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Q}Your trainers for today's lab

» Maxime Chevallier and Alexis Lothoré
» Linux engineers and trainers @ Bootlin during the day
e Engineering company specialized in Embedded Linux and Zephyr
e 27 people, mostly Toulouse and Lyon
* Engineering services
* Training services
* Very strong open-source focus
e We are hiring, including interns

» Hackers at night
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4@} About this workshop

» you will learn how to create your own eBPF programs/tools
» you will learn about UDP and DNS
» two parts:
* eBPF 101 for ~40min
e hands-on labs during ~1h20
» at any moment, feel free to ask any question !
» those slides are available at:

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf
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4@} Requirements

» you need some basic hardware:

e a laptop
» you need some basic software:

* an up-to-date Linux distribution (eg: Ubuntu 24.04)

* you can also use the Virtual Machine image provided by Bootlin
» you need some basic knowledge:

e general Linux knowledge

e a bit of C language
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4@} eBPF concepts

» eBPF allows to inject user programs into the Linux kernel

no need to write kernel code
no need to rebuild the kernel
no need to restart the kernel

» why do we want to inject programs into the kernel 7

to assist debugging/diagnostic on your system

to get tracing superpowers: spy on low level details in the kernel
to change how packets are handled

to run a custom scheduler

to set user-based security policies

and many more !
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eBPF lifecycle

‘S

myprog.bpf.c
# clang
myprog.bpf.o >
userspace tool
bpf()
userspace
kernel
map_1 | | map_2
o program runs
verifier myprog on Euen‘t
attach

Basic eBPF management
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%eBPF program content

» an eBPF program is generally written in C
e you define a main C function: this is your eBPF program body
* vyou can write standard C in it
e you can not call into any C library function
* you can call many well-defined kernel functions (bpf-helpers and kfuncs)
» depending on your program type, your program will receive specific arguments
» depending on your program type, your program return value may have an effect on
the kernel
» your program will be attached to a specific kind of attach point in the kernel: a
kprobe, a tracepoint, a cgroup, a network interface, a tc filter, etc
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%A very simple eBPF program

SEC("fentry/ x64 sys execve")

int BPF PROG(my first program, const char *path,
char *const Nullable argv[],
char *const Nullable envp[])

char fmt[] = "New program %s executed !";
// This function comes from bpf-helpers
bpf trace printk(fmt, sizeof(fmt), path);
return 0;
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%A more advanced program

SEC("tc")
int my second program(struct  skbuff *skb)
{

// This structure comes from the kernel
struct iphdr iph;
int ret;

// This function comes from bpf-helpers
ret = bpf skb load bytes(skb, ETH HLEN, &iph, sizeof(iph));
if (ret)

// Returning TC ACT OK lets the packet go in/out

return TC_ACT OK;

if (iph.protocol != IPPROTO UDP)
// Returning TC ACT SHOT drops the packet
return TC ACT SHOT;

// Returning TC ACT OK lets the packet go in/out
return TC ACT OK;
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Q} bpf-helpers

» eBPF programs can not call any arbitrary kernel function

» But there are tens of functions exposed as bpf-helpers:

* to generate traces into the ftrace buffer: bpf trace printk

* to manipulate “maps”: bpf map lookup elem, bpf map update elem..

e to know about the current process being executed: bpf get current pidf tgid,
bpf get current comm..

* to read, modify, steer packets: bpf skb load bytes, bpf skb change type,
bpf redirect..

* etc

» To get the exact list, refer to man 7 bpf-helpers
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4@\/ Transfer data from/to eBPF programs

» You often need to exchange data between an eBPF program and a userspace
program (or between two eBPF programs)
» The kernel exposes a specific kind of memory for this: maps
» Maps come in a wide variety:
* basic arrays: BPF MAP TYPE ARRAY
* hashmaps: BPF MAP TYPE HASH
e queues: BPF MAP TYPE QUEUES
* ring buffers: BPF MAP TYPE RINGBUF
* and many more

» For this lab, you only need to know to use basic array maps
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‘@)A program manipulating a map

// We declare a single-cell array
struct {
~_uint(type, BPF_MAP_TYPE_ ARRAY);
~uint(max_entries, 1);
_ type(key, int);
~_type(value, int);
} packet count SEC(".maps");

SEC("tc")
int my third program(struct  skbuff *skb)
{

int key = 0;

int *value;

