Embedded Linux Conference Europe 2025

Using Device Tree

Overlays to Support

4
Complex PCI Devices in bOOUIﬂ

Linux

Hervé Codina
herve.codina@bootlin.com Q

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.

Corrections, , suggestions, contri butions an d translations are welcome!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Hervé Codina

Embedded Linux engineer at Bootlin

Embedded Linux expertise
Development, consulting and training
Contributor to the Microchip LAN966x PCl driver in Linux

Strong open-source focus
Open-source contributor

Living in Toulouse, France

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/51

Using Device Tree Overlays to Support Complex PCl Devices in Linux

Use case

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4% Use case
A

> Microchip LAN966x PCle device
> AMD Alveo FPGA PCle cards
¢ Peripheral controllers exposed on PCle BARs (DMA, UARTs, ...)
® Peripherals have they own drivers available upstream
» The ASIX9100 multi purpose device (GPIO, 12C, SPI, ...)
https://lore.kernel.org/1lkml/bad63409-ed2b-4cef-988b-
3c143636e9fa@alliedtelesis.co.nz/
> The RaspberryPl RP1 PCle device
https://lore.kernel.org/lkml/cover.1748526284.git.andrea.porta@suse.com/

> Linux Plumbers 2023 "Non-discoverable devices in PCl devices’ from Rob Herring
https://www.youtube.com/watch?v=MVGE1nZW7BQ

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/51

https://lore.kernel.org/lkml/bad63409-ed2b-4cef-988b-3c143636e9fa@alliedtelesis.co.nz/
https://lore.kernel.org/lkml/bad63409-ed2b-4cef-988b-3c143636e9fa@alliedtelesis.co.nz/
https://lore.kernel.org/lkml/cover.1748526284.git.andrea.porta@suse.com/
https://www.youtube.com/watch?v=MVGElnZW7BQ

Microchip LAN966x Chip

Microchip LAN966x chip: Two operating modes
Traditional SoC
Already supported
PCle device

Our use case

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/51

4% Microchip LAN966x SoC

LAN9668

ARM
’7 Ghrtex A7 —‘ Ethemet switch
SPI GPIO | RGMII / SERDES

» Traditional SoC

® Internal CPU cores
® Set of peripherals (reset, clocks, GPIOs, 12C, ...)
® Described by Device Tree arch/arm/boot/dts/microchip/lan966x.dtsi

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/51

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/lan966x.dtsi

4% Microchip LAN966x SoC, 1an966x.dtsi

Extracted and simplified from lan966x.dtsi

/4
model = "Microchip LAN Soc*;
compatible = “microchi
soc {
conpatible mple-bus'
#address-cells = <1>;
#size-cells = <I>;
ranges;
switch: switch@e00oeooo {
compatible = "microchip, lang66x-switch";
reg = <0xe0000000 0x0100000>,
<0xe2000000 0x0800000>;
reg-naes = "cpu”, "gcb”;
interrupts = <GIC'SPI 12 IRQ_TYPE LEVEL HIGH>,
<GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>;
interrupt-nanes = "xtr", "ana";
ethernet-ports {
porte: ported {
¥
%
)
reset: reset-controller@e200400c {
tible = “microchip, 1an966x-switch-reset";
reg = <0xe200400c 0x4>;
¥
gpio: pinctrlee2004064 {
conpatible = "
<0xe2004064
<0xe2010024 0x138>,
gpio-controlle
#gpio-cells = <2>;
¥
ndiol: mdioe200413c {
compatible = "microchip, lands6x-miin";
phyo: ethernet-phyel {
b
3
3

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

7/51

Microchip LAN966x PCle device

External host (PC, ete.) LANg668

Intel

X868 7 Ethernet swich

PCle device
Internal CPU cores replaced by a PCle endpoint

Peripherals accessed by the PCle root complex
Memory-mapped 1/O through PCle BARs
Interrupts routed to PCle INTX interrupt

Same set of peripherals
Drivers can be reused

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/51

LAN966x PCI driver

LAN966x PCle device — PCI driver
Match LAN966x PCl Vendor/Device 1D
Loaded only for the LAN966x PCI device

How to instantiate other drivers from the LAN966x PCl driver ?

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

@o Using Device Tree Overlays to Support Complex PCl Devices in Linux

Drivers Instantiation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/51

Driver reuse

How to instantiate other drivers from the LAN966x PCl driver ?

