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Your trainers for today’s lab

‣ Maxime Chevallier and Alexis Lothoré

‣ Linux engineers and trainers @ Bootlin during the day
🞄 Engineering company specialized in Embedded Linux and Zephyr

🞄 27 people, mostly Toulouse and Lyon

🞄 Engineering services

🞄 Training services

🞄 Very strong open-source focus

🞄 We are hiring, including interns

‣ Hackers at night
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About this workshop

‣ you will learn how to create your own eBPF programs/tools

‣ you will learn about UDP and DNS

‣ two parts:
🞄 eBPF 101 for ~40min

🞄 hands-on labs during ~1h20

‣ at any moment, feel free to ask any question !

‣ those slides are available at:

https://bootlin.com/pub/conferences/2025/cdl/ebpf-workshop.pdf
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Requirements

‣ you need some basic hardware:
🞄 a laptop

‣ you need some basic software:
🞄 an up-to-date Linux distribution (eg: Ubuntu 24.04)

🞄 you can also use the Virtual Machine image provided by Bootlin

‣ you need some basic knowledge:
🞄 general Linux knowledge

🞄 a bit of C language
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Embedded Linux and kernel engineering

eBPF basics



eBPF concepts

‣ eBPF allows to inject user programs into the Linux kernel
🞄 no need to write kernel code

🞄 no need to rebuild the kernel

🞄 no need to restart the kernel

‣ why do we want to inject programs into the kernel ?
🞄 to assist debugging/diagnostic on your system

🞄 to get tracing superpowers: spy on low level details in the kernel

🞄 to change how packets are handled

🞄 to run a custom scheduler

🞄 to set user-based security policies

🞄 and many more !
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eBPF lifecycle

Basic eBPF management

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/33

https://bootlin.com


eBPF program content

‣ an eBPF program is generally written in C
🞄 you define a main C function: this is your eBPF program body

🞄 you can write standard C in it

🞄 you can not call into any C library function

🞄 you can call many well-defined kernel functions (bpf-helpers and kfuncs)

‣ depending on your program type, your program will receive specific arguments

‣ depending on your program type, your program return value may have an effect on 

the kernel

‣ your program will be attached to a specific kind of attach point in the kernel: a 

kprobe, a tracepoint, a cgroup, a network interface, a tc filter, etc
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A very simple eBPF program

SEC("fentry/__x64_sys_execve")

int BPF_PROG(my_first_program, const char *path,

                char *const _Nullable argv[],

                char *const _Nullable envp[])

{

        char fmt[] = "New program %s executed !";

        // This function comes from bpf-helpers

        bpf_trace_printk(fmt, sizeof(fmt), path);

        return 0;

}
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A more advanced program

SEC("tc")

int my_second_program(struct __skbuff *skb)

{

    // This structure comes from the kernel

    struct iphdr iph;

    int ret;

    // This function comes from bpf-helpers

    ret = bpf_skb_load_bytes(skb, ETH_HLEN, &iph, sizeof(iph));

    if (ret)

        // Returning TC_ACT_OK lets the packet go in/out

        return TC_ACT_OK;

    if (iph.protocol != IPPROTO_UDP)

        // Returning TC_ACT_SHOT drops  the packet

        return TC_ACT_SHOT;

    // Returning TC_ACT_OK lets the packet go in/out

    return TC_ACT_OK;

}
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bpf-helpers

‣ eBPF programs can not call any arbitrary kernel function

‣ But there are tens of functions exposed as bpf-helpers:
🞄 to generate traces into the ftrace buffer: bpf_trace_printk

🞄 to manipulate “maps”: bpf_map_lookup_elem, bpf_map_update_elem…

🞄 to know about the current process being executed: bpf_get_current_pidf_tgid, 

bpf_get_current_comm…

🞄 to read, modify, steer packets: bpf_skb_load_bytes, bpf_skb_change_type, 

bpf_redirect…

🞄 etc

‣ To get the exact list, refer to man 7 bpf-helpers
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Transfer data from/to eBPF programs

‣ You often need to exchange data between an eBPF program and a userspace 

program (or between two eBPF programs)

‣ The kernel exposes a specific kind of memory for this: maps

‣ Maps come in a wide variety:
🞄 basic arrays: BPF_MAP_TYPE_ARRAY

🞄 hashmaps: BPF_MAP_TYPE_HASH

🞄 queues: BPF_MAP_TYPE_QUEUES

🞄 ring buffers: BPF_MAP_TYPE_RINGBUF

🞄 and many more

‣ For this lab, you only need to know to use basic array maps
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A program manipulating a map

// We declare a single-cell array

struct {

    __uint(type, BPF_MAP_TYPE_ARRAY);

    __uint(max_entries, 1);

    __type(key, int);

    __type(value, int);

} packet_count SEC(".maps");

SEC("tc")

int my_third_program(struct __skbuff *skb)

{

    int key = 0;

    int *value;

    // Try to fetch the first element in the array

    value = bpf_map_lookup_elem(&packet_count, &key);

    // If we manage to fetch the value...

    if (value) {

        //... increment it...

        *value++;

        //... and store it again.

        bpf_map_update_elem(&packet_count, &key, value, BPF_ANY);

    }

    return TC_ACT_OK;

}
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Building eBPF programs

‣ We either need clang or bpf-unknown-none-gcc

$ clang -g -O2 -target bpf -c dns-blocker.c -o dns-blocker-bpf.o
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Loading and attaching a program

‣ The way of attaching a program is tightly coupled to its type

‣ For any program type, we can:

1. use existing command line tools like bpftool, tc, xdp_tools, etc (super quick, 

good for prototyping)

2. write our own tool based on libbpf (easy, quick, customizable)

3. use bare system calls (complex, but highly customizable)

‣ You will practice the first method during the workshop. If you manage to get it done 

quickly, you will be able to experiment the second method.

 - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/33

https://bootlin.com


Managing programs with bpftool

‣ Listing loaded programs:

$ bpftool prog

‣ Loading and attaching a program:

$ bpftool prog loadall my_prog.bpf.o /sys/fs/bpf/foo autoattach

‣ Showing BPF programs logs

$ bpftool prog tracelog
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Managing maps with bpftool

‣ Listing created maps:

$ bpftool map

‣ Showing a map content:

$ bpftool map dump name <map_name>

‣ Update the content of a map

$ bpftool map update name <map_name> key <key> value <value>

‣ key and value are space-separated hex bytes

‣ the number of bytes must match the key/value length
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Attaching a packet classifier/action program with tc

‣ Some program types are too specific too be handled generically by bpftool

‣ For packet classifiers/filters programs, we can use tc:

$ tc qdisc add dev wlan0 clsact

$ tc filter add dev wlan0 egress bpf direct-action object-file \

      dns-blocker.bpf.o sec tc

‣ To remove the program:

$ tc qdisc del dev wlan0 clsact
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Embedded Linux and kernel engineering

The lab



The mission

‣ Implement an ad-blocker, preventing ads from being fetched in our web browser

‣ For the sake of overengineering fun, we’ll do it in eBPF

‣ There are various ways of blocking ads

‣ One common way is to prevent the corresponding DNS query to go out of your 

computer
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The DNS protocol

‣ each time we want to access a resource on the web, we ask for it through a specific 

URL
🞄 "please fetch https://elixir.bootlin.com/static/style.css"

‣ the system needs the corresponding IP address for the host part

‣ this is done by emitting a DNS query to a DNS server
🞄 "what is the IP address for elixir.bootlin.com ?"

‣ the server replies with a DNS answer

🞄 "the address for elixir.bootlin.com is 37.27.174.60"

‣ the web browser can now send the relevant request
🞄 "37.27.174.60: HTTP GET static/style.css"
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DNS queries

DNS in the OSI model
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Tracing and understanding DNS queries with Wireshark

Tracing packets in wireshark
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Parsing DNS queries in eBPF

A DNS query

1. parse DNS header

‣ get QR flag

‣ it must be 0 (meaning: query)

2. get first query in the payload

‣ get name field

‣ parse name field (byte by byte or 

string by string)

‣ rebuild the queried host
🞄 6elixir7bootlin3com

🞄 elixir.bootlin.com
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Intercepting DNS queries with BPF

‣ We will catch outgoing DNS queries with an eBPF program attached to our network 

interface egress
🞄 it will be a BPF_PROG_TYPE_SCHED_ACT program, see prog example 2

‣ it will first contain a hardcoded domain to block

‣ the program will decapsulate and validate all layers:
🞄 ethernet -> ip or ip6 -> udp -> dns

‣ if the packet is anything else, it will let it go (return TC_ACT_OK)

‣ otherwise, we check if it is a query, and if so, if the target host is the one we want to 

block
🞄 if so, we drop the packet (return TC_ACT_SHOT)
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It’s now your turn !

‣ We provide some basic code as well as step-by-step instructions:

$ git clone https://github.com/bootlin/ebpf-workshop-cdl

‣ Take your time to read and understand each instruction. Feel free to ask us for 

clarifications or more details.

‣ You can run the whole lab on your machine if you have a recent distribution. 

Otherwise, run the labs on the dedicated Virtual Box machine:

$ wget https://f000.backblazeb2.com/file/bootlin-ebpf-workshop/bootlin-

ebpf-workshop.ova

‣ Feel free to pair up with someone: peer programming makes it even funnier !

‣ When blocked on an issue, try to get familiar with the basic tools discussed earlier so 

that you can analyze it !
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Embedded Linux and kernel engineering

Useful resources



Useful resources

‣ docs.ebpf.io

‣ Bootlin "Debugging, Profiling, Tracing and Performance Analysis" training

‣ Bootlin "Embedded Linux Networking" training

‣ man 7 bpf-helpers

‣ Linux kernel selftests  (those are good examples)
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Embedded Linux and kernel engineering

Going further



Building a standalone userspace tool

‣ Your current implementation needs some manual steps to work
🞄 loading the program with tc

🞄 configuring the program through a map with bpftool

‣ What if instead of doing all of this, we could get a single userspace binary (a 

daemon) doing all of this for us ?

‣ This can be done thanks to libbpf
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libbpf-based userspace programs

Building a libbpf application
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Generating a BPF skeleton file

‣ You can turn your my_prog.bpf.o file into a “skeleton file”
🞄 this is a C header (my_prog.skel.h)

🞄 it contains the whole BPF program as a byte array
■ you don’t need my_prog.bpf.o anymore

🞄 it contains auto-generated API to manipulate your program from userspace

$ bpftool gen skeleton my_prog.bpf.o > my_prog.skel.h
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A very simple libbpf program

#include <unistd.h>

#include "my_prog.skel.h"

int main(int argc, char *argv[])

{

    struct my_prog *skel;

    skel = my_prog__open_and_load();

    if(!skel)

        exit(EXIT_FAILURE);

    if (my_prog__attach(skel)) {

        my_prog__destroy(skel);

        exit(EXIT_FAILURE);

    }

    while(true) {

      sleep(1);

    }

    return 0;

}
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Writing and compiling our userspace program

‣ You can use auto-generated functions from your program skeleton

‣ You can use generic functions from libbpf
🞄 eg: to manipulate your program maps

‣ Once done, you can build your program thanks to a native compiler:

$ gcc my_prog.c -o my_prog -lbpf

‣ And voila, you now have a standalone eBPF tool !
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