// Try to fetch the first element in the array
value = bpf map lookup elem(&packet count, &key);
// If we manage to fetch the value...

if (value) {

//... increment it...
*value++;
//... and store it again.

bpf map update elem(&packet count, &key, value, BPF _ANY);

}
return TC_ACT OK;
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% Building eBPF programs

» We either need clang or bpf-unknown-none-gcc

$ clang -g -02 -target bpf -c dns-blocker.c -o dns-blocker-bpf.o
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4@} Loading and attaching a program

» The way of attaching a program is tightly coupled to its type

» For any program type, we can:
1. use existing command line tools like bpftool, tc, xdp tools, etc (super quick,

good for prototyping)
2. write our own tool based on libbpf (easy, quick, customizable)
3. use bare system calls (complex, but highly customizable)

» You will practice the first method during the workshop. If you manage to get it done
quickly, you will be able to experiment the second method.
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4@} Managing programs with bpftool

» Listing loaded programs:

$ bpftool prog

» Loading and attaching a program:

¢ bpftool prog loadall my prog.bpf.o /sys/fs/bpf/foo autoattach
» Showing BPF programs logs

$ bpftool prog tracelog
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4@‘} Managing maps with bpftool
» Listing created maps:
$ bpftool map
» Showing a map content:
$ bpftool map dump name <map name>
» Update the content of a map

$ bpftool map update name <map name> key <key> value <value>

» key and value are space-separated hex bytes
» the number of bytes must match the key/value length
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%Attaching a packet classifier/action program with tc

» Some program types are too specific too be handled generically by bpftool
» For packet classifiers/filters programs, we can use tc:

¢ tc qdisc add dev wlanO clsact
$ tc filter add dev wlan@® egress bpf direct-action object-file \
dns-blocker.bpf.o sec tc

» To remove the program:

$ tc qdisc del dev wlanO clsact
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4@} The mission

» Implement an ad-blocker, preventing ads from being fetched in our web browser

» For the sake of everengineering fun, we'll do it in eBPF

» There are various ways of blocking ads

» One common way is to prevent the corresponding DNS query to go out of your
computer
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Q} The DNS protocol

» each time we want to access a resource on the web, we ask for it through a specific
URL

o '"please fetch https://elixir.bootlin.com/static/style.css”

» the system needs the corresponding IP address for the host part

» this is done by emitting a DNS query to a DNS server
e "what is the IP address for elixir.bootlin.com ?"

» the server replies with a DNS answer
e "the address for elixir.bootlin.com is 37.27.174.60"

» the web browser can now send the relevant request
e "37.27.174.60: HTTP GET static/style.css"
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APPPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

LINK

PHY

DNS

UDP: port 53

IP/IP6

DNS in the OSI model

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/33


https://bootlin.com

with Wireshark

%Tracing and understanding DNS queries
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» Frame 110: Packet, 78 bytes on wire (624 bits), 78 byt( 0000
» Ethernet II, Src: Intel_2f:c6:6e (1c:cl:0c:2f:c6:6e), | 0010
» Internet Protocol Version 4, Src: 192.168.1.150, Dst: : 0020
» User Datagram Protocol, Src Port: 38773, Dst Port: 53 0030
- Domain Name System (query)
Transaction ID: Oxf8f7

- Queries

0

0

- elixir.bootlin.com:
[Name Length: 18]
[Label Count: 3]
Type: A (1) (Host Address)
Class: IN (0x0001)

[Response In: 112]

4

© 7 Query Name (dns.gry.name), 20 bytes

» Flags: 0x0100 Standard query
Questions: 1
Answer RRs:
Authority RRs: 0
Additional RRs:

type A,

class IN

0040

Length Text item Type/Subtype Info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

98 da c4 85 db 21 1c c1
00 40 af be 40 00 40 11
01 01 97 75 00 35 00 2c

[oloJololNcIopNolc Il [OMO6 65 6C 69 78 69 72 07 62 6f
6f 74 6¢c 69 6e 03 63 6f 6d OOCCNcHENCIONNOkE

Tracing packets in wireshark

0xf8f7 A elixir.bootlin.com
query Oxfff3 AAAA elixir.bootlin.com
query response 0xf8f7 A elixir.bootlin.com A 37
query response Oxfff3 AAAA elixir.bootlin.com
query 0x795b A deezer.com
guery 0x4c55 AAAA deezer.com
guery response 0x4c55 AAAA deezer.com
query response 0x795b A deezer.com A 143.204.1¢