Drivers used in SoC: Based on DT
Do not reinvent the wheel: Avoid drivers modifications
Avoid old board.c description: Avoid massive description in PCl driver C code

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/51

Driver reuse

How to instantiate other drivers from the LAN966x PCl driver ?

Drivers used in SoC: Based on DT
Do not reinvent the wheel: Avoid drivers modifications
Avoid old board.c description: Avoid massive description in PCl driver C code

Use a Device Tree overlay

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/51

DT overlay

Device Tree description
Modify base Device Tree at runtime

Add DT nodes/properties when applied
Remove DT nodes/properties when removed

Can be applied on a specific DT node

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

13/51

4% DT overlay for LAN966x

Extracted and simplified from lan966x.dtsi

Micrachip LAN9GG ramw SoC”;

model
compatible = “microchip, land6!

soc {

compatible =
#address-cells
#size-cells = <1>;

simple-bus”;
<>,

ranges;

switch: awitchecdaasond
compat: icrochip, lan966x-switch";
TeB = <0xe0000000 00100000,
<0xe2000000 0x0800000>;

interrupts = <GICSPI 12 IRQ_TYPE LEVEL HIGH>,
GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>

interrupt-names < xir, ane;
ethernet-ports {

%
¥

reset: reset-controller@e200400c {
conpatible i 1an966x-swi tch-reset”;
reg = <0xe200400c 0x4>

¥

gpio: pinctrl@e2004064 {
conpati icrochip, lan966x-pinctrl®;
Feg = <0xe2004064 0xb4>,
<0xe2010024 0x138>;
gpio-controller;
#gpio-cells = <2>;

iy

ndiol: mdio@e200413c {
G il = ity Jeveser i

%

Extracted and simplified from LAN966x PCI device DT overlay

fragnent@o {
arget-path="
_overlay__ {
#address-cells = <3>;
#size-cells = <2>

pei-ep-bused
compatible = “sinple-bus’;
#address-cells = <1>;
#size-cells = <I>;

* map @0xe2000000 (32M8) to BARO (CPU)
3 nap E6xe0060000 (164B) o BARI (AMBA)

ranges = <0xe2000000 0x00 0x00 0x00 0x2000000
€x20000000 0x01 8x00 0x00 8x1000000>;

switch: sultchecdonposs (
conpatil

iicrochip, 1an966x-switch" ;

reg = " ove0000000 01000005
<0xe2000000 0x0800000>;

reg-nanes = z

interrupt-parent = <8oi

interrupts = <12 IRe_ TVPE LEVEL HIGH>,
IRQ_TYPE_LEVEL_HIGH>;

)Merruut'names = "xtr", *ana"

ethernet-ports {

i
i

reset: reset@e200400c {
compatible = "microchip, 1ang66x-switch-reset”;
reg = <0xe200400c 0xd>

b

gpio: pinctrlee2004064 {
patible = "microchip,1an966x-pinctrl”;
reg = <0xe2004064 Oxb4>
<0xe2010024 0x138>;
pio-controller;
#gpio-cells = <2>;
¥

mdiol: mdio@e200413c
compatible = "microchip, langg6x-niin";

I

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

14/51

@o Using Device Tree Overlays to Support Complex PCl Devices in Linux

Attach DT overlay

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/51

Where to attach the overlay 7

The overlay describes the PCl board (internal components)
Attach to the DT node related to the PCl board

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/51

Where to attach the overlay 7

The overlay describes the PCl board (internal components)
Attach to the DT node related to the PCI board ?
DT nodes for PCl devices not present in base DT
PCl devices discovered at runtime (PCl enumeration)
PCl topology (bridges, devices) are system specific
Only the PCI controller (PCl root bridge) is present in a base DT

Marvell Armada base DT

model = "Marvell Armada 37xx SoC";
compatible = "marvell,armada3700";

soc {
pcied: pcieed0d70000 {
compatible = "marvell,armada-3700-pcie”;
device_type = "pci”;
reg = <0 0xd0070000 0 0x20000>;
/%

* No sub-nodes for bridges and devices attached to the
* PCI bus
*/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

17/51

PCl enumeration

From PCI root bridge, scan the PCl bus (heavily simplified)
1. A PCI Device or Bridge is detected on the PCI bus
Create a struct pci_dev for this device

