
Bangalore 2024

Embedded Linux from
scratch in 50 minutes
(on RISC-V)
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/67

Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin:
• Embedded Linux expertise
• Development, consulting and training
• Focusing only on Free and Open Source Software

▶ About myself:
• Always happy to learn from every new project,

and share what I learn.
• Initial author of Bootlin’s freely available embedded Linux,

kernel and boot time reduction training materials
(https://bootlin.com/docs/)

• Documentation maintainer for the Yocto Project

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/67

https://bootlin.com/docs/

About this presentation

▶ This presentation is an update to a talk I made in 2021
https://bootlin.com/pub/conferences/2021/fosdem/opdenacker-embedded-
linux-45minutes-riscv/

▶ This presentation is available under the same Creative-Commons Attribution
Share-Alike 3.0 license

▶ I’m doing this presentation on my own behalf.
This doesn’t represent opinions or statements from Bootlin.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/67

https://bootlin.com/pub/conferences/2021/fosdem/opdenacker-embedded-linux-45minutes-riscv/
https://bootlin.com/pub/conferences/2021/fosdem/opdenacker-embedded-linux-45minutes-riscv/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Embedded Linux from scratch in 50 minutes (on RISC-V)

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/67

What I like in embedded Linux

▶ Linux is perfect for operating devices with a fixed set of features.
Unlike on the desktop, Linux is almost in every existing embedded system.

▶ Embedded Linux makes Linux easy to learn: just a few programs and libraries are
sufficient. You can understand the usefulness of each file in your filesystem.

▶ The Linux kernel is standalone: no complex dependencies against external
software. The code is in C (or Rust)!

▶ Linux works with just a few MB of RAM and storage
▶ There’s a new version of Linux every 2-3 months.
▶ Relatively small development community. You end up meeting lots of familiar

faces at technical conferences (like the Embedded Linux Conference).
▶ Lots of opportunities (and funding available) for becoming a contributor (Linux

kernel, bootloader, build systems...).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/67

Goals

Show you the most important aspects of embedded Linux development work
▶ Building a cross-compiling toolchain
▶ Creating a disk image
▶ Booting a using a bootloader
▶ Loading and starting the Linux kernel
▶ Building a root filesystem populated with basic utilities
▶ Configuring the way the system starts
▶ Setting up networking and controlling the system via a web interface
▶ Do this on QEMU and on real hardware!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/67

Things to build today

▶ Cross-compiling toolchain: Buildroot 2024.02.1 (LTS)
▶ Firmware / first stage bootloader: OpenSBI
▶ Bootloader: U-Boot 2024.04
▶ Kernel: Linux 6.8.x
▶ Root filesystem and application: BusyBox 1.36.1

That’s possible to compile and assemble in less than 50 minutes!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Cross-compiling toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/67

What’s a cross-compiling toolchain?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/67

Why generate your own cross-compiling toolchain?

Compared to ready-made toolchains:
▶ You can choose your compiler version
▶ You can choose your C library (glibc, uClibc, musl)
▶ You can tweak many other features!
▶ You gain reproducibility: if a bug is found, just apply a fix.

Don’t need to get another toolchain (different bugs)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/67

Generating a RISC-V musl toolchain with Buildroot

▶ Download Buildroot 2024.02.1 from https://buildroot.org

▶ Extract the sources (tar xf)
▶ Run make menuconfig

▶ In Target options →Target Architecture, choose RISCV

▶ In Toolchain →C library, choose musl.
▶ Save your configuration and run:

make sdk

▶ At the end, you have a toolchain archive in
output/images/riscv64-buildroot-linux-musl_sdk-
buildroot.tar.gz

▶ Extract the archive in a suitable directory, and in the extracted
directory, run: ./relocate-sdk.sh

https://asciinema.org/a/655846

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/67

https://buildroot.org
https://asciinema.org/a/655846

Embedded Linux from scratch in 50 minutes (on RISC-V)

