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‣ Living in Lyon, France
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Security mindset

Security is an ever-increasing concern in embedded systems.

‣ compliance: legislation (CRA), insurance
‣ reputational risk
‣ security is part of the features customers are now expecting

“I want the system to be secure”

‣ Security is not a binary state
‣ We aim to make it harder for the adversary to compromise the system
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The cost of security

‣ Security measures have a cost:
🞄 time (e.g. for implementation)
🞄 dedicated hardware
🞄 bootup time
🞄 complexity

‣ Going for maximum security might not be the right call.

‣ Going for minimum security is most likely the wrong one, though.

‣ Where to place the cursor is our topic.
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Threat modeling

What parts of the system should we pay most attention to in order to thwart most of our
adversaries?

This depends on:
‣ the design of the system
‣ the adversaries we expect
‣ the constraints we can afford to put on our users
‣ the level of security we want to achieve

Only some of these factors are technical.
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Threat model

A full-fledged threat model is very complex, scaling with the complexity of the system.

Usually means describing your system’s assets:
‣ customer data
‣ cryptographic material
‣ intellectual property

Then your system’s various boundaries:
‣ network ports
‣ physical ports
‣ privilege levels (Exception Levels, sandboxes, RCE vs LCE, …)

And your adversaries
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Security Measures

They are the blockers between your adversaries and your assets, or between different
privilege levels.

Any compromise will come from either:
‣ an unidentified transition
‣ an unintended use of an identified transition
‣ a missing security measure
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Filesystem encryption

‣ Linux makes it look like a normal filesystem
‣ It is never stored unencrypted on the disk
‣ The key is usually either

🞄 derived from a given password
🞄 stored encrypted in a header (possibly multiple times) and decrypted at rutime
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Filesystem encryption
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Filesystem encryption

‣ Will mitigate:
🞄 read-only offline attack on the hardware (“evil maid”)

‣ Will not mitigate:
🞄 essentially anything else
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Filesystem encryption: the cost

‣ small performance overhead
‣ implementation
‣ key provisioning & storage
‣ risk of potential data loss if keys are mismanaged
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Simple Threat Model: no encryption
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Simple Threat Model: encryption
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Cold boot attack
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Filesystem encryption

Systems that benefit:
‣ device exposed to untrusted actors without surveillance
‣ adversarial users (gaming consoles)

Systems that poorly benefit:
‣ devices not storing user or sensitive manufacturer data (routers for instance)
‣ devices under a lot of scrutiny: ATMs
‣ low compute power devices without crypto accelerators
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Secure Boot

‣ Chain of trusted software
‣ Root of trust

🞄 One or multiple hashes of cryptographic material
🞄 Often embedded in write-once hardware (e.g. fuses)

‣ Must be implemented in all software up to the kernel:
🞄 vendor-provided bootROM
🞄 all bootloader stages
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Secure Boot

Will mitigate:
‣ offline attack from the hardware (“evil maid”)
‣ attempts at gaining access persistance across reboots/updates

if they target non-userland software

Will not mitigate:
‣ runtime compromise of the system
‣ by itself, offline modification of the userland
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Normal Boot
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Normal Boot
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Normal Boot
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Normal Boot
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Secure Boot

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/41

https://bootlin.com


Embedded Linux and kernel engineering

RootFS verification (dm-verity)



RootFS verification (dm-verity)

This is the logical continuation of Secure Boot: how do we guarantee userland has not
been altered?

‣ The idea: generate a hash tree for the entire filesystem
🞄 That hash tree will be stored on a separate device
🞄 The root of the tree might be signed
🞄 Leaves are hashes of a data block

‣ On accessing any data, the kernel will
🞄 walk up the tree until it hits either a node that was already verified or the root
🞄 walk back down, verifying all children nodes on the way

See fs/verity/verify.c
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RootFS verification (dm-verity)

Will mitigate:
‣ persistence of userland-only code execution

if combined with a properly implemented Secure Boot:
‣ gaining userland code execution from physical access

An adversary that gains root privileges will defeat it
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RootFS verification (dm-verity)
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RootFS verification: pitfalls

The security of the entire scheme hinges on:
‣ the root hash
‣ the security of the hash function used (md5 might not be the best choice)
‣ the integrity of the kernel
‣ the kernel command line

To be effective, RootFS verification requires a properly implemented Secure Boot:
‣ Verification of the bootloader, including the kernel command line
‣ Verification of the kernel, including the co-located root hash

It requires a read-only filesystem.
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RootFS verification (dm-verity): the cost

‣ Making the RootFS read-only
🞄 using a RO filesystem: EROFS, SquashFS
🞄 if that’s not an option, mounting the rootFS RO

‣ Makes updates more complex
🞄 one can no longer update only the RootFS: at least the root hash must be updated too
🞄 if the system has a secure boot chain, that means updating the kernel signature as well
🞄 if using A/B updates, the bootloader must be able to keep track of the rootFS / root

hash association
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RootFS verification (dm-verity)

‣ Systems that benefit:
🞄 network-connected systems
🞄 systems where persistence across reboots has an impact
🞄 systems routinely targeted for botnet enrolment: e.g. SOHO routers, IP cameras
🞄 systems with a secure boot chain

‣ Systems that poorly benefit:
🞄 systems with partial updates (package distributions)
🞄 systems implementing stored user actions
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Secure enclaves

‣ Hardware-isolated units of computation on the system.

‣ The main technology for embedded devices is ARM’s TrustZone

‣ Split the system into normal and secure worlds, isolated from each other.

‣ Essentially requires a further privilege escalation
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Secure enclaves

This is useful in a defense in depth approach assuming an adversary with root privileges

‣ provision any secrets in Secure world (e.g. by reading memory only accessible in
Secure world)

‣ only use those secrets within the Secure world
‣ offer an interface to the normal world OS
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Secure enclaves
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Secure enclaves: pitfalls

The Secure world is less versatile than the OS
‣ Development in secure world is harder

Secure enclaves are only an additional isolation mechanism
‣ Necessitates accrued collaboration from HW
‣ Trusted Applications can have vulnerabilities too

🞄 arbitrary code execution in Samsung’s TEEGRIS
🞄 buffer overflow in a Trusted App in Qualcomm’s QSEE

‣ Secure enclaves require more scrutiny to be effective

Overall, they are a significant increase in design, development and maintenance costs.
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Secure enclaves

Will mitigate:
‣ Exfiltration of data/logic from the machine without physical access
‣ Modification of data/logic on the machine without physical access

Will not mitigate:
‣ Use of the data/logic by an adversary running on the machine
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Secure enclaves

Systems that benefit:
‣ systems with global crypto secrets
‣ systems wanting to tie a secret to a physical machine (e.g. Licenses)
‣ systems part of large families, with long-term support
‣ systems shortly handling small sensitive info (voting machines, biometrics)
‣ adversarial users

Systems that poorly benefit:
‣ systems without a very security-aware userbase
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Intrusion Detection System (IDS)

‣ OSSEC
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Thank you!
Questions?

Olivier Benjamin
olivier.benjamin@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/
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