% Embedded Linux and kernel engineering

4
Mastering eBPF: creating a bOOtl 1N

high performance ad-blocker

Maxime Chevallier, Alexis Lothoré

Capitole du Libre 2025

© Copyright 2004-2025, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions an d trans lations are we lcome!

Q}Your trainers for today's lab

» Maxime Chevallier and Alexis Lothoré
» Linux engineers and trainers @ Bootlin during the day
e Engineering company specialized in Embedded Linux and Zephyr
e 27 people, mostly Toulouse and Lyon
* Engineering services
* Training services
* Very strong open-source focus
e We are hiring, including interns

» Hackers at night

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/33

https://bootlin.com

4@} About this workshop

» you will learn how to create your own eBPF programs/tools
» you will learn about UDP and DNS
» two parts:
* eBPF 101 for ~40min
e hands-on labs during ~1h20
» at any moment, feel free to ask any question !
» those slides are available at:

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/33

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf
https://bootlin.com

4@} Requirements

» you need some basic hardware:

e a laptop
» you need some basic software:

* an up-to-date Linux distribution (eg: Ubuntu 24.04)

* you can also use the Virtual Machine image provided by Bootlin
» you need some basic knowledge:

e general Linux knowledge

e a bit of C language

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/33

https://bootlin.com

Embedded Linux and kernel engineering

eBPF basics

bootlin

4@} eBPF concepts

» eBPF allows to inject user programs into the Linux kernel

no need to write kernel code
no need to rebuild the kernel
no need to restart the kernel

» why do we want to inject programs into the kernel 7

to assist debugging/diagnostic on your system

to get tracing superpowers: spy on low level details in the kernel
to change how packets are handled

to run a custom scheduler

to set user-based security policies

and many more !

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/33

https://bootlin.com

eBPF lifecycle

‘S

myprog.bpf.c
clang
myprog.bpf.o >
userspace tool
bpf()
userspace
kernel
map_1 | | map_2
o program runs
verifier myprog on Euen‘t
attach

Basic eBPF management

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/33

https://bootlin.com

%eBPF program content

» an eBPF program is generally written in C
e you define a main C function: this is your eBPF program body
* vyou can write standard C in it
e you can not call into any C library function
* you can call many well-defined kernel functions (bpf-helpers and kfuncs)
» depending on your program type, your program will receive specific arguments
» depending on your program type, your program return value may have an effect on
the kernel
» your program will be attached to a specific kind of attach point in the kernel: a
kprobe, a tracepoint, a cgroup, a network interface, a tc filter, etc

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

7/33

https://bootlin.com

%A very simple eBPF program

SEC("fentry/ x64 sys execve")

int BPF PROG(my first program, const char *path,
char *const Nullable argv[],
char *const Nullable envp[])

char fmt[] = "New program %s executed !";
// This function comes from bpf-helpers
bpf trace printk(fmt, sizeof(fmt), path);
return 0;

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/33

https://bootlin.com

%A more advanced program

SEC("tc")
int my second program(struct skbuff *skb)
{

// This structure comes from the kernel
struct iphdr iph;
int ret;

// This function comes from bpf-helpers
ret = bpf skb load bytes(skb, ETH HLEN, &iph, sizeof(iph));
if (ret)

// Returning TC ACT OK lets the packet go in/out

return TC_ACT OK;

if (iph.protocol != IPPROTO UDP)
// Returning TC ACT SHOT drops the packet
return TC ACT SHOT;

// Returning TC ACT OK lets the packet go in/out
return TC ACT OK;

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

9/33

https://bootlin.com

Q} bpf-helpers

» eBPF programs can not call any arbitrary kernel function

» But there are tens of functions exposed as bpf-helpers:

* to generate traces into the ftrace buffer: bpf trace printk

* to manipulate “maps”: bpf map lookup elem, bpf map update elem..

e to know about the current process being executed: bpf get current pidf tgid,
bpf get current comm..

* to read, modify, steer packets: bpf skb load bytes, bpf skb change type,
bpf redirect..