The RISC-V CPU architecture

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/67

RISC-V: a new open-source ISA

▶ ISA: Instruction Set Architecture
▶ Created by the University of California Berkeley, in a world dominated

by proprietary ISAs with heavy royalties (ARM, x86)
▶ Exists in 32, 64 and 128 bit variants, from microcontrollers to powerful

server hardware.
▶ Anyone can use and extend it to create their own SoCs and CPUs.
▶ This reduces costs and promotes reuse and collaboration
▶ Implementations can be proprietary. Many hardware vendors are using

RISC-V CPUs in their hardware (examples: Microchip, Western
Digital, Nvidia...)

▶ Free implementations are also available
See https://en.wikipedia.org/wiki/RISC-V

Shakti Open Source
Processor Development
Ecosystem (BSD license)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/67

https://en.wikipedia.org/wiki/RISC-V

RISC-V boards supported by Linux

How to find out with boards are supported by mainline
Linux?
▶ In the Linux kernel sources, run:

find arch/riscv/boot/dts -name "*.dts"

▶ You can also synthetize RISC-V cores on FPGAs
▶ You can also get started with the QEMU emulator,

which simulates a virtual board with virtio hardware
Already try it with JSLinux:
https://bellard.org/jslinux/ https://asciinema.org/a/655447

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/67

https://bellard.org/jslinux/
https://asciinema.org/a/655447

Beagleboard.org RISC-V boards

Open Hardware and community friendly boards

BeagleV-Fire

https://www.beagleboard.org/boards/beaglev-fire
Microchip Polarfire MPFS025T SoC FPGA, 150 USD.

BeagleV-Ahead

https://www.beagleboard.org/boards/beaglev-ahead
Alibaba T-Head TH1520 SoC, 150 USD.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/67

https://www.beagleboard.org/boards/beaglev-fire
https://www.beagleboard.org/boards/beaglev-ahead

Other community friendly RISC-V boards

VisionFive2 by StarFive, StarFive JH7110 quad-core CPU with IMG
BXE4-32 GPU, 40 pin Raspberry PI compatible header, 130 USD (8
GB version). Good upstream support.

LicheePi 4A from Sipeed. Like BeagleV-Ahead, Alibaba T-Head
TH1520 SoC. Supported through a community only effort. 180 USD.

https://wiki.sipeed.com/hardware/en/lichee/th1520/lpi4a/1_intro.html

StarFive JH7110: VisionFive2
Alibaba T-Head TH1520: BeagleV-Ahead, LicheePi 4A

Thanks to Drew Fustini for the selection!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/67

https://www.starfivetech.com/en/site/boards
https://wiki.sipeed.com/hardware/en/lichee/th1520/lpi4a/1_intro.html
https://wiki.sipeed.com/hardware/en/lichee/th1520/lpi4a/1_intro.html

Inexpensive Milk-V boards

https://milkv.io/duo

Milk-V Duo:
Cvitech CV1800B C906@1GHz + C906@700MHz CPU
64 MB RAM, 5 USD

Milk-V Duo 256M:
Sophgo SG2002 C906@1GHz + C906@700MHz, 1xCortex-A53 @ 1GHz
256 MB RAM, 8 USD

https://milkv.io/duo-s
Sophgo SG2000 C906@1GHz + C906@700MHz, 1xCortex-A53 @ 1GHz
512 MB RAM, 10 USD

Products targeting camera applications
Caution: 1 core for Linux, 1 core for RTOS
Preliminary support in upstream kernel
Thanks to Thomas Bonnefille for the
recommendation!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/67

https://milkv.io/duo
https://milkv.io/duo-s

Embedded Linux from scratch in 50 minutes (on RISC-V)

Back to the cross-compiling toolchain

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/67

Testing the toolchain

▶ Create a new riscv64-env.sh file you can source to set
environment variables for your project:

export PATH=$HOME/toolchain/riscv64-buildroot-linux-musl_sdk-buildroot/bin:$PATH

▶ Run source riscv64-env.sh, take a hello.c file and test your new compiler:

