
Embedded Linux Conference Europe 2025

Using Device Tree
Overlays to Support
Complex PCI Devices in
Linux
Hervé Codina
herve.codina@bootlin.com

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/51

 



Hervé Codina

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Contributor to the Microchip LAN966x PCI driver in Linux
• Strong open-source focus

▶ Open-source contributor
▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/51

 



Using Device Tree Overlays to Support Complex PCI Devices in Linux

Use case

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/51

 



Use case

▶ Microchip LAN966x PCIe device
▶ AMD Alveo FPGA PCIe cards

• Peripheral controllers exposed on PCIe BARs (DMA, UARTs, ...)
• Peripherals have they own drivers available upstream

▶ The ASIX9100 multi purpose device (GPIO, I2C, SPI, ...)
https://lore.kernel.org/lkml/bad63409-ed2b-4cef-988b-
3c143636e9fa@alliedtelesis.co.nz/

▶ The RaspberryPI RP1 PCIe device
https://lore.kernel.org/lkml/cover.1748526284.git.andrea.porta@suse.com/

▶ ...
▶ Linux Plumbers 2023 ’Non-discoverable devices in PCI devices’ from Rob Herring

https://www.youtube.com/watch?v=MVGElnZW7BQ

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/51

 

https://lore.kernel.org/lkml/bad63409-ed2b-4cef-988b-3c143636e9fa@alliedtelesis.co.nz/
https://lore.kernel.org/lkml/bad63409-ed2b-4cef-988b-3c143636e9fa@alliedtelesis.co.nz/
https://lore.kernel.org/lkml/cover.1748526284.git.andrea.porta@suse.com/
https://www.youtube.com/watch?v=MVGElnZW7BQ


Microchip LAN966x Chip

Microchip LAN966x chip: Two operating modes
▶ Traditional SoC

• Already supported
▶ PCIe device

• Our use case

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/51

 



Microchip LAN966x SoC

▶ Traditional SoC
• Internal CPU cores
• Set of peripherals (reset, clocks, GPIOs, I2C, ...)
• Described by Device Tree arch/arm/boot/dts/microchip/lan966x.dtsi

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/51

 

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/microchip/lan966x.dtsi


Microchip LAN966x SoC, lan966x.dtsi

Extracted and simplified from lan966x.dtsi
/ {

model = "Microchip LAN966 family SoC";
compatible = "microchip,lan966";

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;

switch: switch@e0000000 {
compatible = "microchip,lan966x-switch";
reg = <0xe0000000 0x0100000>,

<0xe2000000 0x0800000>;
reg-names = "cpu", "gcb";
interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>,

<GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "xtr", "ana";
...
ethernet-ports {

...
port0: port@0 {

...
};

};
};

reset: reset-controller@e200400c {
compatible = "microchip,lan966x-switch-reset";
reg = <0xe200400c 0x4>;

};

gpio: pinctrl@e2004064 {
compatible = "microchip,lan966x-pinctrl";
reg = <0xe2004064 0xb4>,

<0xe2010024 0x138>;
gpio-controller;
#gpio-cells = <2>;

};

mdio1: mdio@e200413c {
compatible = "microchip,lan966x-miim";
...
phy0: ethernet-phy@1 {

...
};

};
...

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/51

 



Microchip LAN966x PCIe device

▶ PCIe device
• Internal CPU cores replaced by a PCIe endpoint

Peripherals accessed by the PCIe root complex
Memory-mapped I/O through PCIe BARs
Interrupts routed to PCIe INTx interrupt

• Same set of peripherals
Drivers can be reused

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/51

 



LAN966x PCI driver

LAN966x PCIe device → PCI driver
▶ Match LAN966x PCI Vendor/Device ID

• Loaded only for the LAN966x PCI device
▶ How to instantiate other drivers from the LAN966x PCI driver ?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/51

 



Using Device Tree Overlays to Support Complex PCI Devices in Linux

Drivers Instantiation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/51

 



