
Embedded Linux and kernel engineering

Unpacking the Linux WiFi
stack: Writing and integrating
wireless drivers
Alexis Lothoré
alexis.lothore@bootlin.com

Embedded Linux Conference Europe 2025

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Alexis Lothoré

‣ Embedded Linux engineer and trainer at Bootlin since 2023
🞄 Expertise in Embedded Linux
🞄 Development, consulting and training
🞄 Strong open-source focus

‣ Working on embedded systems since 2016
‣ BSP, device drivers, networking, wireless, CI, eBPF

🞄 Microchip WILC1000
🞄 Microchip WILC3000

‣ Teaching training courses
‣ Living in Toulouse, south of France
‣ alexis.lothore@bootlin.com

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/46

mailto:alexis.lothore@bootlin.com
https://bootlin.com

Agenda

‣ 802.11 basics
‣ Linux wireless stack
‣ Implementing wireless drivers
‣ Userspace tools / testing
‣ Debugging

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/46

https://bootlin.com

Embedded Linux and kernel engineering

802.11 basics

802.11

‣ “Wi-Fi” is a marketing name
‣ IEEE standard, first released in 1997, with many revisions and amendments:

🞄 802.11b: 11Mb/s
🞄 802.11a: 5Ghz band, 54Mb/s
🞄 802.11g: Data Rate Extension in 2.4Ghz
🞄 802.11n (“Wi-Fi 4”): MIMO, 72 Mb/s, 600 Mb/s
🞄 802.11ac (“Wi-Fi 5”): Data Rate Extension in 5GHz, MU-MIMO
🞄 802.11ax (“Wi-Fi 6/6E”): new 6GHz band, higher data rates
🞄 802.11be (“Wi-Fi 7”): MLO, higher data rates
🞄 …

‣ IEEE task group aims to release Wi-Fi 8 specification (802.11bn) in 2028

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/46

https://bootlin.com

802.11 layers

‣ PHY layer
🞄 different modulations, depending on the version (mostly

OFDM for modern devices)
🞄 different frequency operating bands (2.4GHz, 5GHz,

6GHz …)
‣ MAC layer

🞄 CSMA-CA
🞄 3 types of “frames”: Management, Control, Data
🞄 scanning, authentication, association, network

maintenance, security, power saving…
802.11 place in the OSI model

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/46

https://bootlin.com

802.11 networks

‣ Infrastructure (BSS): one or many stations (STA)
connected to a special station called Access Point (AP)

‣ Other types of networks available:
🞄 Ad Hoc (IBSS): no Access Point. Each station can only

communicate with direct neighbors
🞄 Mesh (802.11s): multi-hop networks
🞄 …

A simple infrastructure network

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/46

https://bootlin.com

The hardware

‣ Wide variety of platforms:
🞄 Supporting different 802.11 standards
🞄 exposed through different buses: PCI, USB, SDIO, uart…
🞄 sometimes with multiple features: e.g. WLAN/BT
🞄 generally depends on a firmware to operate

A TP-Link PCI card

A Microchip module

A Dlink USB dongle

‣ Identifying some exact hardware/upstream support is sometimes a challenge !
🞄 Ezurio LWB5+ -> Laird LWB5+ -> Infineon Airoc CYW43439

■ former Cypress -> former Broadcom -> brcmfmac

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/46

https://bootlin.com

Embedded Linux and kernel engineering

Linux Wireless Stack

Full MAC / Soft MAC

Not all chips/drivers handle the same amount of features:

‣ FullMAC devices handle both PHY and MAC
🞄 The MAC layer is handled by the device firmware
🞄 [+] performance level may be higher
🞄 [−] hardware is more complex/expensive
🞄 [−] if there is a bug in the mac layer, it is harder to identify and fix

‣ SoftMAC devices only handle the PHY part, the MAC part is handled by the kernel:
🞄 [+] simpler/cheaper hardware
🞄 [+] all softmac devices benefit from 802.11 MAC layer improvements and fixes
🞄 [−] the overall wireless performance may be CPU bound.