$ riscv64-linux-gcc -static -o hello hello.c
$ file hello
hello: ELF 64-bit LSB executable, UCB RISC-V, double-float ABI, version 1 (SYSV), statically linked,
not stripped

We are compiling statically so far to avoid having to deal with shared libraries.
▶ Test your executable with QEMU in user mode:

$ qemu-riscv64 hello
Hello world!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Hardware emulator

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/67

Finding which machines are emulated by QEMU

Tests made with QEMU 6.2.0 (Ubuntu 22.04)

sudo apt install qemu-system-misc
$ qemu-system-riscv64 -M ?
Supported machines are:
none empty machine
shakti_c RISC-V Board compatible with Shakti SDK
sifive_e RISC-V Board compatible with SiFive E SDK
sifive_u RISC-V Board compatible with SiFive U SDK
spike RISC-V Spike board (default)
virt RISC-V VirtIO board

We are going to use the virt one, emulating VirtIO peripherals
(more efficient than emulating real hardware).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Booting process and privileges

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/67

RISC-V privilege modes

RISC-V has three privilege modes:
▶ User (U-Mode): applications
▶ Supervisor (S-Mode): OS kernel
▶ Machine (M-Mode): bootloader and firmware

Here are typical combinations:
▶ M: simple embedded systems
▶ M, U: embedded systems with memory protection
▶ M, S, U: UNIX-style operating systems with virtual

memory

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Firmware

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/67

OpenSBI: Open Supervisor Binary Interface

▶ Required to start an OS (S mode) from the
Supervisor/Firmware (M mode)

▶ Would be the first thing to build.
▶ However, OpenSBI 0.9 is already integrated in

qemu-system-riscv64 and I got issues
replacing it. Let’s keep this one. It’s like a
BIOS.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

U-Boot bootloader

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/67

Environment for U-Boot cross-compiling

▶ Clone the U-Boot Git tree (go to https://u-boot.org)

git clone https://github.com/u-boot/u-boot
cd u-boot
git tag | grep 2024.04
git checkout v2024.04

▶ Let’s add an environment variable to our riscv64-env.sh file for cross-compiling:

export CROSS_COMPILE=riscv64-linux-

▶ CROSS_COMPILE is the cross-compiler prefix, as our cross-compiler is
riscv64-linux-gcc.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/67

https://u-boot.org

Cross-compiling U-Boot

▶ Find U-Boot ready-made configurations for RISC-V:

ls configs | grep riscv

▶ We will choose the configuration for QEMU and U-Boot running in S Mode:

make qemu-riscv64_smode_defconfig

▶ Now let’s compile U-Boot (-j20: 20 compile jobs in parallel)

make -j20

▶ Result: u-boot.bin (859376 bytes!).
We could make it much smaller by removing many options!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/67

Starting U-Boot in QEMU

qemu-system-riscv64 -m 2G \
-nographic \
-machine virt \
-smp 8 \
-kernel u-boot/u-boot.bin

▶ -m: amount of RAM in the emulated machine
▶ -smp: number of CPUs in the emulated

machine
Exit QEMU with [Ctrl][a] followed by [x]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/67

Environment for kernel cross-compiling

▶ Download the latest Linux 6.8.x sources from https://kernel.org

▶ Extract the sources: tar xf linux-6.8.<x>.tar.xz

▶ Let’s rename the source directory to make our instructions version independent:
mv linux-6.8.<x> linux

▶ Go to the Linux source directory: cd linux

▶ Let’s add two environment variables for kernel cross-compiling to our
riscv64-env.sh file:

export CROSS_COMPILE=riscv64-linux-
export ARCH=riscv

▶ ARCH is the name of the subdirectory in arch/ corresponding to the target
architecture.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/67

https://kernel.org
https://elixir.bootlin.com/linux/latest/source/arch/

Kernel configuration

▶ Lets take the default Linux kernel configuration for RISC-V:

$ make help | grep defconfig
defconfig - New config with default from ARCH supplied defconfig
savedefconfig - Save current config as ./defconfig (minimal config)
alldefconfig - New config with all symbols set to default
olddefconfig - Same as oldconfig but sets new symbols to their
nommu_k210_defconfig - Build for nommu_k210
nommu_k210_sdcard_defconfig - Build for nommu_k210_sdcard
nommu_virt_defconfig - Build for nommu_virt

$ make defconfig

▶ We can now further customize the configuration:

make menuconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/67

Compiling the kernel

make -j 20

At the end, you have these files:
vmlinux: raw kernel in ELF format (not bootable, for debugging)
arch/riscv/boot/Image: uncompressed bootable kernel
arch/riscv/boot/Image.gz: compressed kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Booting the kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/67

Booting the Linux kernel directly

We could boot the Linux kernel directly as follows

qemu-system-riscv64 -m 2G \
-nographic \
-machine virt \
-smp 8 \
-kernel linux/arch/riscv/boot/Image \
-append "console=ttyS0" \

However, what we want to demonstrate is the normal booting process:
OpenSBI →U-Boot →Linux →Userspace

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/67

Booting the Linux kernel from U-Boot

▶ We want to show how to set the U-Boot environment to load the Linux kernel
and to specify the Linux kernel command line

▶ For this purpose, we will need some storage space to store the U-Boot
environment, load the kernel binary, and also to contain the filesystem that Linux
will boot on.

▶ Therefore, let’s create a disk image to give some storage space for QEMU

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/67

Disk image creation (1)

▶ Let’s create a 128 MB disk image:

dd if=/dev/zero of=disk.img bs=1M count=128

▶ Let’s create two partitions in this image

cfdisk disk.img

• A first 64 MB primary partition (type
W95 FAT32 (LBA)), marked as bootable

• A second partition with remaining space
(default type: Linux)

▶ Fun note: no need to be root here!
https://asciinema.org/a/656814

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/67

https://asciinema.org/a/656814

Disk image creation (2)

▶ Let’s access the partitions in this disk image:

sudo losetup -f --show --partscan disk.img
/dev/loop31

ls -la /dev/loop31*
brw-rw---- 1 root disk 7, 2 Jan 14 10:50 /dev/loop31
brw-rw---- 1 root disk 259, 11 Jan 14 10:50 /dev/loop31p1
brw-rw---- 1 root disk 259, 12 Jan 14 10:50 /dev/loop31p2

▶ We can now format the partitions:

sudo mkfs.vfat -F 32 -n boot /dev/loop31p1
sudo mkfs.ext4 -L rootfs /dev/loop31p2

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/67

Copying the Linux image to the FAT partition

▶ Let’s create a mount point for the FAT partition:

mkdir /mnt/boot

▶ Let’s mount it:

sudo mount /dev/loop31p1 /mnt/boot

▶ Let’s copy the kernel image to it:

sudo cp linux/arch/riscv/boot/Image /mnt/boot

▶ And then unmount the filesystem to commit changes:

sudo umount /mnt/boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/67

Recompiling U-Boot for environment support

We want U-Boot be able to use an environment
stored in the FAT partition we created. This way we
can customize U-Boot’s behaviour!
▶ So, let’s reconfigure U-Boot:

make menuconfig

• CONFIG_ENV_IS_IN_FAT=y
• CONFIG_ENV_FAT_INTERFACE="virtio"
• CONFIG_ENV_FAT_DEVICE_AND_PART="0:1"

▶ Then recompile U-Boot

make -j20

https://asciinema.org/a/656816

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/67

https://asciinema.org/a/656816

Run U-Boot with an environment

▶ Add a disk to the emulated machine:

qemu-system-riscv64 -m 2G -nographic -machine virt -smp 8 \
-kernel u-boot/u-boot.bin \
-drive file=disk.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0

