
Embedded Linux and kernel engineering

Mastering eBPF: creating a

high performance ad-blocker

Maxime Chevallier, Alexis Lothoré

Capitole du Libre 2025

© Copyright 2004-2025, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

Your trainers for today’s lab

‣ Maxime Chevallier and Alexis Lothoré

‣ Linux engineers and trainers @ Bootlin during the day
🞄 Engineering company specialized in Embedded Linux and Zephyr

🞄 27 people, mostly Toulouse and Lyon

🞄 Engineering services

🞄 Training services

🞄 Very strong open-source focus

🞄 We are hiring, including interns

‣ Hackers at night

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/33

https://bootlin.com

About this workshop

‣ you will learn how to create your own eBPF programs/tools

‣ you will learn about UDP and DNS

‣ two parts:
🞄 eBPF 101 for ~40min

🞄 hands-on labs during ~1h20

‣ at any moment, feel free to ask any question !

‣ those slides are available at:

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/33

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf
https://bootlin.com

Requirements

‣ you need some basic hardware:
🞄 a laptop

‣ you need some basic software:
🞄 an up-to-date Linux distribution (eg: Ubuntu 24.04)

🞄 you can also use the Virtual Machine image provided by Bootlin

‣ you need some basic knowledge:
🞄 general Linux knowledge

🞄 a bit of C language

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/33

https://bootlin.com

Embedded Linux and kernel engineering

eBPF basics

eBPF concepts

‣ eBPF allows to inject user programs into the Linux kernel
🞄 no need to write kernel code

🞄 no need to rebuild the kernel

🞄 no need to restart the kernel

‣ why do we want to inject programs into the kernel ?
🞄 to assist debugging/diagnostic on your system

🞄 to get tracing superpowers: spy on low level details in the kernel

🞄 to change how packets are handled

🞄 to run a custom scheduler

🞄 to set user-based security policies

🞄 and many more !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/33

https://bootlin.com

eBPF lifecycle

Basic eBPF management

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/33

https://bootlin.com

eBPF program content

‣ an eBPF program is generally written in C
🞄 you define a main C function: this is your eBPF program body

🞄 you can write standard C in it

🞄 you can not call into any C library function

🞄 you can call many well-defined kernel functions (bpf-helpers and kfuncs)

‣ depending on your program type, your program will receive specific arguments

‣ depending on your program type, your program return value may have an effect on

the kernel

‣ your program will be attached to a specific kind of attach point in the kernel: a

kprobe, a tracepoint, a cgroup, a network interface, a tc filter, etc

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/33

https://bootlin.com

A very simple eBPF program

SEC("fentry/__x64_sys_execve")

int BPF_PROG(my_first_program, const char *path,

 char *const _Nullable argv[],

 char *const _Nullable envp[])

{

 char fmt[] = "New program %s executed !";

 // This function comes from bpf-helpers

 bpf_trace_printk(fmt, sizeof(fmt), path);

 return 0;

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/33

https://bootlin.com

A more advanced program

SEC("tc")

int my_second_program(struct __skbuff *skb)

{

 // This structure comes from the kernel

 struct iphdr iph;

 int ret;

 // This function comes from bpf-helpers

 ret = bpf_skb_load_bytes(skb, ETH_HLEN, &iph, sizeof(iph));

 if (ret)

 // Returning TC_ACT_OK lets the packet go in/out

 return TC_ACT_OK;

 if (iph.protocol != IPPROTO_UDP)

 // Returning TC_ACT_SHOT drops the packet

 return TC_ACT_SHOT;

 // Returning TC_ACT_OK lets the packet go in/out

 return TC_ACT_OK;

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/33

https://bootlin.com

bpf-helpers

‣ eBPF programs can not call any arbitrary kernel function

‣ But there are tens of functions exposed as bpf-helpers:
🞄 to generate traces into the ftrace buffer: bpf_trace_printk

🞄 to manipulate “maps”: bpf_map_lookup_elem, bpf_map_update_elem…

🞄 to know about the current process being executed: bpf_get_current_pidf_tgid,

bpf_get_current_comm…

🞄 to read, modify, steer packets: bpf_skb_load_bytes, bpf_skb_change_type,

bpf_redirect…

🞄 etc

‣ To get the exact list, refer to man 7 bpf-helpers

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/33

https://docs.kernel.org/trace/ftrace.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://bootlin.com

Transfer data from/to eBPF programs

‣ You often need to exchange data between an eBPF program and a userspace

program (or between two eBPF programs)

