] 21530.
[005] 21530.
[0605] 21530.
[0605] 21530.
[0605] 21530.
[005] 21530.
[605] 21530.
[005] 21530.

129640:
129644:
129647:
129652:
129980:
129986:

130494:
130519:

drv_return int:

drv_vif cfg changed:

drv_return void:

drv_link info changed:

drv_return void:
drv_sta state:

drv_return int:
cfg80211 new sta:

phy6 - 0
phy6 vif:wlp0s20f3(2) changed:0x4000
phy6
phy6 vif:wlp0s20f3(2) link id:0, changed:0xe0
phy6
phy6 vif:wlp0s20f3(2) sta:98:da:c4:85:db:20

phye - 0
netdev:wlp0s20f3(13), 98:da:c4:85:db:20

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

41/46

https://bootlin.com

%Tracing packets: monitor interface & tcpdump

©+ A A

$

23:
23:
23:
23:
23:
12.
23:

08:
08:
08:
08:
08:

O*

08:

iw phy phy0 interface add wlanl type monitor
ip link set wlanl up

iw dev wlanl switch channel 40

tcpdump -i wlanl

23:08:37.
23:08:37.
23:08:37.
23:08:37.
PRIVACY :
37.
37.
37.
37.
37.
18.
37.

396657 6.0 Mb/s [bit 15] Authentication (Open System)-1: Successful

399008 804764209us tsft 6.0 Mb/s 5200 MHz 1la -13dBm signal [bit 22] Authentication (Open System)-2:
400445 6.0 Mb/s [bit 15] Assoc Request (Tropicao 5G) [6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0 Mbit]
402747 804767427us tsft 6.0 Mb/s 5200 MHz 1la -13dBm signal [bit 22] Assoc Response AID(2)
Successful

406459 804771545us tsft 6.0 Mb/s 5200 MHz 1la -13dBm signal [bit 22] EAPOL key (3) v2, len 95
415943 6.0 Mb/s [bit 15] EAPOL key (3) v1, len 117

417970 804783110us tsft 6.0 Mb/s 5200 MHz 1la -13dBm signal [bit 22] EAPOL key (3) v2, len 151
418584 6.0 Mb/s [bit 15] EAPOL key (3) v1, len 95

438645 804802933us tsft 6.0 Mb/s 5200 MHz 1la -16dBm signal [bit 22] Beacon (Tropicao 5G) [6.0* 9.0
0 24.0* 36.0 48.0 54.0 Mbit] ESS CH: 40, PRIVACY

456535 288410233326us tsft 6.0 Mb/s 5200 MHz 1la -13dBm signal [bit 22] Action (98:da:c4:85:db:20

(oui Unknown)): Reserved(21l) Act#l
23:08:37.459150 [bit 15] Data IV:3aaaa Pad 0 KeyID 0
23:08:37.459610 [bit 15] Data IV:3aaaa Pad 0 KeyID 0O

[

]

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

42/46

https://bootlin.com

Tracing packets:

\J
B O BRRB Q¢ P kIESE e ER
L] ‘Apply a display filter ... <Ctrl-/> =L
No. Time Souce ~ Destination Protocol Length Text item Type/Subtype Info S £
8 5.70751.. FreeboxSas_3a:aB8:e9 Broadcast 802.11 321 » Beacon frame Beacon frame, SN=2460,
9 6.70333.. TpLinkTechno_85:db:20 Intel_dc:fa:dc 802.11 264 Probe Response Probe Response, SN=856
10 6.70587.. TpLinkTechno_85:db:20 Intel_dc:fa:dc 802.11 264 Probe Response Probe Response, SN=857
11 6.94943.. Intel_dc:fa:dc TpLinkTechno_85:db:20 802.11 43 Authentication Authentication, SN=18,
12 6.95234.. TpLinkTechno_85:db:20 Intel_dc:fa:dc 802.11 86 Authentication Authentication, SN=858