▶ In U-Boot, you should now be able to save an environment:

=> setenv foo bar
=> saveenv
=> reset
...
=> printenv foo
bar

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Booting Linux from U-Boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/67

Requirements for booting Linux

To boot the Linux kernel, U-Boot needs to load
▶ A Linux kernel image. In our case, let’s load it from our virtio disk

to RAM (find a suitable RAM address by using the bdinfo command in U-Boot):

fatload virtio 0:1 84000000 Image

▶ A Device Tree Binary (DTB), letting the kernel know which SoC and devices we
have. This allows the same kernel to support many different SoCs and boards.

• DTB files are compiled from DTS files in arch/riscv/boot/dts/
• However, there is no such DTS file for the RISC-V QEMU virt board.
• The DTB for our board is actually passed by QEMU to OpenSBI and then to

U-Boot.
• In U-Boot, at least in our case, the DTB is available in RAM at address

${fdtcontroladdr}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/67

https://elixir.bootlin.com/linux/latest/source/arch/riscv/boot/dts/

Linux kernel command line

In U-Boot, we need to set the Linux arguments (kernel command line)

setenv bootargs root=/dev/vda2 console=ttyS0 earlycon=sbi rw

▶ root=/dev/vda2
Device for Linux to mount as root filesystem

▶ console=ttyS0
Device (here first serial line) to send Linux booting messages to

▶ earlycon=sbi
Allows to see messages before the console driver is initialized (Early Console).

▶ rw
Allows to mount the root filesystem in read-write mode.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/67

Booting Linux
▶ Here’s the command to boot the Linux Image file:

booti <Linux address> - <DTB address>

▶ In our case:

booti 0x84000000 - ${fdtcontroladdr}

▶ So, let’s define the default series of commands that U-Boot will automatically run:

setenv bootcmd 'fatload virtio 0:1 84000000 Image; booti 0x84000000 - ${fdtcontroladdr}'

▶ Save these new settings:

saveenv

▶ And boot our system (boot runs bootcmd):

boot

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/67

Booting Linux... almost there

[0.581124] NET: Registered PF_INET6 protocol family
[0.588486] Segment Routing with IPv6
[0.588698] In-situ OAM (IOAM) with IPv6
[0.589026] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[0.591357] NET: Registered PF_PACKET protocol family
[0.595137] 9pnet: Installing 9P2000 support
[0.595619] Key type dns_resolver registered
[0.615441] debug_vm_pgtable: [debug_vm_pgtable]: Validating architecture page...
[0.624764] Legacy PMU implementation is available
[0.625600] clk: Disabling unused clocks
[0.625790] ALSA device list:
[0.625868] No soundcards found.
[0.672876] EXT4-fs (vda2): recovery complete
[0.673455] EXT4-fs (vda2): mounted filesystem 2c5da046-5bee-4760-8d16-573bb8d1c176 r/w...
[0.673876] VFS: Mounted root (ext4 filesystem) on device 254:2.
[0.675577] devtmpfs: error mounting -2
[0.698640] Freeing unused kernel image (initmem) memory: 2240K
[0.700178] Run /sbin/init as init process
[0.700602] Run /etc/init as init process
[0.700710] Run /bin/init as init process
[0.700812] Run /bin/sh as init process
[0.700985] Kernel panic - not syncing: No working init found. Try passing init= option...