‣ ~35 SoftMAC drivers and ~9 FullMAC drivers upstream
🞄 see drivers/net/wireless

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/46

https://elixir.bootlin.com/linux/v6.16/source/drivers/net/wireless
https://bootlin.com

The wireless stack in Linux

‣ cfg80211 is the core subsystem handling
wireless configuration
🞄 interacts directly with fullmac drivers
🞄 or goes through mac80211 for softmac drivers

‣ mac80211 layer is a software implementation
of IEEE80211 MAC
🞄 frames crafting and parsing
🞄 encryption/decryption
🞄 queues management
🞄 rate control
🞄 multiple state machines implementing IEEE

802.11 MAC
‣ userspace interacts with cfg80211 through

nl80211 command and events

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/46

https://bootlin.com

The wireless phy and virtual interfaces

‣ The hardware is represented by a wiphy, on top
of which multiple virtual interfaces (VIFs) can
coexist concurrently

‣ concurrent VIF combinations depend on the
driver, and on the hardware/firmware for
FullMac

‣ you generally want/have at least one STA VIF
automatically created

‣ additional VIFs can be created from userspace
(e.g with iw)

A single wiphy with two VIFs

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/46

https://bootlin.com

Embedded Linux and kernel engineering

Implementing wireless drivers

The struct wiphy

‣ Represents the physical wireless device and its
capabilities

‣ Drivers need to allocate and configure a struct wiphy
for each wireless device:
🞄 supported modes ? (STA, AP, monitor, P2P…)
🞄 supported bands and channels ?
🞄 non-standard capabilities and constraints ?
🞄 supported concurrent interfaces combinations ?

enum nl80211_iftype {
 NL80211_IFTYPE_UNSPECIFIED,
 NL80211_IFTYPE_ADHOC,
 NL80211_IFTYPE_STATION,
 NL80211_IFTYPE_AP,
 NL80211_IFTYPE_AP_VLAN,
 NL80211_IFTYPE_WDS,
 NL80211_IFTYPE_MONITOR,
 NL80211_IFTYPE_MESH_POINT,
 NL80211_IFTYPE_P2P_CLIENT,
 NL80211_IFTYPE_P2P_GO,
 NL80211_IFTYPE_P2P_DEVICE,
 NL80211_IFTYPE_OCB,
 NL80211_IFTYPE_NAN,
 [...]
};

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/46

https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://bootlin.com

SoftMac drivers

SoftMAC drivers use the mac80211 kernel API, exposed by include/net/mac80211.h
‣ ieee80211_alloc_hw:

🞄 consumes a struct ieee80211_ops
🞄 allocates a struct ieee80211_hw

‣ the struct ieee80211_hw contains members to be configured by the driver:
🞄 a struct wiphy
🞄 an additional flags fields describing driver capabilities or offloaded features

‣ ieee80211_register_hw: registers the wireless interface
🞄 automatically creates a STA net device (if relevant)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/46

https://elixir.bootlin.com/linux/v6.16/source/include/net/mac80211.h
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_alloc_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_register_hw
https://bootlin.com

The struct ieee80211_ops

‣ Contains the basic driver ops that mac80211 layer will call
‣ Checked by mac80211 at allocation time
‣ Plenty of ops, with a minimal mandatory set:

int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw, bool suspend);
int (*add_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*remove_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*tx)(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
 struct sk_buff *skb);
void (*wake_tx_queue)(struct ieee80211_hw *hw, struct ieee80211_txq *txq);
int (*config)(struct ieee80211_hw *hw, u32 changed);
void (*configure_filter)(struct ieee80211_hw *hw, unsigned int changed_flags,
 unsigned int *total_flags, u64 multicast);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://bootlin.com

The struct ieee80211_ops

‣ add_interface/remove_interface
🞄 called when a virtual interface creation or deletion is requested
🞄 this is really about vif init and deinit