* etc

» To get the exact list, refer to man 7 bpf-helpers

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/33

https://docs.kernel.org/trace/ftrace.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://bootlin.com

4@\/ Transfer data from/to eBPF programs

» You often need to exchange data between an eBPF program and a userspace
program (or between two eBPF programs)
» The kernel exposes a specific kind of memory for this: maps
» Maps come in a wide variety:
* basic arrays: BPF MAP TYPE ARRAY
* hashmaps: BPF MAP TYPE HASH
e queues: BPF MAP TYPE QUEUES
* ring buffers: BPF MAP TYPE RINGBUF
* and many more

» For this lab, you only need to know to use basic array maps

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/33

https://bootlin.com

‘@)A program manipulating a map

// We declare a single-cell array
struct {
~_uint(type, BPF_MAP_TYPE_ ARRAY);
~uint(max_entries, 1);
_ type(key, int);
~_type(value, int);
} packet count SEC(".maps");

SEC("tc")
int my third program(struct skbuff *skb)
{

int key = 0;

int *value;

// Try to fetch the first element in the array
value = bpf map lookup elem(&packet count, &key);
// If we manage to fetch the value...

if (value) {

//... increment it...
*value++;
//... and store it again.

bpf map update elem(&packet count, &key, value, BPF _ANY);

}
return TC_ACT OK;

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/33

https://bootlin.com

% Building eBPF programs

» We either need clang or bpf-unknown-none-gcc

$ clang -g -02 -target bpf -c dns-blocker.c -o dns-blocker-bpf.o

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/33

https://bootlin.com

4@} Loading and attaching a program

» The way of attaching a program is tightly coupled to its type

» For any program type, we can:
1. use existing command line tools like bpftool, tc, xdp tools, etc (super quick,

good for prototyping)
2. write our own tool based on libbpf (easy, quick, customizable)
3. use bare system calls (complex, but highly customizable)

» You will practice the first method during the workshop. If you manage to get it done
quickly, you will be able to experiment the second method.

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/33

https://bootlin.com

4@} Managing programs with bpftool

» Listing loaded programs:

$ bpftool prog

» Loading and attaching a program:

¢ bpftool prog loadall my prog.bpf.o /sys/fs/bpf/foo autoattach
» Showing BPF programs logs

$ bpftool prog tracelog

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/33

https://bootlin.com

4@‘} Managing maps with bpftool
» Listing created maps:
$ bpftool map
» Showing a map content:
$ bpftool map dump name <map name>
» Update the content of a map

$ bpftool map update name <map name> key <key> value <value>

» key and value are space-separated hex bytes
» the number of bytes must match the key/value length

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/33

https://bootlin.com

%Attaching a packet classifier/action program with tc

» Some program types are too specific too be handled generically by bpftool
» For packet classifiers/filters programs, we can use tc:

¢ tc qdisc add dev wlanO clsact
$ tc filter add dev wlan@® egress bpf direct-action object-file \
dns-blocker.bpf.o sec tc

» To remove the program:

$ tc qdisc del dev wlanO clsact

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/33

https://bootlin.com

Embedded Linux and kernel engineering

The lab

bootlin

4@} The mission

» Implement an ad-blocker, preventing ads from being fetched in our web browser

» For the sake of everengineering fun, we'll do it in eBPF

» There are various ways of blocking ads

» One common way is to prevent the corresponding DNS query to go out of your
computer

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/33

https://bootlin.com

Q} The DNS protocol

» each time we want to access a resource on the web, we ask for it through a specific
URL

o '"please fetch https://elixir.bootlin.com/static/style.css”

» the system needs the corresponding IP address for the host part

» this is done by emitting a DNS query to a DNS server
e "what is the IP address for elixir.bootlin.com ?"