. Compute and assign resources
Bridge or Device 7

LSRN

if Bridge: Continue enumeration scanning busses behind the bridge
if Device: Ok, look at next component connected to the PCI bus

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

18/51

https://elixir.bootlin.com/linux/latest/ident/pci_dev

PCl enumeration

No DT nodes for PCl bridges and devices

other node
base DT node

Base DT | PCI Root Bus } ------------------
description base DT node
PCI Bridge
PCI Device
PCI

enumeration

PCI Device
PCI Device

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/51

Create missing nodes

Create missing PCI DT nodes at runtime
CONFIG_PCI_DYNAMIC_OF_NODES=y.
Creation done during the PCI enumeration.

From PCI root bridge, scan the PCl bus (heavily simplified)

1. A PCI Device or Bridge is detected on the PCl bus
2. Create a struct pci_dev for this device
3. Compute and assign resources
4. Create a DT node for this device
Set DT properties to value based on computed and assigned resources
5. Bridge or Device ?

if Bridge: Continue enumeration scanning busses behind the bridge
if Device: Ok, look at next component connected to the PCI bus

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/pci_dev

Create missing nodes

DT nodes for PCl bridges and devices available

enumeration

.-
BaseDT . PCI Root Bus }
description !
i
pcr

PCI Bridge

other node
base DT node

PCI Device

PCI Device

PCIDevice f=======mmmmmcnanannn

Controller
base DT node

DT node
runtime;
DT node
runtime,
runtime
runtime;

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/51

4% PCI device/bridge DT node creation

> CONFIG_PCI_DYNAMIC_OF_NODES=y

> Auvailable since kernel v6.6
» of_pci_make_dev_node() (call from pci_bus_add_device()).

¢ Direct call for PCl bridges
® Using final fixup (DECLARE_PCI_FIXUP_FINAL() per PCl device)
¢ Create node
= Bridge node name: pci@<slot_number>,<function_number>
m Device node name: dev@<slot_number>,<function_number>
¢ Add node properties using of _pci_add_properties().
Attach node to parent DT node
Attach node to struct device (PCI device or bridge)

» of_pci_remove_node() (call from pci_stop_dev()).

® Detach node from struct device
® Detach node from the parent DT node
® Destroy node

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/of_pci_make_dev_node
https://elixir.bootlin.com/linux/latest/ident/pci_bus_add_device
https://elixir.bootlin.com/linux/latest/ident/of_pci_add_properties
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/of_pci_remove_node
https://elixir.bootlin.com/linux/latest/ident/pci_stop_dev
https://elixir.bootlin.com/linux/latest/ident/device

4% PCl device bridge DT node creation

Properties added by of _pci_add_properties()
> For bridges
® compatible

® reg

® device_type = "pci"

® #address-cells and #size-cells
® ranges

[}

> For devices

compatible

reg

#address-cells and #size-cells

ranges

#interrupt-cells and interrup-controller.

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/51

https://elixir.bootlin.com/linux/latest/ident/of_pci_add_properties

PCl device/bridge DT node creation

Interesting DT nodes properties
Address translations:
ranges: Used at each PCl level in the PCI tree
Interrupt translations:
interrupt-controller: Consider the PCI device as an interrupt controller

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/51

'ranges’ property, simple translation

#address-cells

for parent address cells fsize-cells
! for child size cells

............................. e,

#address-cells
for child address cells

e e

ranges = < child_basel parent_basel sizel >,
< child_base2 parent_base2 size2 >,
< child_base3 parent_base3 size3 >;

1) Find matching item 2) Translate using matching item N

child_baseN + sizeN =—>>

child address

> ———> translated address

child_baseN —> parent_baseN

translated address = parent_baseN + offset
with
offset = child address - child_baseN

child_baseN = child address < child_baseN + sizeN

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/51

4% 'ranges’ property, pci translation

#address-cells

for parent address cells #size-cells

for child size cells

#address-cells
for child address cells

ranges = < child_flagsl child_basel parent_basel sizel >,
< child_flags2 child_base2 parent_base2 size2 >,
< child_flags3 child_base3 parent_base3 size3 >;

device-type = "pci";