‣ start/stop
🞄 called before first vif is enabled / after last vif is disabled
🞄 this is really about wireless hardware init/deinit
🞄 you must perform all needed initialization needed to make the hardware able to run

mac80211 hw/vif management

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://bootlin.com

The struct ieee80211_ops

‣ tx
🞄 mac80211 “pushes” a struct sk_buff to the driver
🞄 the driver must call ieee80211_tx_status_skb

once TX is done, or ieee80211_free_txskb if
status can’t get deduced (e.g. TX failure)

‣ wake_tx_queue
🞄 notification to ask driver to “pull” packets from

mac80211
■ use ieee80211_tx_dequeue to pull struct sk_buff
■ optionally, use ieee80211_next_txq to let mac80211

balance TX queues
🞄 drivers can use ieee80211_handle_wake_tx_queue

as a default implementation: mac80211 will then call
the tx ops mac80211 driver simplified TX path

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_tx_status_skb
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_free_txskb
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_tx_dequeue
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_next_txq
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_handle_wake_tx_queue
https://bootlin.com

The struct ieee80211_ops

‣ config
🞄 called when hardware needs to be reconfigured: monitor flag set, device is now idle,

channel change requested, etc
🞄 receives a enum ieee80211_conf_changed bitfield defining what should be reconfigured
🞄 also called on first interface being enabled

‣ configure_filter: ask driver/hw to configure the RX frame filter, ie additional
frames to be passed to mac 80211
🞄 useful for example for the monitor mode to see frames that would otherwise be handled

directly by the hardware/the driver

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_conf_changed
https://bootlin.com

RX path

‣ multiple APIs to pass received frames to mac80211:
🞄 ieee80211_rx: the default RX callback, passes a single struct sk_buff
🞄 ieee80211_rx_list: passes a list of SKBs to mac80211, they are processed but not

passed yet to the stack, drivers need to call netif_receive_skb_list
🞄 ieee80211_rx_napi: to be used if your driver using NAPI to handle RX
🞄 ieee80211_rx_ni: when RX is done in process context (e.g. workqueue)
🞄 ieee80211_rx_irqsafe: when RX is done in hard interrupt context

‣ Those callbacks expect a 802.11 header in front of passed SKBs

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx
https://elixir.bootlin.com/linux/v6.16/A/ident/sk_buff
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_list
https://elixir.bootlin.com/linux/v6.16/A/ident/netif_receive_skb_list
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_napi
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_ni
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_rx_irqsafe
https://bootlin.com

SoftMac drivers

struct ieee80211_ops my_ieee80211_ops {
 .start = my_start,
 .stop = my_stop,
 .add_interface = my_add_interface,
 .remove_interface = my_remove_interface,
 .config = my_config,
 .tx = my_tx,
 .wake_tx_queue = my_wake_tx_queue,
 .configure_filter = my_configure_filter
};

int my_driver_probe(struct pci_device *pdev)
{
 struct ieee80211_hw *hw;
 [...]
 priv->rx_wq = alloc_workqueue("rx wq", WQ_BH, 0);
 INIT_WORK(&priv->rx_work, my_rx_work_handler);
 ret = request_irq(pdev->irq, irq_handler, IRQF_SHARED,
 "my_device", NULL);
 [...]
 hw = ieee80211_alloc_hw(sizeof(struct my_priv),
 my_ieee80211_ops);
 SET_IEEE80211_DEV(hw, &pdev->dev);
 SET_IEEE80211_PERM_ADDR(hw, mac_addr);
 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
 ieee80211_hw_set(hw, SUPPORT_PS);
 ieee80211_hw_set(hw, SIGNAL_DBM);
 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
 BIT(NL80211_IFTYPE_AP);
 hw->wiphy->bands[NL80211_BAND_2GHZ] = &my_supported_bands;
 [...]
 ret = ieee80211_register_hw(hw);
}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/46

https://bootlin.com

SoftMac drivers

static irqreturn_t irq_handler(int irq, void *arg)
{
 [...]
 queue_work(priv->rx_wq, priv->rx_work);
 [...]
}