Driver reuse

▶ How to instantiate other drivers from the LAN966x PCI driver ?
• Drivers used in SoC: Based on DT
• Do not reinvent the wheel: Avoid drivers modifications
• Avoid old board.c description: Avoid massive description in PCI driver C code

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/51

 



Driver reuse

▶ How to instantiate other drivers from the LAN966x PCI driver ?
• Drivers used in SoC: Based on DT
• Do not reinvent the wheel: Avoid drivers modifications
• Avoid old board.c description: Avoid massive description in PCI driver C code

▶ Use a Device Tree overlay

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/51

 



DT overlay

▶ Device Tree description
▶ Modify base Device Tree at runtime

• Add DT nodes/properties when applied
• Remove DT nodes/properties when removed

▶ Can be applied on a specific DT node

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/51

 



DT overlay for LAN966x
Extracted and simplified from lan966x.dtsi
/ {

model = "Microchip LAN966 family SoC";
compatible = "microchip,lan966";

soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

ranges;

switch: switch@e0000000 {
compatible = "microchip,lan966x-switch";
reg = <0xe0000000 0x0100000>,

<0xe2000000 0x0800000>;
reg-names = "cpu", "gcb";

interrupts = <GIC_SPI 12 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>;

interrupt-names = "xtr", "ana";
...
ethernet-ports {

...
};

};

reset: reset-controller@e200400c {
compatible = "microchip,lan966x-switch-reset";
reg = <0xe200400c 0x4>;

};

gpio: pinctrl@e2004064 {
compatible = "microchip,lan966x-pinctrl";
reg = <0xe2004064 0xb4>,

<0xe2010024 0x138>;
gpio-controller;
#gpio-cells = <2>;

};

mdio1: mdio@e200413c {
compatible = "microchip,lan966x-miim";
...

};

};

};

Extracted and simplified from LAN966x PCI device DT overlay
/ {

fragment@0 {
target-path="";
__overlay__ {

#address-cells = <3>;
#size-cells = <2>;

pci-ep-bus@0 {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
/*
* map @0xe2000000 (32MB) to BAR0 (CPU)
* map @0xe0000000 (16MB) to BAR1 (AMBA)
*/

ranges = <0xe2000000 0x00 0x00 0x00 0x2000000
0xe0000000 0x01 0x00 0x00 0x1000000>;

switch: switch@e0000000 {
compatible = "microchip,lan966x-switch";
reg = <0xe0000000 0x0100000>,

<0xe2000000 0x0800000>;
reg-names = "cpu", "gcb";

interrupt-parent = <&oic>;
interrupts = <12 IRQ_TYPE_LEVEL_HIGH>,

<9 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "xtr", "ana";
...
ethernet-ports {

...
};

};

reset: reset@e200400c {
compatible = "microchip,lan966x-switch-reset";
reg = <0xe200400c 0x4>;

};

gpio: pinctrl@e2004064 {
compatible = "microchip,lan966x-pinctrl";
reg = <0xe2004064 0xb4>,

<0xe2010024 0x138>;
gpio-controller;
#gpio-cells = <2>;

};

mdio1: mdio@e200413c {
compatible = "microchip,lan966x-miim";
...

};
};

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/51

 



Using Device Tree Overlays to Support Complex PCI Devices in Linux

Attach DT overlay

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/51

 



Where to attach the overlay ?

The overlay describes the PCI board (internal components)
▶ Attach to the DT node related to the PCI board

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/51

 



Where to attach the overlay ?

The overlay describes the PCI board (internal components)
▶ Attach to the DT node related to the PCI board ?