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/51

‘ranges’ property, PCl Flags

Flags are defined only for device_type = "pci".
32bit word: npt000ss bbbbbbbb dddddfff rrrrrrrr

n: Relocatable region
p: Prefetchable region
t: Aliased address flag
ss: Space code
00: Configuration space
01: 1/0 space
10: 32bit memory space
11: 64bit memory space
bbbbbbbb: PCI bus number
ddddd: Device number
fff: Function number
rerrererr: Register number

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/51

4% 'ranges’ property, pci translation

#address-cells
for child address cells

#address-cells
for parent address cells #size-cells
: for child size cells

P AN

ranges = < child_flags1 child_basel parent_basel sizel >,
< child_flags2 child_base2 parent_base2 size2 >,
< child_flags3 child_base3 parent_base3 size3 >;
device-type = "pci";

1) Find matching item 2) Translate using matching item N
child flags matches child_flagsN ('ss' flags)

&&

child_baseN + sizeN —>

child address
(without child flags)

———> translated address
offset =======na=- >

child_baseN —>>

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

parent_baseN

28/51

1 1 t
ranges’ property

PCl host bridge:

PCI translation
Translate from PCl addresses to host bus addresses

PCI bridges:

PCI translation
Translate from PCl secondary busses addresses to PCl primary busses addresses

PCI devices:

Simple translation
Translate from PCl BARs to PCl addresses

Device-tree overlay

Simple translation
Translate from chip addresses to BARs addresses

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/51

‘ranges’ property, Example

reset controller: reg = 0xe200400c

pcie@do070000 {
compatible = "marvell,armada-3700-pcie”;

#address-cells = <0x03>; 1- —
Feize-cells = <0x02>; > translated at pci-ep bus
device_type = "pci"; .
/% ' <- Child flags and addr -> <-parent addr-> <--- size ---> %/ Chlp addr — BAR addr
ranges = /*MEM3Z*/ <0x82000000 0x00 0xe8000000 0x00 0xe8000000 0x00 0x7f00000>,
*I0 */ <0x81000000 0x00 0x00000000 0x00 0xefff0000 0x00 0x8018000>; addr Oxee @X@@ 0x400C

pcieo,o {

compatible = "pcillab,100", "pciclass,060400", "pciclass,0604";

sodiress-cells - <0107; > translated at dev@0,0

'size-cells = X H

device type = "peits

/ivme A 1 Child flags and addr -> <-parent flags and addr -> <--- size ---> %/ BAR addr — PCl addr

ranges = /*MEM32%/ <0x82000000 0x00 0xe8000000 0x82000000 0x00 0xe8000000 0x00 0x4400000>;

L addr = 0x82010000 0x00 0xe800400c

compatible = "pcil1055,9660", "pciclass,020000", "pciclass,0200";
#address-cells = <0x03>;

#size-cells = <0x02>; > tra nS|ated at pCI@0,0
/% <-child addr -> <-parent flags and addr -> <--- size ---> %/
ranges = /*BARO*/ <0x00 0x00 0x00 0x82010000 0x00 0xe8000000 0x00 0x2000000>,

/*BAR1%/ <0x01 0x00 0x00 0x82010000 0x00 0xead00000 0x00 0x1000000>, PCI addr — PCI addr

/*BAR2x/ <0x02 0x00 0x00 0x82010000 0x00 0xeb@0000® 0x00 0x0800000>;

I addr = 0x82010000 0x00 0xe800400c

compatible = "simple-bus";

e S > translated at pcie@d0070000

/% <child addr> <-parent addr-> <- size -> %/ PCI dd h dd
ranges = <0xe2000000 0x00 0x00 0x00 0x2000000>, /* 0xe2000000 translated using BAR 0 */ %

<0xe0000000 0x01 0x00 0x00 0x1000000>; /* 0xe@000000 translated using BAR 1 */ a r OSt a r
reset@e200400c { addr = 0x00 0xe800400c

compatible = "microchip,lan966x-switch-reset";
reg = <0xe200400c 0x04>;

From CPU: 0x00000000e800400c

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/51

4% 'interrupt-map’ property

The interrupt-map property is used to re-map interrupts.

