
Embedded Linux and kernel engineering

Navigating security trade-offs
in embedded Linux systems
Olivier Benjamin
olivier.benjamin@bootlin.com

Embedded Linux Conference Europe 2025

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!



Olivier Benjamin

‣ Embedded Linux engineer at Bootlin
🞄 Development, consulting and training about embedded Linux
🞄 Open-source focus

‣ Linux kernel device driver developer
‣ Bootloaders, Buildroot and Yocto integration
‣ Open-source contributor
‣ Living in Lyon, France

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/41

https://bootlin.com


Embedded Linux and kernel engineering

Embedded systems security



Security mindset

Security is an ever-increasing concern in embedded systems.

‣ compliance: legislation (CRA), insurance
‣ reputational risk
‣ security is part of the features customers are now expecting

“I want the system to be secure”

‣ Security is not a binary state
‣ We aim to make it harder for the adversary to compromise the system

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/41

https://bootlin.com


The cost of security

‣ Security measures have a cost:
🞄 time (e.g. for implementation)
🞄 dedicated hardware
🞄 bootup time
🞄 complexity

‣ Going for maximum security might not be the right call.

‣ Going for minimum security is most likely the wrong one, though.

‣ Where to place the cursor is our topic.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/41

https://bootlin.com


Threat modeling

What parts of the system should we pay most attention to in order to thwart most of our
adversaries?

This depends on:
‣ the design of the system
‣ the adversaries we expect
‣ the constraints we can afford to put on our users
‣ the level of security we want to achieve

Only some of these factors are technical.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/41

https://bootlin.com


Threat model

A full-fledged threat model is very complex, scaling with the complexity of the system.

Usually means describing your system’s assets:
‣ customer data
‣ cryptographic material
‣ intellectual property

Then your system’s various boundaries:
‣ network ports
‣ physical ports
‣ privilege levels (Exception Levels, sandboxes, RCE vs LCE, …)

And your adversaries

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/41

https://bootlin.com


Embedded Linux and kernel engineering

Security Measures



Security Measures

They are the blockers between your adversaries and your assets, or between different
privilege levels.

Any compromise will come from either:
‣ an unidentified transition
‣ an unintended use of an identified transition
‣ a missing security measure

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/41

https://bootlin.com


Embedded Linux and kernel engineering

Filesystem encryption



Filesystem encryption

‣ Linux makes it look like a normal filesystem
‣ It is never stored unencrypted on the disk
‣ The key is usually either

🞄 derived from a given password
🞄 stored encrypted in a header (possibly multiple times) and decrypted at rutime

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/41

https://bootlin.com


Filesystem encryption

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/41

https://bootlin.com


Filesystem encryption

‣ Will mitigate:
🞄 read-only offline attack on the hardware (“evil maid”)

‣ Will not mitigate:
🞄 essentially anything else

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/41

https://bootlin.com


Filesystem encryption: the cost

‣ small performance overhead
‣ implementation
‣ key provisioning & storage
‣ risk of potential data loss if keys are mismanaged

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/41

https://bootlin.com


Simple Threat Model: no encryption

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/41

https://bootlin.com


Simple Threat Model: encryption

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/41

https://bootlin.com


Cold boot attack

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/41

https://bootlin.com


Filesystem encryption

Systems that benefit:
‣ device exposed to untrusted actors without surveillance
‣ adversarial users (gaming consoles)

Systems that poorly benefit:
‣ devices not storing user or sensitive manufacturer data (routers for instance)
‣ devices under a lot of scrutiny: ATMs
‣ low compute power devices without crypto accelerators

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/41

https://bootlin.com


Embedded Linux and kernel engineering

Secure Boot



Secure Boot

‣ Chain of trusted software
‣ Root of trust

🞄 One or multiple hashes of cryptographic material
🞄 Often embedded in write-once hardware (e.g. fuses)

‣ Must be implemented in all software up to the kernel:
🞄 vendor-provided bootROM
🞄 all bootloader stages

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/41

https://bootlin.com


Secure Boot

Will mitigate:
‣ offline attack from the hardware (“evil maid”)
‣ attempts at gaining access persistance across reboots/updates

if they target non-userland software

Will not mitigate:
‣ runtime compromise of the system
‣ by itself, offline modification of the userland

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/41

https://bootlin.com


Normal Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/41

https://bootlin.com


Normal Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/41

https://bootlin.com


Normal Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/41

https://bootlin.com


Normal Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/41

https://bootlin.com


Secure Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/41

https://bootlin.com


Embedded Linux and kernel engineering

RootFS verification (dm-verity)



RootFS verification (dm-verity)

This is the logical continuation of Secure Boot: how do we guarantee userland has not
been altered?