• DT nodes for PCI devices not present in base DT
• PCI devices discovered at runtime (PCI enumeration)
• PCI topology (bridges, devices) are system specific
• Only the PCI controller (PCI root bridge) is present in a base DT

Marvell Armada base DT
/ {

model = "Marvell Armada 37xx SoC";
compatible = "marvell,armada3700";

soc {
pcie0: pcie@d0070000 {

compatible = "marvell,armada-3700-pcie";
device_type = "pci";
reg = <0 0xd0070000 0 0x20000>;
...
/*
* No sub-nodes for bridges and devices attached to the
* PCI bus
*/

};
};

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/51

 



PCI enumeration

▶ From PCI root bridge, scan the PCI bus (heavily simplified)
1. A PCI Device or Bridge is detected on the PCI bus
2. Create a struct pci_dev for this device
3. Compute and assign resources
4. Bridge or Device ?

if Bridge: Continue enumeration scanning busses behind the bridge
if Device: Ok, look at next component connected to the PCI bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/51

 

https://elixir.bootlin.com/linux/latest/ident/pci_dev


PCI enumeration

▶ No DT nodes for PCI bridges and devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/51

 



Create missing nodes

▶ Create missing PCI DT nodes at runtime
• CONFIG_PCI_DYNAMIC_OF_NODES=y.
• Creation done during the PCI enumeration.

▶ From PCI root bridge, scan the PCI bus (heavily simplified)
1. A PCI Device or Bridge is detected on the PCI bus
2. Create a struct pci_dev for this device
3. Compute and assign resources
4. Create a DT node for this device

Set DT properties to value based on computed and assigned resources
5. Bridge or Device ?

if Bridge: Continue enumeration scanning busses behind the bridge
if Device: Ok, look at next component connected to the PCI bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/51

 

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/pci_dev


Create missing nodes

▶ DT nodes for PCI bridges and devices available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/51

 



PCI device/bridge DT node creation

▶ CONFIG_PCI_DYNAMIC_OF_NODES=y
▶ Available since kernel v6.6
▶ of_pci_make_dev_node() (call from pci_bus_add_device()).

• Direct call for PCI bridges
• Using final fixup (DECLARE_PCI_FIXUP_FINAL() per PCI device)
• Create node

Bridge node name: pci@<slot_number>,<function_number>
Device node name: dev@<slot_number>,<function_number>

• Add node properties using of_pci_add_properties().
• Attach node to parent DT node
• Attach node to struct device (PCI device or bridge)

▶ of_pci_remove_node() (call from pci_stop_dev()).
• Detach node from struct device
• Detach node from the parent DT node
• Destroy node

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/51

 

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/of_pci_make_dev_node
https://elixir.bootlin.com/linux/latest/ident/pci_bus_add_device
https://elixir.bootlin.com/linux/latest/ident/of_pci_add_properties
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/of_pci_remove_node
https://elixir.bootlin.com/linux/latest/ident/pci_stop_dev
https://elixir.bootlin.com/linux/latest/ident/device


PCI device bridge DT node creation

Properties added by of_pci_add_properties()
▶ For bridges

• compatible
• reg
• device_type = "pci"
• #address-cells and #size-cells
• ranges
• ...

▶ For devices
• compatible
• reg
• #address-cells and #size-cells
• ranges
• #interrupt-cells and interrup-controller.
• ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/51

 

https://elixir.bootlin.com/linux/latest/ident/of_pci_add_properties


PCI device/bridge DT node creation

Interesting DT nodes properties
▶ Address translations:

• ranges: Used at each PCI level in the PCI tree
▶ Interrupt translations:

• interrupt-controller: Consider the PCI device as an interrupt controller

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/51

 



’ranges’ property, simple translation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/51

 



’ranges’ property, pci translation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/51

 



’ranges’ property, PCI Flags

▶ Flags are defined only for device_type = "pci".
▶ 32bit word: npt000ss bbbbbbbb dddddfff rrrrrrrr

• n: Relocatable region
• p: Prefetchable region
• t: Aliased address flag
• ss: Space code

00: Configuration space
01: I/O space
10: 32bit memory space
11: 64bit memory space

• bbbbbbbb: PCI bus number
• ddddd: Device number
• fff: Function number
• rrrrrrrr: Register number

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/51

 



’ranges’ property, pci translation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/51

 