» the server replies with a DNS answer
e "the address for elixir.bootlin.com is 37.27.174.60"

» the web browser can now send the relevant request
e "37.27.174.60: HTTP GET static/style.css"

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/33

https://bootlin.com

APPPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

LINK

PHY

DNS

UDP: port 53

IP/IP6

DNS in the OSI model

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/33

https://bootlin.com

with Wireshark

%Tracing and understanding DNS queries

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 0 BEEREG Q¢

v 9 IS 2l ==

B e oEH

["]dns

No. Time

. 00...
00...
slefel
SO
NSO
. 39...
.40..

el e
NN NNRNN NN

1

192.
192.
192.
192.
192.
192.
192.

Source

168.
168.
168.
168.
168.
168.
168.

[I
[y
Q
@

DestinatiiComm Protocol

192.
192.
192.
192.
192.
192.
192.

il e |

DNS
DNS
DNS
DNS
DNS
DNS
DNS

78 v
94 ~
78 v
70 v
70 v
70 v
134 v

» Frame 110: Packet, 78 bytes on wire (624 bits), 78 byt(0000
» Ethernet II, Src: Intel_2f:c6:6e (1c:cl:0c:2f:c6:6e), | 0010
» Internet Protocol Version 4, Src: 192.168.1.150, Dst: : 0020
» User Datagram Protocol, Src Port: 38773, Dst Port: 53 0030
- Domain Name System (query)
Transaction ID: Oxf8f7

- Queries

0

0

- elixir.bootlin.com:
[Name Length: 18]
[Label Count: 3]
Type: A (1) (Host Address)
Class: IN (0x0001)

[Response In: 112]

4

© 7 Query Name (dns.gry.name), 20 bytes

» Flags: 0x0100 Standard query
Questions: 1
Answer RRs:
Authority RRs: 0
Additional RRs:

type A,

class IN

0040

Length Text item Type/Subtype Info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

98 da c4 85 db 21 1c c1
00 40 af be 40 00 40 11
01 01 97 75 00 35 00 2c

[oloJololNcIopNolc Il [OMO6 65 6C 69 78 69 72 07 62 6f
6f 74 6¢c 69 6e 03 63 6f 6d OOCCNcHENCIONNOkE

Tracing packets in wireshark

0xf8f7 A elixir.bootlin.com
query Oxfff3 AAAA elixir.bootlin.com
query response 0xf8f7 A elixir.bootlin.com A 37
query response Oxfff3 AAAA elixir.bootlin.com
query 0x795b A deezer.com
guery 0x4c55 AAAA deezer.com
guery response 0x4c55 AAAA deezer.com
query response 0x795b A deezer.com A 143.204.1¢

Oc 2f c6 6e 08 00 45 0O
07 07 cO a8 01 96 cO a8
84 25 f8 f7 01 00 0O 61

Packets: 453 - Displayed: 26 (5.7%) - Dropped: 0 (0.0%) Profile: Default

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

22/33

https://bootlin.com

4@} Parsing DNS queries in eBPF

u|1|2|3|4|5|s|?|s|9
i] i i L]

0 => query QR
1 => answer

|1u|11|12|13|14|15
i L]]

0 Transaction ID FLAGS @

=

4 Number of questions Number of Answers

8 | Number of Authority RRs | Number of additional RRs

Question 1 @

~ DNS Header

- DNS Payload

Question 2
Question 3
NAME (variable len)
TYPE
CLASS

A DNS query

TN "6elixir7bootlin3com"

1. parse DNS header
» get QR flag

» it must be 0 (meaning: query)
2. get first query in the payload

» get name field

> parse name field (byte by byte or

string by string)

» rebuild the queried host

6elixir’bootlin3com
elixir.bootlin.com

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

23/33

https://bootlin.com

4@} Intercepting DNS queries with BPF

» We will catch outgoing DNS queries with an eBPF program attached to our network
interface egress
e it will be a BPF_PROG_TYPE_SCHED__ACT program, see prog example 2
» it will first contain a hardcoded domain to block
» the program will decapsulate and validate all layers:
e ethernet -> ip or ip6 -> udp -> dns
» if the packet is anything else, it will let it go (return TC ACT 0K)
» otherwise, we check if it is a query, and if so, if the target host is the one we want to
block
* if so, we drop the packet (return TC ACT SHOT)

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/33

https://bootlin.com

a It's now your turn !
ody)

We provide some basic code as well as step-by-step instructions:

$ git clone https://github.com/bootlin/ebpf-workshop-cdl

Take your time to and each instruction. Feel free to ask us for
clarifications or more details.