static void my_rx_work_handler(struct work_struct *work)
{
 struct my_priv *priv = container_of(work, struct my_priv, rx_work);
 char buffer[MAX_RAW_DATA_LEN];
 struct sk_buff *skb;

 read_packet(priv, &buffer);
 // mac80211 expects a 802.11 header in front of the SKB
 skb = prepare_80211_skb(buffer)
 [...]
 ieee80211_rx(priv->hw, skb);
}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/46

https://bootlin.com

FullMac drivers

‣ the driver must handle many aspects that were managed by mac80211:
🞄 struct ieee80211_ops -> struct cfg80211_ops
🞄 struct ieee80211_hw -> bare struct wiphy
🞄 ieee80211_alloc_hw -> struct wiphy_new
🞄 the core manipulates VIFs through struct wireless_dev

‣ the driver must allocate and register a struct net_device to get a default interface
🞄 net devices and wireless dev are linked through the ieee80211_ptr field in the net device

structure

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/46

https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_alloc_hw
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy_new
https://elixir.bootlin.com/linux/v6.16/A/ident/wireless_dev
https://elixir.bootlin.com/linux/v6.16/A/ident/net_device
https://bootlin.com

FullMac drivers

‣ struct cfg80211_ops exposes a lot of ops (128 !), but no strict mandatory list
‣ As a starter, for STA:

struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy, const char *name,
 unsigned char name_assign_type, enum nl80211_iftype type,
 struct vif_params *params);
int (*del_virtual_intf)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*scan)(struct wiphy *wiphy, struct cfg80211_scan_request *request);
int (*connect)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme);
int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, u16 reason_code);
int (*add_key)(struct wiphy *wiphy, struct net_device *netdev, int link_id, u8 key_index, bool pairwise,
 const u8 *mac_addr, struct key_params *params);
int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, int link_id, u8 key_index, bool pairwise,
 const u8 *mac_addr);
int (*set_default_key)(struct wiphy *wiphy, struct net_device *netdev, int link_id, u8 key_index,
 bool unicast, bool multicast);

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/46

https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://elixir.bootlin.com/linux/v6.16/source/include/net/cfg80211.h#L4612
https://bootlin.com

FullMac drivers

‣ The driver needs to implement a struct net_device_ops

int (*ndo_open)(struct net_device *dev);
int (*ndo_stop)(struct net_device *dev);
netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, struct net_device *dev);

‣ Received frames are passed to the network stack through netif_rx or
napi_gro_receive
🞄 exception: userspace can register to specific 802.11 frames, those should be passed with

cfg80211_rx_mgmt

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/46

https://elixir.bootlin.com/linux/v6.16/A/ident/net_device_ops
https://elixir.bootlin.com/linux/v6.16/A/ident/netif_rx
https://elixir.bootlin.com/linux/v6.16/A/ident/napi_gro_receive
https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_rx_mgmt
https://bootlin.com

Firmware management

‣ Wireless devices need some firmware to operate
‣ Generally published and hosted in the linux-firmware repository
‣ Drivers fetch the needed firmware through the request_firmware API
‣ Firmwares can be stored in different places:

🞄 in the root filesystem/an initramfs (/lib/firmware)
🞄 embedded directly in the kernel image (less common, and less convenient)

‣ Drivers are responsible of loading and starting the firmware

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/46

https://docs.kernel.org/driver-api/firmware/core.html
https://elixir.bootlin.com/linux/v6.16/A/ident/request_firmware
https://bootlin.com

Security / key management

‣ the linux wireless stack only handles basic connection modes:
🞄 open
🞄 shared key (WEP)

‣ standard connection methods (WPA2, WPA3) are deferred to userspace (e.g.
wpa_supplicant)
🞄 the supplicant then handles the authent/assoc/handshake state machine through nl80211

commands and events
‣ some features may be offloaded to the firmware (stated in wiphy->ext_features):

🞄 NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_PSK: is able to handle the WPA handshake
when set as STA

