
Romain Gantois
Paresh Bhagat

Snag It, Flash It, Ship It :
Rethinking Factory Flashing

Introduction to the Speakers

Software Engineer, Bootlin

Romain Gantois

Working as Software Engineer with

experience in Linux (kernel,

userspace), tools.

Software Engineer, TI

Paresh Bhagat

Working as Software Engineer

with experience in Linux (kernel,

userspace), hypervisor, tools.

About us: TI Processors and Open source

Upstream FIRST mentality!

Decades of contribution and collaboration Ingrained culture to give back to the community

Focus on long term, sustainable and quality products

Upstream and opensource ecosystem in device architecture

Upstream FIRST!

Table of Contents

• Factory Flashing Methods
• Problem Statement
• U-boot flash writer
• Flow
• Features
• Limitations
• Snagboot
• From Snagboot to Snagfactory
• Using Snagfactory

Factory Flashing Methods

Before Soldering
Memory Chip is programmed

while its standalone.

Requires Specialized hardware
like a gang programmer.

Limited flexibility as post
production updates are difficult.

Generally faster

After Soldering
Memory chip is programmed after it

is soldered to board.

Utilizes standard on board
connectors like USB, UART, JTAG.

More flexible as flashing can be
done without removing the chip.

Limited by interface speed

Problem Statement

No Scalability
Legacy tools struggle with high-
volume production creating
bottlenecks.

Poor Cross Platform
Many existing flashing tools are
platform-dependent (e.g.,
Windows or Linux-only

Closed Source Tools
Many vendor provided tools are
proprietary, difficult to
customize and integrate.

Vendor Specific
Tightly coupled to a single
vendor, creating compatibility
issues and requiring different
processes.

GUI Centric tools
Tools designed primarily for GUI
are not easily automatable.

Time-Consuming Flashing
Slow, error-prone processes,
delaying production timelines

U-boot flash writer

Uses dfu-util - an open source tool for host side
implementation of the DFU

Source - processor-sdk/uboot-flash-writer

Supports parallel flashing

Written in python. Supports both Linux and
Windows OS

https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/
https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/
https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/
https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/
https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/
https://git.ti.com/cgit/processor-sdk/uboot-flash-writer/

Flow

Flow (continued)

Flow (continued)

Flow (continued)

Features

 Factory
Flashing

Error
Reporting

Supports
both Linux

and
Windows

Multiple
boot

media

Limitations

Needs U-boot
Support

No GUI Speed

Snagboot

Snagboot in 2023: a CLI tool for Linux

Snagrecover

Targets USB-recovery
mode

SoC-specific

Downloads and runs U-
Boot on the target

Snagflash

Targets a standardized
USB gadget

Fastboot, DFU or UMS

Writes data to non-volatile
storage

ROM

eMMC

eMMC

snagrecover

snagflash

reset ...

Vendor USB
boot

Standard USB
gadget

Current support range

NXP
i.MX

Microchip
SAMA5

TI
AM335,
AM6x

ST
STM32MP

Xilinx
ZynqMP

Allwinner
SUNXI

Intel
KeemBay

Broadcom
BCM2711

/2712

Firmware Configuration Files

tiboot3:

 path: /path/to/tiboot3.bin

tispl:

 path: /path/to/tispl.bin

u-boot:

 path: /path/to/u-boot.img

 example: AM62x

DFU:

 snagflash -P dfu -p 0483:df11 -D 0:binaries/u-boot.stm32

UMS:

 snagflash -P ums -s binaries/u-boot.stm32 -b /dev/sdb1

Fastboot:

 snagflash -P fastboot -p ... -f download:boot.img -f flash:0:1

Fastboot-Uboot:

 snagflash -P fastboot-uboot -p 0483:0afb -I flash.cmd

Snagflash Protocols

https://github.com/bootlin/snagboot/blob/main/docs/snagflash.md

From Snagboot to Snagfactory

Building upon Snagboot

Snagboot

Recovery tool
Flashing tool

CLI and Linux-oriented

+ Windows 10/11 support

+ Graphical User Interface

+ Parallelization of tasks

 User Interface
Board
status list

Action bar

Development milestones

Public Snagfactory release
Nov 20, 2024v2.0

Initial Snagboot release
May 23, 2023v1.0

Latest Snagboot release
Jul 21, 2025v2.4

Last v1 release
Feb 24, 2024v1.3

Supported 6 SoC families, DFU
UMS and Fastboot

Mostly bug fixes and small
improvements

Windows support, Snagfactory
tool, AM6x support,
Fastboot-Uboot protocol

ZynqMP, STM32MP2, Intel
KeemBay support. Various bug
fixes and improvements

Using Snagfactory

PyPi package

pip install snagboot[gui]

From source

./install.sh --with-gui

PyPi package

pip install snagboot[gui]