You can run the whole lab on your machine if you have a recent distribution.
Otherwise, run the labs on the dedicated Virtual Box machine:

$ wget https://f000.backblazeb2.com/file/bootlin-ebpf-workshop/bootlin-
ebpf-workshop.ova

Feel free to pair up with someone: peer programming makes it even funnier |
When blocked on an issue, try to get familiar with the basic tools discussed earlier so
that you can analyze it !

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/33

https://bootlin.com

Embedded Linux and kernel engineering

Useful resources

bootlin

% Useful resources
9

docs.ebpf.io
Bootlin "Debugging, Profiling, Tracing and Performance Analysis" training

>
>
» Bootlin "Embedded Linux Networking" training
» man 7 bpf-helpers

>

Linux kernel selftests (those are good examples)

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/33

https://docs.ebpf.io/
https://bootlin.com/doc/training/debugging/debugging-slides.pdf
https://bootlin.com/doc/training/networking/networking-slides.pdf
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://elixir.bootlin.com/linux/v6.17.4/source/tools/testing/selftests/bpf
https://bootlin.com

Embedded Linux and kernel engineering

Going further

bootlin

% Building a standalone userspace tool

» Your current implementation needs some manual steps to work
* loading the program with tc
e configuring the program through a map with bpftool
» What if instead of doing all of this, we could get a single userspace binary (a
daemon) doing all of this for us ?
» This can be done thanks to libbpf

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/33

https://bootlin.com

4@\/ libbpf-based userspace programs

my_prog.bpf.c

clang

F

my_prog.bpf.o

bpftool

h 4

my_prog.skel.h

my_prog.c

libbpf

native
compiler

Building a libbpf application

L
o

my_prog

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

30/33

https://bootlin.com

4@} Generating a BPF skeleton file

» You can turn your my prog.bpf.o file into a “skeleton file”
* thisis a C header (my prog.skel.h)

* it contains the whole BPF program as a byte array
= you don't need my prog.bpf.o anymore

® it contains auto-generated API to manipulate your program from userspace

¢ bpftool gen skeleton my prog.bpf.o > my prog.skel.h

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/33

https://bootlin.com

‘@)A very simple libbpf program

#include <unistd.h>
#include "my prog.skel.h"
int main(int argc, char *argvl[])

{
struct my prog *skel;
skel = my prog open and load();
if(!skel)
exit (EXIT _FAILURE);
if (my prog attach(skel)) {
my prog destroy(skel);
exit (EXIT FAILURE);
}
while(true) {
sleep(l);
}
return 0;
}

14
PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/33

https://bootlin.com

@6 Writing and compiling our userspace program
&\ 4

You can use auto-generated functions from your program skeleton
You can use generic functions from libbpf

eg: to manipulate your program maps
Once done, you can build your program thanks to a native compiler:

$ gcc my prog.c -o my prog -lbpf

And voila, you now have a standalone eBPF tool !

PootliN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/33

https://bootlin.com

	Your trainers for today's lab
	About this workshop
	Requirements
	eBPF concepts
	eBPF lifecycle
	eBPF program content
	A very simple eBPF program
	A more advanced program
	bpf-helpers
	Transfer data from/to eBPF programs
	A program manipulating a map
	Building eBPF programs
	Loading and attaching a program
	Managing programs with bpftool
	Managing maps with bpftool
	Attaching a packet classifier/action program with tc
	The mission
	The DNS protocol
	DNS queries
	Tracing and understanding DNS queries with Wireshark
	Parsing DNS queries in eBPF
	Intercepting DNS queries with BPF
	It's now your turn !
	Useful resources
	Building a standalone userspace tool
	libbpf-based userspace programs
	Generating a BPF skeleton file
	A very simple libbpf program
	Writing and compiling our userspace program