🞄 NL80211_EXT_FEATURE_4WAY_HANDSHAKE_STA_1X: is able to handle 802.1x handshake
🞄 NL80211_EXT_FEATURE_4WAY_HANDSHAKE_AP_PSK: is able to handle the WPA handshake

when set as AP

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/46

https://bootlin.com

Regulatory

‣ wireless devices must follow per-country regulatory rules:
🞄 usable radio bands
🞄 max TX power
🞄 misc constraints

‣ the official source of regulatory domains rules for linux is wireless_regdb

country NL: DFS-ETSI
 (2400 - 2483.5 @ 40), (100 mW)
 (5150 - 5250 @ 80), (200 mW), NO-OUTDOOR, AUTO-BW, wmmrule=ETSI
 (5250 - 5350 @ 80), (100 mW), NO-OUTDOOR, DFS, AUTO-BW, wmmrule=ETSI
 (5470 - 5725 @ 160), (500 mW), DFS, wmmrule=ETSI
 # short range devices (ETSI EN 300 440-1)
 (5725 - 5875 @ 80), (25 mW)
 # WiFi 6E
 (5945 - 6425 @ 320), (23), NO-OUTDOOR, wmmrule=ETSI
 # 60 GHz band channels 1-4 (ETSI EN 302 567)
 (57000 - 66000 @ 2160), (40)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/46

https://git.kernel.org/pub/scm/linux/kernel/git/wens/wireless-regdb.git/
https://bootlin.com

Regulatory

‣ cfg80211 requests regulatory database when cfg80211 is initialized, through
reg_query_database
🞄 expects a regulatory.db file installed in /lib/firmware

‣ userspace can initiate a change in regulatory domain:

iw reg set NL

‣ kernel will then enforce the corresponding rules on each wiphy
‣ by default the kernel apply the “world” regulatory to new devices until a specific

regulatory domain is set

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/46

https://elixir.bootlin.com/linux/v6.16/A/ident/reg_query_database
https://bootlin.com

Regulatory

‣ drivers can be notified about updates with the wiphy->reg_notifier callback

‣ drivers can hint the kernel with a specific domain by issuing a regulatory_hint call
(e.g. for the initial regulatory configuration)

‣ drivers can also enforce specific regulatory management, described through flags in
the struct wiphy:
🞄 REGULATORY_CUSTOM_REG

🞄 REGULATORY_STRICT_REG

🞄 REGULATORY_WIPHY_SELF_MANAGED

‣ General focus (for both drivers and wireless core): it must be impossible for the
final user to unknowingly fail to comply with local regulations.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/46

https://elixir.bootlin.com/linux/v6.16/A/ident/regulatory_hint
https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy
https://bootlin.com

Power save

‣ Battery-powered station devices can periodically sleep
🞄 STA sends a NULL frame, AP reacts by:

■ putting any pending messages into a buffer
■ setting a “pending messages” bit in beacon frames

🞄 Periodically, STA will wake, read beacons, and send a PS-
Poll frame to ask for the pending messages

🞄 When leaving power save mode, station sends a new
NULL frame with the updated power save status

STA entering power-save

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/46

https://bootlin.com

Power save

‣ SoftMAC drivers set the IEEE80211_HW_SUPPORTS_PS flag to let mac80211 know that
they support power save.
🞄 The driver/hardware must:

■ handle the NULL frames
■ or ask the mac80211 to handle those with IEEE8021_HW_PS_NULLFUNC_STACK

🞄 IEEE80211_HW_SUPPORTS_DYNAMIC_PS: the hardware can handle dynamic powersave
‣ FullMAC drivers directly set the set_power_mgmt callback in struct cfg80211_ops

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/46

https://elixir.bootlin.com/linux/v6.16/A/ident/cfg80211_ops
https://bootlin.com

Power save

‣ Userspace can toggle power save:

iw dev wlan set power_save on

‣ Caution: power save may be enabled by default !
🞄 if driver has set WIPHY_FLAG_PS_ON_BY_DEFAULT
🞄 if the kernel is built with CONFIG_CFG80211_DEFAULT_PS