’ranges’ property

▶ PCI host bridge:
• PCI translation
• Translate from PCI addresses to host bus addresses

▶ PCI bridges:
• PCI translation
• Translate from PCI secondary busses addresses to PCI primary busses addresses

▶ PCI devices:
• Simple translation
• Translate from PCI BARs to PCI addresses

▶ Device-tree overlay
• Simple translation
• Translate from chip addresses to BARs addresses

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/51

 



’ranges’ property, Example

pcie@d0070000 {
compatible = "marvell,armada-3700-pcie";
#address-cells = <0x03>;
#size-cells = <0x02>;
device_type = "pci";
/* <- Child flags and addr -> <-parent addr-> <--- size ---> */
ranges = /*MEM32*/ <0x82000000 0x00 0xe8000000 0x00 0xe8000000 0x00 0x7f00000>,

/*IO */ <0x81000000 0x00 0x00000000 0x00 0xefff0000 0x00 0x0010000>;

pci@0,0 {
compatible = "pci11ab,100", "pciclass,060400", "pciclass,0604";
#address-cells = <0x03>;
#size-cells = <0x02>;
device_type = "pci";
/* <- Child flags and addr -> <-parent flags and addr -> <--- size ---> */
ranges = /*MEM32*/ <0x82000000 0x00 0xe8000000 0x82000000 0x00 0xe8000000 0x00 0x4400000>;

dev@0,0 {
compatible = "pci1055,9660", "pciclass,020000", "pciclass,0200";
#address-cells = <0x03>;
#size-cells = <0x02>;
/* <-child addr -> <-parent flags and addr -> <--- size ---> */
ranges = /*BAR0*/ <0x00 0x00 0x00 0x82010000 0x00 0xe8000000 0x00 0x2000000>,

/*BAR1*/ <0x01 0x00 0x00 0x82010000 0x00 0xea000000 0x00 0x1000000>,
/*BAR2*/ <0x02 0x00 0x00 0x82010000 0x00 0xeb000000 0x00 0x0800000>;

pci-ep-bus@0 {
compatible = "simple-bus";
#address-cells = <0x01>;
#size-cells = <0x01>;
/* <child addr> <-parent addr-> <- size -> */
ranges = <0xe2000000 0x00 0x00 0x00 0x2000000>, /* 0xe2000000 translated using BAR 0 */

<0xe0000000 0x01 0x00 0x00 0x1000000>; /* 0xe0000000 translated using BAR 1 */

reset@e200400c {
compatible = "microchip,lan966x-switch-reset";
reg = <0xe200400c 0x04>;

};
...

reset controller: reg = 0xe200400c
▶ translated at pci-ep-bus

chip addr → BAR addr
addr = 0x00 0x00 0x400c

▶ translated at dev@0,0
BAR addr → PCI addr
addr = 0x82010000 0x00 0xe800400c

▶ translated at pci@0,0
PCI addr → PCI addr
addr = 0x82010000 0x00 0xe800400c

▶ translated at pcie@d0070000
PCI addr → host addr
addr = 0x00 0xe800400c

From CPU: 0x00000000e800400c
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/51

 



’interrupt-map’ property

The interrupt-map property is used to re-map interrupts.

#interrupt-cells = <1>;
#size-cells = <2>;
#address-cells = <3>;
interrupt-map-mask = <0xf800 0 0 7>;
interrupt-map = <0x9000 0 0 1 &open-pic 3 1>, /* INTA */

<0x9000 0 0 2 &open-pic 4 1>, /* INTB */
<0x9000 0 0 3 &open-pic 1 1>, /* INTC */
<0x9000 0 0 4 &open-pic 2 1>; /* INTD */

▶ A phandle for the parent interrupt controller is needed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/51

 



’interrupt-map’ property, phandle issue

▶ A phandle for the parent interrupt controller is needed
▶ Not always available (ACPI)
▶ Do not use interrupt-map

→ Consider the PCI device as an interrupt controller
(available since kernel v6.11)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/51

 