#interrupt-cells = <1>;

#size-cells = <2>;

#address-cells = <3>;

interrupt-map-mask = <0xf800 0 @ 7>;

interrupt-map = <0x9000 @ @ 1 &open-pic 3 1>, /*
<0x9000 @ @ 2 &open-pic 4 1>, /*
<0x9000 0 0 3 &open-pic 1 1>, /*
<0x9000 0 @ 4 &open-pic 2 1>; /*

> A phandle for the parent interrupt controller is needed

INTA
INTB
INTC
INTD

*/
*/
*/
*/

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

31/51

'interrupt-map’ property, phandle issue

A phandle for the parent interrupt controller is needed
Not always available (ACPI)

Do not use interrupt-map

— Consider the PCI device as an interrupt controller
(available since kernel v6.11)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/51

4@ PCl device as an interrupt controller

deveo,0 { /* <---- PCI device DT node */
compatible = "pci1055,9660", "pciclass,020000", "pciclass,0200";

/* PCI device as an interrupt controller */
#interrupt-cells = <0x01>;
interrupt-controller;

pci-ep-bus@o {
compatible = "simple-bus";

switch: switch@e0000000 {
compatible = "microchip,lan966x-switch";
reg = <0xe0000000 0x0100000>,
<0xe2000000 0x0800000>;
reg-names = "cpu", "gcb";

interrupt-parent = <&oic>;

interrupts = <12 IRQ_TYPE_LEVEL_HIGH>,
<9 IRQ_TYPE_LEVEL_HIGH>;

interrupt-names = "xtr", "ana";

B

01c@e00c0120 {
/* Interrupt controller available in the LAN966x Chip */
compatible = "microchip,lan966x-oic";
reg = <0xe00c0120 0x190>;

/* No interrupt-parent property */
interrupts = <@x00>; /% <---- Connected to PCI INTx */

#interrupt-cells = <0x02>;
interrupt-controller;

iE
Y

> switch needs interrupts 9 and 12 from

oic

> oic

Classical interrupt description with
interrupts, interrupts-parents

needs interrupts 0 (PCI INTXx)

No interrupts-parents
Walk parent nodes until an interrupt
controller is found
Found the LAN966x PCI device node
Handled by the LAN966x PCI driver
m Create an interrupt domain
m Route interrupt 0 to the PCI INTx

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

33/51

Using Device Tree Overlays to Support Complex PCl Devices in Linux

ACPI

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/51

ACPl and DT

On x86, hardware description done by ACPI.

No Device Tree.

enumeration

PCI Device

PCI Device

.-
ACPL s PCI Root Bus
description !
‘-
PCI Bridge
:
:
PCI :
'
.
.
:

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

35/51

ACPl and DT

On x86, hardware description done by ACPI.

No-DevieeTFree Device Tree available.
Empty DT root node created at boot
Create missing PCI bridge/devices DT nodes (CONFIG_PCI_DYNAMIC_OF _NODES)
No PCI root bus DT node

ACPI R
description

PCIL _
enumeration

DT root node
boot

PCI Bridge

PCI Device

PCI Device

PCIDevice |f====mmmmmmmceaaaann

7”7

runtime
runtime
runtime;
runtime,

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

36/51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES

ACPl and DT

On x86, hardware description done by ACPI.
No-Device—Tree Device Tree available.
Empty DT root node created at boot
Create missing PCl bridge/devices DT nodes (CONFIG_PCI_DYNAMIC_OF _NODES)
No PCl root bus DT node — Create a DT node when the host bridge registers

ACPI R
description

PCI _
enumeration

DT root node
boot
| PCI Root Bus |

PCI Bridge

PCI Device

PCI Device

PCIDevice |f=====mmmmmmecaaaann

DT node
(runtime)

runtime,
runtime;
runtime
runtime

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

37/51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES

4% PCI host bridge DT node creation

> CONFIG_PCI_DYNAMIC_OF_NODES=y

> Available since kernel v6.15
» of_pci_make_host_bridge_node() (call from pci_register_host_bridge()).
® Create node
® node name: pci@<domain_number>,<bus_number>
Add node properties using of _pci_add_host_bridge_properties().
Avoid platform bus to handle this device (node attached to root node)
Attach created node to root DT node
Attach created node to struct device (PCl host bridge, PCl root bus)
» of_pci_remove_host_bridge_node() (call from pci_stop_root_bus()).

¢ Detach node from struct device
¢ Detach node from the parent DT node (root DT node)
® Destroy the node

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/51

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/of_pci_make_host_bridge_node
https://elixir.bootlin.com/linux/latest/ident/pci_register_host_bridge
https://elixir.bootlin.com/linux/latest/ident/of_pci_add_host_bridge_properties
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/of_pci_remove_host_bridge_node
https://elixir.bootlin.com/linux/latest/ident/pci_stop_root_bus
https://elixir.bootlin.com/linux/latest/ident/device

4% PCl host bridge DT node creation

Properties added by of _pci_add_host_bridge_properties()
> device_type = "pci"
P> #address-cells, #size-cells
> ranges
> ...