Dependencies
python >= 3.9, pip, ensurepip, libusb

Installation on Linux

Installation on Windows

PyPi package

pip install snagboot[gui]

From source

pip install .[gui]

Dependencies
python >= 3.9, pip, ensurepip, libusb, zadig

Binary installer

snagboot_installer_win64.
exe

From source

pip install .[gui]

https://github.com/bootlin/snagboot/releases/download/v2.4/snagboot_installer_win64.exe
https://github.com/bootlin/snagboot/releases/download/v2.4/snagboot_installer_win64.exe

USB access on Linux

USB recovery tools in general require read/write access
to USB devices exposed by the target

Typical solution: per VID:PID udev rules

ROM-exposed VID:PID pairs are provided in snagboot:
snagrecover –udev

Other ones should be added on a per-device basis

USB access on Windows

Typical solution: binding libusb-compatible drivers to
specific VID:PID pairs

The open-source Zadig tool can be used for this

https://zadig.akeo.ie/

On windows, unrecognized USB devices aren’t usually
directly accessible

 Documentation entry points
• Snagboot README

– Installation instructions + basic usage
• Snagfactory introduction

– Tour of the Snagfactory GUI and working principles
• Snagfactory configuration

– Reference for writing YAML configuration files for Snagfactory

https://github.com/bootlin/snagboot/blob/main/README.md
https://github.com/bootlin/snagboot/blob/main/docs/snagfactory.md
https://github.com/bootlin/snagboot/blob/main/docs/snagfactory_config.md

 Configuration file

boards:

 "0451:6165": am625

 "03fd:0050": zynqmp

soc-models:

 am625-firmware:

 am625-tasks:

 am625-firmware :

 tiboot3:

 path: ...

 tispl:

 path: ...

 u-boot:

 path: ...

 am625-tasks :

 - target-device: mmc0

 - task: gpt

 args : …

 - task : flash

 args : ...

 Task Pipelines

Pending
• task

Running
task

Board
#1

Board
#2

Board
#3

Board
#1

Board
#4

Board
#5

Each task runs in a
separate process

Task #1

Task #2

Task #3

 Task Pipelines

Pending
• task

Running
task

Board
#1

Board
#2

Board
#3

Board
#1

Board
#4

Board
#5

Completed
task

Failed
task

Task #1

Task #2

Task #3

 Task Pipelines

Pending
• task

Running
task

Board
#1

Board
#2

Board
#3

Board
#1

Board
#4

Board
#5

Completed
task

Failed
task

Task #1

Task #2

Task #3

Tasks

Flash

part: entire device
OR GPT partition
OR MTD partition
OR eMMC hw partition

image: /path/to/file
image-offset: optional

Tasks

Flash

● Supports BMAP
● Supports larger-than-RAM files
● Requires U-Boot Fastboot buffer address

Tasks

GPT
- name: partition name
 size: partition size
 start: partition offset
 bootable: set GPT “bootable” flag
 uuid: GPT UUID
 type: GPT type UUID
 image: optional file to flash

Tasks

Main use case: "oem_run: <U-Boot shell command>"

Run

- "snagflash fastboot command"

Tasks

mtd-parts

reset

prompt-
operator

eMMC

emmc-
hwpart

reset

Define non-persistent
MTD partitions

Send reset command
and recover device

Pause task pipeline and
request operator
action

Permanently write
eMMC hardware
partition layout

Scanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phaseScanning phase

Factory flashing phase

Log view phase

Log file
<session timestamp>

summary: 5 done 1 failed

config: <config used>

results:

0451:6165 at 3-5.3.4: DONE

0451:6165 at 3-5.3.2: DONE

0451:6165 at 3-5.3.7.2: DONE

FACTORY LOG:

BOARD LOG 3-5.3.4:

BOARD LOG 3-5.3.2:

 FACTORY LOG:

<ts> Start

<ts> 3-5.3.4 starting recovery task

<ts> 3-5.3.4 phase: BoardPhase.ROM -> BoardPhase.RECOVERING

<ts> 3-5.3.2 starting recovery task

 BOARD LOG:

<ts> Installing firmware tiboot3

<ts> Searching for partition id…

<ts> Found DFU Functional descriptor: wTransferSize = 512

 Development goals

● Expand Snagboot’s support base

● Improve error reporting

● Improve documentation

● Get community feedback

● Introduce new factory flashing tasks

Thank you for listening!

Q&A
• Contact Information:

– Paresh Bhagat <p-bhagat@ti.com>

• Also on IRC @ libera.chat #linux-ti

Learn more about TI products
‒ https://www.ti.com/linux

‒ https://www.ti.com/processors

‒ https://www.ti.com/edgeai

https://www.ti.com/microcontrollers-mcus-processors/overview.html
https://www.ti.com/processors
https://www.ti.com/edgeai

	Snag It, Flash It, Ship It : Rethinking Factory Flashing
	Slide 2
	About us: TI Processors and Open source
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