Linux booted, mounted the root filesystem, but failed to find an
init program to run. Let’s add one!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/67

Embedded Linux from scratch in 50 minutes (on RISC-V)

Building the root filesystem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/67

BusyBox - Most Linux commands in one binary
[, [[, acpid, add-shell, addgroup, adduser, adjtimex, arch, arp, arping, ash, awk, base64, basename, bc, beep, blkdiscard, blkid,
blockdev, bootchartd, brctl, bunzip2, bzcat, bzip2, cal, cat, chat, chattr, chgrp, chmod, chown, chpasswd, chpst, chroot, chrt,
chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup,
deluser, depmod, devmem, df, dhcprelay, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-deb, du, dumpkmap,
dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd, fallocate, false,
fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flock, fold, free, freeramdisk, fsck,
fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser, getopt, getty, grep, groups, gunzip, gzip, halt, hd, hdparm,
head, hexdump, hexedit, hostid, hostname, httpd, hush, hwclock, i2cdetect, i2cdump, i2cget, i2cset, i2ctransfer, id, ifconfig,
ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr, ipcalc, ipcrm, ipcs, iplink, ipneigh,
iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link, linux32, linux64, linuxrc, ln, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma,
lzop, makedevs, makemime, man, md5sum, mdev, mesg, microcom, mim, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.vfat,
mknod, mkpasswd, mkswap, mktemp, modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite,
nbd-client, nc, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe, passwd,
paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, powertop, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime,
remove-shell, renice, reset, resize, resume, rev, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-parts, runlevel,
runsv, runsvdir, rx, script, scriptreplay, sed, sendmail, seq, setarch, setconsole, setfattr, setfont, setkeycodes, setlogcons,
setpriv, setserial, setsid, setuidgid, sh, sha1sum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap,
softlimit, sort, split, ssl_client, start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff,
swapon, switch_root, sync, sysctl, syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time,
timeout, top, touch, tr, traceroute, traceroute6, true, truncate, ts, tty, ttysize, tunctl, ubiattach, ubidetach, ubimkvol,
ubirename, ubirmvol, ubirsvol, ubiupdatevol, udhcpc, udhcpc6, udhcpd, udpsvd, uevent, umount, uname, unexpand, uniq, unix2dos,
unlink, unlzma, unshare, unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch,
watchdog, wc, wget, which, who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox - July 2021 status
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/67

BusyBox - Downloading and configuring

▶ Download BusyBox 1.36.1 sources from
https://busybox.net

▶ Extract the archive with tar xf

▶ Run make allnoconfig
Starts with no applet selected

▶ Run make menuconfig
• In Settings →Build Options, enable

Build static binary (no shared libs)
• In Settings →Build Options, set

Cross compiler prefix to riscv64-linux-
• In Settings →Library Tuning, enable

Command line editing and Tab completion.
• Then enable support for the following commands:

hush, init, reboot, mount, cat, chmod, echo, ls,
mkdir, ps, top, uptime, vi, httpd, ifconfig

https://asciinema.org/a/656959

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/67

https://busybox.net
https://asciinema.org/a/656959

BusyBox - Installing and compiling

▶ Compiling: make -j 20
Resulting size: only 460,840 bytes! (could be
300,000 with fewer features)
Funny to see that we’re using a 64 bit system
to run such small programs!

▶ Installing in _install/: make install

▶ See the created directory structure and the
symbolic links to /bin/busybox

▶ Installing to the root filesystem:

sudo mkdir /mnt/rootfs
sudo mount /dev/loop31p2 /mnt/rootfs
sudo rsync -aH _install/ /mnt/rootfs/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/67

Completing the root filesystem (1)
We also need to create a dev directory for device files. The kernel will automatically mount the
devtmpfs filesystem there (as CONFIG_DEVTMPFS_MOUNT=y)

sudo mkdir /mnt/rootfs/dev
sudo umount /mnt/rootfs

The system should have everything it needs to boot now:

[0.463042] VFS: Mounted root (ext4 filesystem) on device 254:2.
[0.464862] devtmpfs: mounted
[0.486872] Freeing unused kernel image (initmem) memory: 2240K
[0.488446] Run /sbin/init as init process
starting pid 87, tty '': '/etc/init.d/rcS'
can't run '/etc/init.d/rcS': No such file or directory

Please press Enter to activate this console.
starting pid 89, tty '': '-/bin/sh'