‣ The idea: generate a hash tree for the entire filesystem
🞄 That hash tree will be stored on a separate device
🞄 The root of the tree might be signed
🞄 Leaves are hashes of a data block

‣ On accessing any data, the kernel will
🞄 walk up the tree until it hits either a node that was already verified or the root
🞄 walk back down, verifying all children nodes on the way

See fs/verity/verify.c

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/41

https://elixir.bootlin.com/linux/v6.16/source/fs/verity/verify.c#L92
https://bootlin.com


RootFS verification (dm-verity)

Will mitigate:
‣ persistence of userland-only code execution

if combined with a properly implemented Secure Boot:
‣ gaining userland code execution from physical access

An adversary that gains root privileges will defeat it

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/41

https://bootlin.com


RootFS verification (dm-verity)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/41

https://bootlin.com


RootFS verification: pitfalls

The security of the entire scheme hinges on:
‣ the root hash
‣ the security of the hash function used (md5 might not be the best choice)
‣ the integrity of the kernel
‣ the kernel command line

To be effective, RootFS verification requires a properly implemented Secure Boot:
‣ Verification of the bootloader, including the kernel command line
‣ Verification of the kernel, including the co-located root hash

It requires a read-only filesystem.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/41

https://bootlin.com


RootFS verification (dm-verity): the cost

‣ Making the RootFS read-only
🞄 using a RO filesystem: EROFS, SquashFS
🞄 if that’s not an option, mounting the rootFS RO

‣ Makes updates more complex
🞄 one can no longer update only the RootFS: at least the root hash must be updated too
🞄 if the system has a secure boot chain, that means updating the kernel signature as well
🞄 if using A/B updates, the bootloader must be able to keep track of the rootFS / root

hash association

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/41

https://bootlin.com


RootFS verification (dm-verity)

‣ Systems that benefit:
🞄 network-connected systems
🞄 systems where persistence across reboots has an impact
🞄 systems routinely targeted for botnet enrolment: e.g. SOHO routers, IP cameras
🞄 systems with a secure boot chain

‣ Systems that poorly benefit:
🞄 systems with partial updates (package distributions)
🞄 systems implementing stored user actions

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/41

https://bootlin.com


Embedded Linux and kernel engineering

Secure enclaves



Secure enclaves

‣ Hardware-isolated units of computation on the system.

‣ The main technology for embedded devices is ARM’s TrustZone

‣ Split the system into normal and secure worlds, isolated from each other.

‣ Essentially requires a further privilege escalation

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/41

https://bootlin.com


Secure enclaves

This is useful in a defense in depth approach assuming an adversary with root privileges

‣ provision any secrets in Secure world (e.g. by reading memory only accessible in
Secure world)

‣ only use those secrets within the Secure world
‣ offer an interface to the normal world OS

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/41

https://bootlin.com


Secure enclaves

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/41

https://bootlin.com


Secure enclaves: pitfalls

The Secure world is less versatile than the OS
‣ Development in secure world is harder

Secure enclaves are only an additional isolation mechanism
‣ Necessitates accrued collaboration from HW
‣ Trusted Applications can have vulnerabilities too

🞄 arbitrary code execution in Samsung’s TEEGRIS
🞄 buffer overflow in a Trusted App in Qualcomm’s QSEE

‣ Secure enclaves require more scrutiny to be effective

Overall, they are a significant increase in design, development and maintenance costs.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/41

https://blog.thalium.re/posts/pivoting_to_the_secure_world
https://cyberintel.es/cve/CVE-2022-48335_Buffer_Overflow_in_Widevine_PRDiagVerifyProvisioning_0x5f90/
https://bootlin.com


Secure enclaves

Will mitigate:
‣ Exfiltration of data/logic from the machine without physical access
‣ Modification of data/logic on the machine without physical access

Will not mitigate:
‣ Use of the data/logic by an adversary running on the machine

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/41

https://bootlin.com


Secure enclaves

Systems that benefit:
‣ systems with global crypto secrets
‣ systems wanting to tie a secret to a physical machine (e.g. Licenses)
‣ systems part of large families, with long-term support
‣ systems shortly handling small sensitive info (voting machines, biometrics)
‣ adversarial users

Systems that poorly benefit:
‣ systems without a very security-aware userbase

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/41

https://bootlin.com


Intrusion Detection System (IDS)

‣ OSSEC

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/41

https://www.ossec.net/
https://bootlin.com


Thank you!
Questions?

Olivier Benjamin
olivier.benjamin@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/41

https://bootlin.com/pub/conferences/
https://bootlin.com

	Olivier Benjamin
	Embedded systems security
	Security mindset
	The cost of security
	Threat modeling
	Threat model

	Security Measures
	Security Measures

	Filesystem encryption
	Filesystem encryption
	Filesystem encryption
	Filesystem encryption
	Filesystem encryption: the cost
	Simple Threat Model: no encryption
	Simple Threat Model: encryption
	Cold boot attack
	Filesystem encryption

	Secure Boot
	Secure Boot
	Secure Boot
	Normal Boot
	Normal Boot
	Normal Boot
	Normal Boot
	Secure Boot

	RootFS verification (dm-verity)
	RootFS verification (dm-verity)
	RootFS verification (dm-verity)
	RootFS verification (dm-verity)
	RootFS verification: pitfalls
	RootFS verification (dm-verity): the cost
	RootFS verification (dm-verity)

	Secure enclaves
	Secure enclaves
	Secure enclaves
	Secure enclaves
	Secure enclaves: pitfalls
	Secure enclaves
	Secure enclaves
	Intrusion Detection System (IDS)