‣ The kernel exposes a specific kind of memory for this: maps

‣ Maps come in a wide variety:
🞄 basic arrays: BPF_MAP_TYPE_ARRAY

🞄 hashmaps: BPF_MAP_TYPE_HASH

🞄 queues: BPF_MAP_TYPE_QUEUES

🞄 ring buffers: BPF_MAP_TYPE_RINGBUF

🞄 and many more

‣ For this lab, you only need to know to use basic array maps

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/33

https://bootlin.com

A program manipulating a map

// We declare a single-cell array

struct {

 __uint(type, BPF_MAP_TYPE_ARRAY);

 __uint(max_entries, 1);

 __type(key, int);

 __type(value, int);

} packet_count SEC(".maps");

SEC("tc")

int my_third_program(struct __skbuff *skb)

{

 int key = 0;

 int *value;

 // Try to fetch the first element in the array

 value = bpf_map_lookup_elem(&packet_count, &key);

 // If we manage to fetch the value...

 if (value) {

 //... increment it...

 *value++;

 //... and store it again.

 bpf_map_update_elem(&packet_count, &key, value, BPF_ANY);

 }

 return TC_ACT_OK;

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/33

https://bootlin.com

Building eBPF programs

‣ We either need clang or bpf-unknown-none-gcc

$ clang -g -O2 -target bpf -c dns-blocker.c -o dns-blocker-bpf.o

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/33

https://bootlin.com

Loading and attaching a program

‣ The way of attaching a program is tightly coupled to its type

‣ For any program type, we can:

1. use existing command line tools like bpftool, tc, xdp_tools, etc (super quick,

good for prototyping)

2. write our own tool based on libbpf (easy, quick, customizable)

3. use bare system calls (complex, but highly customizable)

‣ You will practice the first method during the workshop. If you manage to get it done

quickly, you will be able to experiment the second method.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/33

https://bootlin.com

Managing programs with bpftool

‣ Listing loaded programs:

$ bpftool prog

‣ Loading and attaching a program:

$ bpftool prog loadall my_prog.bpf.o /sys/fs/bpf/foo autoattach

‣ Showing BPF programs logs

$ bpftool prog tracelog

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/33

https://bootlin.com

Managing maps with bpftool

‣ Listing created maps:

$ bpftool map

‣ Showing a map content:

$ bpftool map dump name <map_name>

‣ Update the content of a map

$ bpftool map update name <map_name> key <key> value <value>

‣ key and value are space-separated hex bytes

‣ the number of bytes must match the key/value length

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/33

https://bootlin.com

Attaching a packet classifier/action program with tc

‣ Some program types are too specific too be handled generically by bpftool

‣ For packet classifiers/filters programs, we can use tc:

$ tc qdisc add dev wlan0 clsact

$ tc filter add dev wlan0 egress bpf direct-action object-file \

 dns-blocker.bpf.o sec tc

‣ To remove the program:

$ tc qdisc del dev wlan0 clsact

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/33

https://bootlin.com

Embedded Linux and kernel engineering

The lab

The mission

‣ Implement an ad-blocker, preventing ads from being fetched in our web browser

‣ For the sake of overengineering fun, we’ll do it in eBPF

‣ There are various ways of blocking ads

‣ One common way is to prevent the corresponding DNS query to go out of your

computer

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/33

https://bootlin.com

The DNS protocol

‣ each time we want to access a resource on the web, we ask for it through a specific

URL
🞄 "please fetch https://elixir.bootlin.com/static/style.css"

‣ the system needs the corresponding IP address for the host part

‣ this is done by emitting a DNS query to a DNS server
🞄 "what is the IP address for elixir.bootlin.com ?"

‣ the server replies with a DNS answer

🞄 "the address for elixir.bootlin.com is 37.27.174.60"

‣ the web browser can now send the relevant request
🞄 "37.27.174.60: HTTP GET static/style.css"

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/33

https://bootlin.com

DNS queries

DNS in the OSI model

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/33

https://bootlin.com

Tracing and understanding DNS queries with Wireshark

Tracing packets in wireshark

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/33

https://bootlin.com

Parsing DNS queries in eBPF

A DNS query

1. parse DNS header

‣ get QR flag

‣ it must be 0 (meaning: query)

2. get first query in the payload

‣ get name field

‣ parse name field (byte by byte or

string by string)

‣ rebuild the queried host
🞄 6elixir7bootlin3com

🞄 elixir.bootlin.com

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/33

https://bootlin.com

Intercepting DNS queries with BPF

‣ We will catch outgoing DNS queries with an eBPF program attached to our network

interface egress
🞄 it will be a BPF_PROG_TYPE_SCHED_ACT program, see prog example 2

‣ it will first contain a hardcoded domain to block

‣ the program will decapsulate and validate all layers:
🞄 ethernet -> ip or ip6 -> udp -> dns

‣ if the packet is anything else, it will let it go (return TC_ACT_OK)

‣ otherwise, we check if it is a query, and if so, if the target host is the one we want to

block
🞄 if so, we drop the packet (return TC_ACT_SHOT)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/33

https://bootlin.com

It’s now your turn !