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/51

https://elixir.bootlin.com/linux/latest/ident/of_pci_add_host_bridge_properties

Using Device Tree Overlays to Support Complex PCl Devices in Linux

LAN966x PCI driver

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/51

& LAN966x PCl driver,

PCl device

as an interrupt controller

Simplified (error check and error path removed)
struct pei_dev_intr_ctrl {

struct pci_dev *pci_dev;

struct irq_domain *irq_domain;

int irq;
}
static int pci_dev_irq_domain_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hw)
{
irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
return 0;
3
static const struct irq_domain_ops pci_dev_irq_domain_ops = {
.map = pci_dev_irq_domain_map,
.xlate = irq_domain_xlate_onecell,
};
static irgreturn_t pci_dev_irq_handler(int irq, void *data)
{
struct pci_dev_intr_ctrl xintr_ctrl = data;
int ret;
ret = generic_handle_domain_irq(intr_ctrl->irq_domain, 0);
return ret ? IRQ_NONE : IRQ_HANDLED;
}
static struct pci_dev_intr_ctrl #pci_dev_create_intr_ctrl(struct pci_dev *pdev)
{

struct pci_dev_intr_ctrl xintr_ctrl;
struct fwnode_handle *fwnode;
int ret

funode = dev_fuwnode(&pdev->dev);
if (!fwnode)

return ERR_PTR(-ENODEV);
intr_ctrl = kmalloc(sizeof (xintr_ctrl), GFP_KERNEL);
intr_ctrl->pci_dev = pdev;
intr_ctrl->irq_domain = irq_domain_create_linear(fwnode,
intr_ctrl);

&pci_dev_irq_domain_ops,

pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_INTX);

intr_ctrl->irq = pci_irq_vector(pdev, 0);

request_irq(intr_ctrl->irg, pci_dev_irq_handler, IRQF_SHARED,
pci_name(pdev), intr_ctrl);

return intr_ctrl;
3

> Handle a dedicated IRQ domain
> 1 interrupt in the domain

> Forward the INTx interrupt to the
interrupt in the domain

static void pci_dev_remove_intr_ctrl(struct pci_dev_intr_ctrl xintr_ctrl)
{

free_irq(intr_ctrl->irq, intr_ctrl);
pei_free_irq_vectors(intr_ctrl->pci_dev);
irq_dispose_mapping(irq_find_mapping(intr_ctrl->irq_domain, 0))
irq_domain_remove(intr_ctrl->irq_domain);

kfree(intr_ctrl);

}
static void devm_pci_dev_remove_intr_ctrl(void *intr_ctrl)
{

pei_dev_remove_intr_ctrl(intr_ctrl);
3
static int devm_pci_dev_create_intr_ctrl(struct pci_dev *pdev)
{

struct pci_dev_intr_ctrl *intr_ctrl;

intr_ctrl = pci_dev_create_intr_ctrl(pdev);

if (IS_ERR(intr_ctrl))

return PTR_ERR(intr_ctrl);

return devm_add_action_or_reset(&pdev->dev, devm_pci_dev_remove_intr_ctrl, intr_ctrl);

}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

41/51

LAN966x PCI driver, Load/Unload the DT overlay

» DT overlay (dtbo file) embedded in
the driver module

> Load the overlay at the the device DT
node (dev->of_node)

/* Embedded dtbo symbols created by cmd_wrap_S_dtb in scripts/Makefile.lib */
extern char __dtbo_lan966x_pci_begin[];
extern char __dtbo_lan966x_pci_end[];

struct lan966x_pci {
struct device *dev;
struct pci_dev *pci_dev;
int oves_id;

¥

static int 1an966x_pci_load_overlay(struct lan966x_pci *data)

{
u32 dtbo_size = __dtbo_lan966x_pci_end - __dtbo_lan966x_pci_begin;
void *dtbo_start = __dtbo_lan966x_pci_begin;
int ret;

ret = of_overlay_fdt_apply(dtbo_start, dtbo_size, &data->ovcs_id,
data->dev->of_node);
if (ret)
return ret;

return 0;