Oc 2f c6 6e 08 00 45 0O
07 07 cO a8 01 96 cO a8
84 25 f8 f7 01 00 0O 61

Packets: 453 - Displayed: 26 (5.7%) - Dropped: 0 (0.0%) Profile: Default
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4@} Parsing DNS queries in eBPF

u|1|2|3|4|5|s|?|s|9
i ] i i L]

0 => query QR
1 => answer

|1u|11|12|13|14|15
i L] ]

0 Transaction ID FLAGS @

=

4 Number of questions Number of Answers

8 | Number of Authority RRs | Number of additional RRs

Question 1 @

~  DNS Header

- DNS Payload

Question 2
Question 3
NAME (variable len)
TYPE
CLASS

A DNS query

TN "6elixir7bootlin3com"

1. parse DNS header
» get QR flag

» it must be 0 (meaning: query)
2. get first query in the payload

» get name field

> parse name field (byte by byte or

string by string)

» rebuild the queried host

6elixir’bootlin3com
elixir.bootlin.com
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4@} Intercepting DNS queries with BPF

» We will catch outgoing DNS queries with an eBPF program attached to our network
interface egress
e it will be a BPF_PROG_TYPE_SCHED__ACT program, see prog example 2
» it will first contain a hardcoded domain to block
» the program will decapsulate and validate all layers:
e ethernet -> ip or ip6 -> udp -> dns
» if the packet is anything else, it will let it go (return TC ACT 0K)
» otherwise, we check if it is a query, and if so, if the target host is the one we want to
block
* if so, we drop the packet (return TC ACT SHOT)
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a It's now your turn !
ody)

We provide some basic code as well as step-by-step instructions:

$ git clone https://github.com/bootlin/ebpf-workshop-cdl

Take your time to and each instruction. Feel free to ask us for
clarifications or more details.

You can run the whole lab on your machine if you have a recent distribution.
Otherwise, run the labs on the dedicated Virtual Box machine:

$ wget https://f000.backblazeb2.com/file/bootlin-ebpf-workshop/bootlin-
ebpf-workshop.ova

Feel free to pair up with someone: peer programming makes it even funnier |
When blocked on an issue, try to get familiar with the basic tools discussed earlier so
that you can analyze it !
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% Useful resources
9

docs.ebpf.io
Bootlin "Debugging, Profiling, Tracing and Performance Analysis" training

>
>
» Bootlin "Embedded Linux Networking" training
» man 7 bpf-helpers

>

Linux kernel selftests (those are good examples)
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% Building a standalone userspace tool

» Your current implementation needs some manual steps to work
* loading the program with tc
e configuring the program through a map with bpftool
» What if instead of doing all of this, we could get a single userspace binary (a
daemon) doing all of this for us ?
» This can be done thanks to libbpf
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4@\/ libbpf-based userspace programs

my_prog.bpf.c

clang

F

my_prog.bpf.o

bpftool

h 4

my_prog.skel.h

my_prog.c

libbpf

native
compiler

Building a libbpf application

L
o

my_prog
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4@} Generating a BPF skeleton file

» You can turn your my prog.bpf.o file into a “skeleton file”
* thisis a C header (my prog.skel.h)

* it contains the whole BPF program as a byte array
= you don't need my prog.bpf.o anymore

® it contains auto-generated API to manipulate your program from userspace

¢ bpftool gen skeleton my prog.bpf.o > my prog.skel.h
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‘@)A very simple libbpf program

#include <unistd.h>
#include "my prog.skel.h"
int main(int argc, char *argvl[])

{
struct my prog *skel;
skel = my prog open and load();
if(!skel)
exit (EXIT _FAILURE);
if (my prog attach(skel)) {
my prog destroy(skel);
exit (EXIT FAILURE);
}
while(true) {
sleep(l);
}
return 0;
}
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@6 Writing and compiling our userspace program
&\ 4

You can use auto-generated functions from your program skeleton
You can use generic functions from libbpf

eg: to manipulate your program maps
Once done, you can build your program thanks to a native compiler:

$ gcc my prog.c -o my prog -lbpf

And voila, you now have a standalone eBPF tool !
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