PCI device as an interrupt controller

dev@0,0 { /* <---- PCI device DT node */
compatible = "pci1055,9660", "pciclass,020000", "pciclass,0200";

/* PCI device as an interrupt controller */
#interrupt-cells = <0x01>;
interrupt-controller;

pci-ep-bus@0 {
compatible = "simple-bus";

switch: switch@e0000000 {
compatible = "microchip,lan966x-switch";
reg = <0xe0000000 0x0100000>,

<0xe2000000 0x0800000>;
reg-names = "cpu", "gcb";

interrupt-parent = <&oic>;
interrupts = <12 IRQ_TYPE_LEVEL_HIGH>,

<9 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "xtr", "ana";
...

};

oic@e00c0120 {
/* Interrupt controller available in the LAN966x Chip */
compatible = "microchip,lan966x-oic";
reg = <0xe00c0120 0x190>;

/* No interrupt-parent property */
interrupts = <0x00>; /* <---- Connected to PCI INTx */

#interrupt-cells = <0x02>;
interrupt-controller;

};
};

};

▶ switch needs interrupts 9 and 12 from
oic

• Classical interrupt description with
interrupts, interrupts-parents

▶ oic needs interrupts 0 (PCI INTx)
• No interrupts-parents
• Walk parent nodes until an interrupt

controller is found
• Found the LAN966x PCI device node
• Handled by the LAN966x PCI driver

Create an interrupt domain
Route interrupt 0 to the PCI INTx

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/51

 



Using Device Tree Overlays to Support Complex PCI Devices in Linux

ACPI

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/51

 



ACPI and DT

▶ On x86, hardware description done by ACPI.
▶ No Device Tree.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/51

 



ACPI and DT
▶ On x86, hardware description done by ACPI.
▶ No Device Tree Device Tree available.

• Empty DT root node created at boot
• Create missing PCI bridge/devices DT nodes (CONFIG_PCI_DYNAMIC_OF_NODES)
• No PCI root bus DT node

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/51

 

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES


ACPI and DT
▶ On x86, hardware description done by ACPI.
▶ No Device Tree Device Tree available.

• Empty DT root node created at boot
• Create missing PCI bridge/devices DT nodes (CONFIG_PCI_DYNAMIC_OF_NODES)
• No PCI root bus DT node → Create a DT node when the host bridge registers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/51

 

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES


PCI host bridge DT node creation

▶ CONFIG_PCI_DYNAMIC_OF_NODES=y
▶ Available since kernel v6.15
▶ of_pci_make_host_bridge_node() (call from pci_register_host_bridge()).

• Create node
node name: pci@<domain_number>,<bus_number>

• Add node properties using of_pci_add_host_bridge_properties().
• Avoid platform bus to handle this device (node attached to root node)
• Attach created node to root DT node
• Attach created node to struct device (PCI host bridge, PCI root bus)

▶ of_pci_remove_host_bridge_node() (call from pci_stop_root_bus()).
• Detach node from struct device
• Detach node from the parent DT node (root DT node)
• Destroy the node

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/51

 

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PCI_DYNAMIC_OF_NODES
https://elixir.bootlin.com/linux/latest/ident/of_pci_make_host_bridge_node
https://elixir.bootlin.com/linux/latest/ident/pci_register_host_bridge
https://elixir.bootlin.com/linux/latest/ident/of_pci_add_host_bridge_properties
https://elixir.bootlin.com/linux/latest/ident/device
https://elixir.bootlin.com/linux/latest/ident/of_pci_remove_host_bridge_node
https://elixir.bootlin.com/linux/latest/ident/pci_stop_root_bus
https://elixir.bootlin.com/linux/latest/ident/device


PCI host bridge DT node creation

Properties added by of_pci_add_host_bridge_properties()
▶ device_type = "pci"
▶ #address-cells, #size-cells
▶ ranges
▶ ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/51

 

https://elixir.bootlin.com/linux/latest/ident/of_pci_add_host_bridge_properties


Using Device Tree Overlays to Support Complex PCI Devices in Linux

LAN966x PCI driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/51

 