‣ We provide some basic code as well as step-by-step instructions:

$ git clone https://github.com/bootlin/ebpf-workshop-cdl

‣ Take your time to read and understand each instruction. Feel free to ask us for

clarifications or more details.

‣ You can run the whole lab on your machine if you have a recent distribution.

Otherwise, run the labs on the dedicated Virtual Box machine:

$ wget https://f000.backblazeb2.com/file/bootlin-ebpf-workshop/bootlin-

ebpf-workshop.ova

‣ Feel free to pair up with someone: peer programming makes it even funnier !

‣ When blocked on an issue, try to get familiar with the basic tools discussed earlier so

that you can analyze it !
 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/33

https://bootlin.com

Embedded Linux and kernel engineering

Useful resources

Useful resources

‣ docs.ebpf.io

‣ Bootlin "Debugging, Profiling, Tracing and Performance Analysis" training

‣ Bootlin "Embedded Linux Networking" training

‣ man 7 bpf-helpers

‣ Linux kernel selftests (those are good examples)

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/33

https://docs.ebpf.io/
https://bootlin.com/doc/training/debugging/debugging-slides.pdf
https://bootlin.com/doc/training/networking/networking-slides.pdf
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://elixir.bootlin.com/linux/v6.17.4/source/tools/testing/selftests/bpf
https://bootlin.com

Embedded Linux and kernel engineering

Going further

Building a standalone userspace tool

‣ Your current implementation needs some manual steps to work
🞄 loading the program with tc

🞄 configuring the program through a map with bpftool

‣ What if instead of doing all of this, we could get a single userspace binary (a

daemon) doing all of this for us ?

‣ This can be done thanks to libbpf

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/33

https://bootlin.com

libbpf-based userspace programs

Building a libbpf application

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/33

https://bootlin.com

Generating a BPF skeleton file

‣ You can turn your my_prog.bpf.o file into a “skeleton file”
🞄 this is a C header (my_prog.skel.h)

🞄 it contains the whole BPF program as a byte array
■ you don’t need my_prog.bpf.o anymore

🞄 it contains auto-generated API to manipulate your program from userspace

$ bpftool gen skeleton my_prog.bpf.o > my_prog.skel.h

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/33

https://bootlin.com

A very simple libbpf program

#include <unistd.h>

#include "my_prog.skel.h"

int main(int argc, char *argv[])

{

 struct my_prog *skel;

 skel = my_prog__open_and_load();

 if(!skel)

 exit(EXIT_FAILURE);

 if (my_prog__attach(skel)) {

 my_prog__destroy(skel);

 exit(EXIT_FAILURE);

 }

 while(true) {

 sleep(1);

 }

 return 0;

}

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/33

https://bootlin.com

Writing and compiling our userspace program

‣ You can use auto-generated functions from your program skeleton

‣ You can use generic functions from libbpf
🞄 eg: to manipulate your program maps

‣ Once done, you can build your program thanks to a native compiler:

$ gcc my_prog.c -o my_prog -lbpf

‣ And voila, you now have a standalone eBPF tool !

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/33

https://bootlin.com

	Your trainers for today's lab
	About this workshop
	Requirements
	eBPF concepts
	eBPF lifecycle
	eBPF program content
	A very simple eBPF program
	A more advanced program
	bpf-helpers
	Transfer data from/to eBPF programs
	A program manipulating a map
	Building eBPF programs
	Loading and attaching a program
	Managing programs with bpftool
	Managing maps with bpftool
	Attaching a packet classifier/action program with tc
	The mission
	The DNS protocol
	DNS queries
	Tracing and understanding DNS queries with Wireshark
	Parsing DNS queries in eBPF
	Intercepting DNS queries with BPF
	It's now your turn !
	Useful resources
	Building a standalone userspace tool
	libbpf-based userspace programs
	Generating a BPF skeleton file
	A very simple libbpf program
	Writing and compiling our userspace program