3
static void 1an966x_pci_unload_overlay(struct lan966x_pci *data)
{

of _overlay_remove(&data->ovcs_id);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

42/51

& LAN966x PCl driver, Probe/Remove

.) o > Create the interrupt controler
?tatlc int 1an966x_pci_probe(struct pci_dev *pdev, const struct pci_device_id xid)

struct device *dev = &pdev->dev;

Struct lansoex pel xdate; > Load the overlay

int ret;

if (!dev->of_node) {
lev_err(dev, "Missing of_node for device\n");

dev_ereCeu, ' Populate platform devices from device-tree

v

’ overlay loaded at dev->of_node
ret = pcim_enable_device(pdev);
if (ret)

return ret;

» Driver available since kernel v6.13

ret = devm_pci_dev_create_intr_ctrl(pdev);
if (ret)
return ret;

data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); static void 1an966x_pci_remove(struct pci_dev *pdev)
if (ldata) {

return -ENOMEM; struct device *dev = &pdev->dev;

struct 1an966x_pci *data = dev_get_drvdata(dev);
dev_set_drvdata(dev, data);

data->dev = dev; of __platform_depopulate(dev);
data->pci_dev = pdev;

1an966x_pci_unload_overlay(data);
ret = lan966x_pci_load_overlay(data);
if (ret) pci_clear_master(pdev);
return ret; >

pci_set_master(pdev); static struct pci_device_id lan966x_pci_ids[] = {
{ PCI_DEVICE(0x1055, 0x9660) },

ret = of_platform_default_populate(dev->of_node, NULL, dev); {
if (ret)

goto err_unload_overlay;

9,

};
MODULE_DEVICE_TABLE(pci, 1an966x_pci_ids);
return 0; static struct pci_driver lan966x_pci_driver = {

.name = "mchp_lan966x_pci"”,

id_table = 1an966x_pci_ids,

1an966x_pci_unload_overlay(data); _probe = 1an966x_pci_probe,

return ret; .remove = 1an966x_pci_remove,
}

err_unload_overlay:

module_pci_driver(lan966x_pci_driver);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/51

DT based
systems

other node
base DT node)
1
PCIRoot Bus [-==q====-=~
1

Base DT/ ACPI __|
description

DT root node
boot,

ACPI
systems

(" DTnode \I

PCI
enumeration

PCI Device

Device
Specific 1
PCI Driver))
Device [~y =="
OF platform N
populated

! Device

DT node
runtime

=
runtime;
runtime

DT
Overlay

overla
overla:
(overlay)

://bootlin.com

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - htt;

44/51

Using Device Tree Overlays to Support Complex PCl Devices in Linux

Specific drivers/sub-systems issues

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/51

Specific drivers/sub-systems issues

SoC designed components, SoC use case:
Builtin
Boot time instantiation

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/51

Specific drivers/sub-systems issues

SoC designed components, new use case:

Builtin Built as modules
Boot-time-instantiation Support insertions and removals

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/51

Specific drivers/sub-systems issues

SoC designed components, new use case:

Builtin Built as modules
Boot-time-instantiation Support insertions and removals

Consequences:

Ref counting issues

Registered component list issues
Memory leak issues
Dependencies issues

Race condition issues

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/51

Specific drivers/sub-systems issues

SoC designed components, new use case:

Builtin Built as modules

Boot-time-instantiation Support insertions and removals
Consequences:

Ref counting issues

Registered component list issues

Memory leak issues

Dependencies issues

Race condition issues

Components impacted (sub-sytems and/or specific drivers), no blame:

syscon fw_devlink
reset i2c muxes
clocks

interrupts

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/51

Thanks

Thanks Clément Léger for:

Starting that work

Exploring several ways of doing

Drawing up basis

Fixing some issues
Thanks Lizhi Hou for:

Introducing the PCI device/bridge DT node creations
Thanks Maintainers for:

Reviewing, discussing, asking for improvements, ...

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

50/51

Questions? Suggestions? Comments?

Hervé Codina

herve.codina@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

https://bootlin.com/pub/conferences/

	Using Device Tree Overlays to Support Complex PCI Devices in Linux
	Use case
	Drivers Instantiation
	Attach DT overlay
	ACPI
	LAN966x PCI driver
	Specific drivers/sub-systems issues