LAN966x PCI driver, PCI device as an interrupt controller
Simplified (error check and error path removed)
struct pci_dev_intr_ctrl {

struct pci_dev *pci_dev;
struct irq_domain *irq_domain;
int irq;

};

static int pci_dev_irq_domain_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hw)
{

irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
return 0;

}

static const struct irq_domain_ops pci_dev_irq_domain_ops = {
.map = pci_dev_irq_domain_map,
.xlate = irq_domain_xlate_onecell,

};

static irqreturn_t pci_dev_irq_handler(int irq, void *data)
{

struct pci_dev_intr_ctrl *intr_ctrl = data;
int ret;

ret = generic_handle_domain_irq(intr_ctrl->irq_domain, 0);
return ret ? IRQ_NONE : IRQ_HANDLED;

}

static struct pci_dev_intr_ctrl *pci_dev_create_intr_ctrl(struct pci_dev *pdev)
{

struct pci_dev_intr_ctrl *intr_ctrl;
struct fwnode_handle *fwnode;
int ret;

fwnode = dev_fwnode(&pdev->dev);
if (!fwnode)

return ERR_PTR(-ENODEV);

intr_ctrl = kmalloc(sizeof(*intr_ctrl), GFP_KERNEL);
intr_ctrl->pci_dev = pdev;
intr_ctrl->irq_domain = irq_domain_create_linear(fwnode, 1, &pci_dev_irq_domain_ops,

intr_ctrl);
pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_INTX);
intr_ctrl->irq = pci_irq_vector(pdev, 0);
request_irq(intr_ctrl->irq, pci_dev_irq_handler, IRQF_SHARED,

pci_name(pdev), intr_ctrl);

return intr_ctrl;
}

▶ Handle a dedicated IRQ domain
▶ 1 interrupt in the domain
▶ Forward the INTx interrupt to the

interrupt in the domain

static void pci_dev_remove_intr_ctrl(struct pci_dev_intr_ctrl *intr_ctrl)
{

free_irq(intr_ctrl->irq, intr_ctrl);
pci_free_irq_vectors(intr_ctrl->pci_dev);
irq_dispose_mapping(irq_find_mapping(intr_ctrl->irq_domain, 0));
irq_domain_remove(intr_ctrl->irq_domain);
kfree(intr_ctrl);

}

static void devm_pci_dev_remove_intr_ctrl(void *intr_ctrl)
{

pci_dev_remove_intr_ctrl(intr_ctrl);
}

static int devm_pci_dev_create_intr_ctrl(struct pci_dev *pdev)
{

struct pci_dev_intr_ctrl *intr_ctrl;

intr_ctrl = pci_dev_create_intr_ctrl(pdev);
if (IS_ERR(intr_ctrl))

return PTR_ERR(intr_ctrl);

return devm_add_action_or_reset(&pdev->dev, devm_pci_dev_remove_intr_ctrl, intr_ctrl);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/51

 



LAN966x PCI driver, Load/Unload the DT overlay

▶ DT overlay (dtbo file) embedded in
the driver module

▶ Load the overlay at the the device DT
node (dev->of_node)

/* Embedded dtbo symbols created by cmd_wrap_S_dtb in scripts/Makefile.lib */
extern char __dtbo_lan966x_pci_begin[];
extern char __dtbo_lan966x_pci_end[];

struct lan966x_pci {
struct device *dev;
struct pci_dev *pci_dev;
int ovcs_id;

};

static int lan966x_pci_load_overlay(struct lan966x_pci *data)
{

u32 dtbo_size = __dtbo_lan966x_pci_end - __dtbo_lan966x_pci_begin;
void *dtbo_start = __dtbo_lan966x_pci_begin;
int ret;

ret = of_overlay_fdt_apply(dtbo_start, dtbo_size, &data->ovcs_id,
data->dev->of_node);

if (ret)
return ret;

return 0;
}

static void lan966x_pci_unload_overlay(struct lan966x_pci *data)
{

of_overlay_remove(&data->ovcs_id);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/51