‣ It is worth disabling it in development/when debugging a specific issue

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/46

https://elixir.bootlin.com/linux/v6.16/A/ident/CONFIG_CFG80211_DEFAULT_PS
https://bootlin.com

Design tips

‣ hardware should stay off “as long as possible”
🞄 firmware should not run right at probe time

‣ init/register order matters: immediately after wiphy_register/
ieee80211_register_hw, the kernel can start calling your ops

‣ if you must support different versions of your device (eg: revisions, or busses), make
sure to keep the core code separated from the
🞄 create bus files
🞄 create revision-specific files

‣ don’t be scared by the amount of things to implement
🞄 start small, you do not need to implement all the features
🞄 implement stubs for basic ops, so you can learn when they are called

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/46

https://elixir.bootlin.com/linux/v6.16/A/ident/wiphy_register
https://elixir.bootlin.com/linux/v6.16/A/ident/ieee80211_register_hw
https://bootlin.com

Embedded Linux and kernel engineering

Userspace tools/testing

iw

‣ The default userspace tool to interact with wireless devices
‣ https://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git
‣ Uses the nl80211 layer to interact with the kernel
‣ CLI interface with various subcommands

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/46

https://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git
https://bootlin.com

iw

‣ list known devices and properties:

$ iw phy

‣ add a virtual interface on a specific phy

$ iw phy phy0 interface add wlan1 type managed

‣ start a scan

$ iw dev wlan1 scan

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/46

https://bootlin.com

iw

‣ connect to an AP (works only with open or WEP networks)

iw dev wlan1 connect my_ssid 6926366642517d785936792458

‣ get connection status

$ iw dev wlan1 link

‣ monitor kernel userspace wireless messages

iw event

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/46

https://bootlin.com

wpa_supplicant

‣ wpa_supplicant is the standard supplicant for Linux, supporting a wide range of
security standards and algorithms

‣ provides:
🞄 the wpa_supplicant daemon which interacts with the kernel with nl80211 messages
🞄 wpa_cli as a command line tool to control wpa_supplicant

‣ alternative: iwd

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/46

https://w1.fi/wpa_supplicant/
https://git.kernel.org/pub/scm/network/wireless/iwd.git/
https://bootlin.com

wpa_supplicant

‣ prepare wpa_supplicant configuration

ctrl_interface=/var/run/wpa_supplicant
update_config=1

‣ start wpa_supplicant

$ wpa_supplicant -Dnl80211 -iwlan1 -c wpa_supplicant.conf

‣ use wpa_cli to connect (here: a WPA2 network)

$ wpa_cli
> scan
> scan_results
> add_network
> set_network 1 ssid my_ssid
> set_network 1 psk 5up3r53cr3t
> enable_network 1
> status

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/46

https://bootlin.com

Embedded Linux and kernel engineering

Debugging

Logs and tracepoints

‣ mac80211 and cfg80211 expose a lot of debug logs

$ echo "module cfg80211 +p" > /proc/dynamic_debug/control
$ echo "module mac80211 +p" > /proc/dynamic_debug/control

‣ they also come with plenty of tracepoints

$ trace-cmd record -e cfg80211 -e mac80211
 <C-c>
$ trace-cmd report
 wpa_supplicant-879 [005] 21530.129640: drv_return_int: phy6 - 0
 wpa_supplicant-879 [005] 21530.129644: drv_vif_cfg_changed: phy6 vif:wlp0s20f3(2) changed:0x4000
 wpa_supplicant-879 [005] 21530.129647: drv_return_void: phy6
 wpa_supplicant-879 [005] 21530.129652: drv_link_info_changed: phy6 vif:wlp0s20f3(2) link_id:0, changed:0xe0
 wpa_supplicant-879 [005] 21530.129980: drv_return_void: phy6
 wpa_supplicant-879 [005] 21530.129986: drv_sta_state: phy6 vif:wlp0s20f3(2) sta:98:da:c4:85:db:20
state: 0->1
 wpa_supplicant-879 [005] 21530.130494: drv_return_int: phy6 - 0
 wpa_supplicant-879 [005] 21530.130519: cfg80211_new_sta: netdev:wlp0s20f3(13), 98:da:c4:85:db:20
 [...]