6.95821.. Intel dc:fa:dc TpLinkTechno _85:db:20 802.11 Association Request Association Request, S
14 6.96028.. TpLinkTechno_85:db:20 Intel_dc:fa:dc 802.11 223 Association Response Association Response,
15 6.96390.. TpLinkTechno_85:db:20 Intel_dc:fa:dc EAPOL 189 QoS Data Key (Message 1 of 4)
16 6.97698.. Intel_dc:fa:dc TpLinkTechno_85:db:20 EAPOL 168 QoS Data Key (Message 2 of 4)
17 6.97891.. TpLinkTechno 85:db:20 Intel dc:fa:dc EAPOL 245 QoS Data Key (Message 3 of 4)
an & Aanen Totel desfosde Tol fmlTankan 05 dbhaan Fano S P o PRSI
1 »
+ Frame 13: 179 bytes on wire (1432 bits), 179 bytes captured = 00 B0 Bd 00 04 80 02 EE Oc GO GO B0 AR B 80 0B -
+ Radiotap Header v@, Length 13 2010 00 98 da c4 85 db 20 14 75 5b dc fa dc 98 da c4 ul
» 802.11 radio information 2020 85 db 20 be 00 FEMEE Pa B0 00 @b 54 72 6f 70 69 . ---Tropi
~ IEEE 882.11 Association Request, Flags: 63 61 6f 5f 35 47 01 @8 Oc 12 18 24 30 48 60 6c cao_5G-- ---$6H'1
Type/Subtype: Association Request (OxB000) 30 14 01 00 00 Of ac @4 01 GO 0@ Of ac @4 01 @0 B-----on o
+ Frame Control Field: ©x@ee0@ 00 f ac 82 8c 80 2d 1a e7 19 17 ff ff 80 80 B -« ... -v caiaain
.000 PEED PEEO PEE® = Duration: © microseconds 00 00 @0 00 00 2c 01 @1 0O GO0 00 0O 00 G0 00 BB ---..- gt Eesesai
Receiver address: TpLinkTechno_85:db:20 (98:da:c4:85:db:20 00 00 7f 0a 04 00 ca 02 01 40 00 c@ 01 21 bf 6 ..o -@---

Destination address: TpLinkTechno_85:db:20 (98:da:c4:85:db
Transmitter address: Intel_dc:fa:dc (14:75:5b:dc:fa:dc)
Source address: Intel dc:fa:dc (14:75:5b:dc:fa:dc)
BSS Id: TpLinkTechnu 85:db:2@ (98:da:c4:85:db:20)
eses BOEO = Fragment number: ®
0@@9 @G@B 1011 = Sequence number: 11
[WLAN Flags:
~ IEEE 802.11 Wireless Management
+~ Fixed parameters (4 bytes)
- CapahllltlES Information: 8x8811

e Sk ESS capabilities: Transmitter ic
IBSS status: Transmitter belongs
Reserved: ©
Reserved: ©
Privacy: Data confidentiality re
Short Preamble: Not Allowed
Critical Update Flag: False
Nontransmitted BSSIDs Critical L
Spectrum Management: Not Impleme
QoS: Not Implemented
) 4 Short Slot Time: Not in use >
4 »

© 7 Short Preamble (wlan.fixed.capabilities.short_preamble), 1 bit

f6 71 90 83 fa ff 60 60 fa ff 80 20 3b 1c 80 51 B I
53 54 73 74 75 76 77 78 79 7Ya Tb 7Tc 7d 7e 7f 80
81 83 84 85 86 00 82 80 87 85 dd @7 @@ 50 f2 B2 n
00 @1 ee R

- v v v -

Packets: 145 - Dropped: 0 (0.0%) Profile: Default

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/46

https://bootlin.com

Embedded Linux and kernel engineering

Some additional resources

bootlin

4@\/ Going further

» The official Linux Wireless documentation

» 802.11 standard (access to latest version is paying, but older versions are free)
» the Linux wireless mailing list

» the kernel documentation for cfg80211 and mac80211

» taking a look at the existing drivers

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/46

https://wireless.docs.kernel.org/en/latest/
https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
https://lore.kernel.org/linux-wireless/
https://www.kernel.org/doc/html/latest/driver-api/80211/cfg80211.html
https://www.kernel.org/doc/html/latest/driver-api/80211/mac80211.html
https://elixir.bootlin.com/linux/v6.16.2/source/drivers/net/wireless
https://bootlin.com

Thank you!

Questions?

Alexis Lothoré
alexis.lothore@bootlin.com
Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/46

https://bootlin.com/pub/conferences/
https://bootlin.com

	Alexis Lothoré
	Agenda
	802.11
	802.11 layers
	802.11 networks
	The hardware
	Full MAC / Soft MAC
	The wireless stack in Linux
	The wireless phy and virtual interfaces
	The struct wiphy
	SoftMac drivers
	The struct ieee80211_ops
	The struct ieee80211_ops
	The struct ieee80211_ops
	The struct ieee80211_ops
	RX path
	SoftMac drivers
	SoftMac drivers
	FullMac drivers
	FullMac drivers
	FullMac drivers
	Firmware management
	Security / key management
	Regulatory
	Regulatory
	Regulatory
	Power save
	Power save
	Power save
	Design tips
	iw
	iw
	iw
	wpa_supplicant
	wpa_supplicant
	Logs and tracepoints
	Tracing packets: monitor interface & tcpdump
	Tracing packets: wireshark
	Going further