 



LAN966x PCI driver, Probe/Remove

static int lan966x_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{

struct device *dev = &pdev->dev;
struct lan966x_pci *data;
int ret;

if (!dev->of_node) {
dev_err(dev, "Missing of_node for device\n");
return -EINVAL;

}

ret = pcim_enable_device(pdev);
if (ret)

return ret;

ret = devm_pci_dev_create_intr_ctrl(pdev);
if (ret)

return ret;

data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)

return -ENOMEM;

dev_set_drvdata(dev, data);
data->dev = dev;
data->pci_dev = pdev;

ret = lan966x_pci_load_overlay(data);
if (ret)

return ret;

pci_set_master(pdev);

ret = of_platform_default_populate(dev->of_node, NULL, dev);
if (ret)

goto err_unload_overlay;

return 0;

err_unload_overlay:
lan966x_pci_unload_overlay(data);
return ret;

}

▶ Create the interrupt controler
▶ Load the overlay
▶ Populate platform devices from device-tree

overlay loaded at dev->of_node
▶ Driver available since kernel v6.13

static void lan966x_pci_remove(struct pci_dev *pdev)
{

struct device *dev = &pdev->dev;
struct lan966x_pci *data = dev_get_drvdata(dev);

of_platform_depopulate(dev);

lan966x_pci_unload_overlay(data);

pci_clear_master(pdev);
}

static struct pci_device_id lan966x_pci_ids[] = {
{ PCI_DEVICE(0x1055, 0x9660) },
{ 0, }

};
MODULE_DEVICE_TABLE(pci, lan966x_pci_ids);

static struct pci_driver lan966x_pci_driver = {
.name = "mchp_lan966x_pci",
.id_table = lan966x_pci_ids,
.probe = lan966x_pci_probe,
.remove = lan966x_pci_remove,

};
module_pci_driver(lan966x_pci_driver);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/51

 



Big picture hierarchy

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/51

 



Using Device Tree Overlays to Support Complex PCI Devices in Linux

Specific drivers/sub-systems issues

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/51

 



Specific drivers/sub-systems issues

▶ SoC designed components, SoC use case:
• Builtin
• Boot time instantiation

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/51

 



Specific drivers/sub-systems issues

▶ SoC designed components, new use case:
• Builtin Built as modules
• Boot time instantiation Support insertions and removals

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/51

 



Specific drivers/sub-systems issues

▶ SoC designed components, new use case:
• Builtin Built as modules
• Boot time instantiation Support insertions and removals

▶ Consequences:
• Ref counting issues
• Registered component list issues
• Memory leak issues
• Dependencies issues
• Race condition issues
• ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/51

 



Specific drivers/sub-systems issues

▶ SoC designed components, new use case:
• Builtin Built as modules
• Boot time instantiation Support insertions and removals

▶ Consequences:
• Ref counting issues
• Registered component list issues
• Memory leak issues
• Dependencies issues
• Race condition issues
• ...

▶ Components impacted (sub-sytems and/or specific drivers), no blame:
• syscon
• reset
• clocks
• interrupts

• fw_devlink
• i2c muxes
• ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/51

 



Thanks

▶ Thanks Clément Léger for:
• Starting that work
• Exploring several ways of doing
• Drawing up basis
• Fixing some issues

▶ Thanks Lizhi Hou for:
• Introducing the PCI device/bridge DT node creations

▶ Thanks Maintainers for:
• Reviewing, discussing, asking for improvements, ...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/51

 



Questions? Suggestions? Comments?

Hervé Codina
herve.codina@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/51

https://bootlin.com/pub/conferences/

	Using Device Tree Overlays to Support Complex PCI Devices in Linux
	Use case
	Drivers Instantiation
	Attach DT overlay
	ACPI
	LAN966x PCI driver
	Specific drivers/sub-systems issues