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/46

https://bootlin.com

Tracing packets: monitor interface & tcpdump

$ iw phy phy0 interface add wlan1 type monitor
$ ip link set wlan1 up
$ iw dev wlan1 switch channel 40
$ tcpdump -i wlan1
23:08:37.396657 6.0 Mb/s [bit 15] Authentication (Open System)-1: Successful
23:08:37.399008 804764209us tsft 6.0 Mb/s 5200 MHz 11a -13dBm signal [bit 22] Authentication (Open System)-2:
23:08:37.400445 6.0 Mb/s [bit 15] Assoc Request (Tropicao_5G) [6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0 Mbit]
23:08:37.402747 804767427us tsft 6.0 Mb/s 5200 MHz 11a -13dBm signal [bit 22] Assoc Response AID(2) :
PRIVACY : Successful
23:08:37.406459 804771545us tsft 6.0 Mb/s 5200 MHz 11a -13dBm signal [bit 22] EAPOL key (3) v2, len 95
23:08:37.415943 6.0 Mb/s [bit 15] EAPOL key (3) v1, len 117
23:08:37.417970 804783110us tsft 6.0 Mb/s 5200 MHz 11a -13dBm signal [bit 22] EAPOL key (3) v2, len 151
23:08:37.418584 6.0 Mb/s [bit 15] EAPOL key (3) v1, len 95
23:08:37.438645 804802933us tsft 6.0 Mb/s 5200 MHz 11a -16dBm signal [bit 22] Beacon (Tropicao_5G) [6.0* 9.0
12.0* 18.0 24.0* 36.0 48.0 54.0 Mbit] ESS CH: 40, PRIVACY
23:08:37.456535 288410233326us tsft 6.0 Mb/s 5200 MHz 11a -13dBm signal [bit 22] Action (98:da:c4:85:db:20
(oui Unknown)): Reserved(21) Act#1
23:08:37.459150 [bit 15] Data IV:3aaaa Pad 0 KeyID 0
23:08:37.459610 [bit 15] Data IV:3aaaa Pad 0 KeyID 0
[...]

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/46

https://bootlin.com

Tracing packets: wireshark

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/46

https://bootlin.com

Embedded Linux and kernel engineering

Some additional resources

Going further

‣ The official Linux Wireless documentation
‣ 802.11 standard (access to latest version is paying, but older versions are free)
‣ the Linux wireless mailing list
‣ the kernel documentation for cfg80211 and mac80211
‣ taking a look at the existing drivers

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/46

https://wireless.docs.kernel.org/en/latest/
https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
https://lore.kernel.org/linux-wireless/
https://www.kernel.org/doc/html/latest/driver-api/80211/cfg80211.html
https://www.kernel.org/doc/html/latest/driver-api/80211/mac80211.html
https://elixir.bootlin.com/linux/v6.16.2/source/drivers/net/wireless
https://bootlin.com

Thank you!
Questions?

Alexis Lothoré
alexis.lothore@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/46

https://bootlin.com/pub/conferences/
https://bootlin.com

	Alexis Lothoré
	Agenda
	802.11
	802.11 layers
	802.11 networks
	The hardware
	Full MAC / Soft MAC
	The wireless stack in Linux
	The wireless phy and virtual interfaces
	The struct wiphy
	SoftMac drivers
	The struct ieee80211_ops
	The struct ieee80211_ops
	The struct ieee80211_ops
	The struct ieee80211_ops
	RX path
	SoftMac drivers
	SoftMac drivers
	FullMac drivers
	FullMac drivers
	FullMac drivers
	Firmware management
	Security / key management
	Regulatory
	Regulatory
	Regulatory
	Power save
	Power save
	Power save
	Design tips
	iw
	iw
	iw
	wpa_supplicant
	wpa_supplicant
	Logs and tracepoints
	Tracing packets: monitor interface & tcpdump
	Tracing packets: wireshark
	Going further