BusyBox v1.36.1 (2024-04-29 07:21:47 CEST) built-in shell (ash)
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/67

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

Completing the root filesystem (2)

Let’s try to run the ps command to see the list of processes:

ps
PID USER VSZ STAT COMMAND

ps: can't open '/proc': No such file or directory

We need to create /proc and /sys so that we can mount the proc and sysfs virtual
filesystems on the target, which are needed by many system commands. We can now
run the commands on the target system:

mkdir /proc
mkdir /sys
mount -t proc nodev /proc
mount -t sysfs nodev /sys

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/67

Completing the root filesystem (3)

Let’s automate the mounting of proc and sysfs...
▶ Let’s create an /etc/inittab file to configure Busybox Init:

This is run first script:
::sysinit:/etc/init.d/rcS
Start an "askfirst" shell on the console:
::askfirst:/bin/sh

▶ Let’s create and fill /etc/init.d/rcS to automatically mount the virtual
filesystems:

#!/bin/sh
mount -t proc nodev /proc
mount -t sysfs nodev /sys

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/67

Common mistakes

▶ Don’t forget to make the rcS script executable. Linux won’t allow to execute it
otherwise.

▶ Do not forget #!/bin/sh at the beginning of shell scripts! Without the leading #!
characters, the Linux kernel has no way to know it is a shell script and will try to
execute it as a binary file!

▶ Don’t forget to specify the execution of a shell in /etc/inittab or at the end of
/etc/init.d/rcS. Otherwise, execution will just stop without letting you type
new commands!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/67

Add support for networking (1)

▶ Add a network interface to the emulated machine:

sudo qemu-system-riscv64 -m 2G -nographic -machine virt -smp 8 \
-kernel u-boot/u-boot.bin \
-drive file=disk.img,format=raw,id=hd0 \
-device virtio-blk-device,drive=hd0 \
-netdev tap,id=tapnet,ifname=tap2,script=no,downscript=no \
-device virtio-net-device,netdev=tapnet

▶ Need to be root to bring up the tap2 network interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/67

Add support for networking (2)

▶ On the target machine:

ifconfig -a
ifconfig eth0 192.168.2.100

▶ On the host machine:

ifconfig -a
sudo ifconfig tap2 192.168.2.1
ping 192.168.2.100

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/67

Simple CGI script

#!/bin/sh
echo "Content-type: text/html"
echo
echo "<html>"
echo "<meta http-equiv=\"refresh\" content=\"1\">"
echo "<header></header><body>"
echo "<h1>Uptime information</h1>"
echo "Your embedded device has been running for:<pre>"
echo `uptime`
echo "</pre>"
echo "</body></html>"

Store it in /www/cgi-bin/uptime and make it executable.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 57/67

Start a web server

▶ On the target machine:

/usr/sbin/httpd -h /www

▶ On the host machine, open in your browser:
http://192.168.2.100/cgi-bin/uptime

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/67

http://192.168.2.100/cgi-bin/uptime

Demo: booting Linux on Milk-V Duo S board

▶ We can use the same binary kernel!
▶ A Linux kernel can be built for many different SoCs at

the same time.
▶ All we need is just a different description of the

hardware (DTB)
▶ However, support for this board and its SoC is pretty

basic in the mainline kernel so far:
• The MMC driver not fully ready yet (patches submitted

for the 6.9 kernel)
• We will therefore boot on a filesystem in RAM

(Initramfs), included in the kernel binary.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/67

Connecting the Milk-V Duo S board

Let’s use the new tio command
to access the serial line:
▶ tio doesn’t die but waits

when the line is
disconnected

▶ tio can also log to a file
▶ tio is easy to use:

tio /dev/ttyUSB0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/67

SD card for the Milk-V Duo S board

▶ Format your micro-SD card as previously:

sudo cfdisk /dev/mmcblk0

▶ Mount the boot partition
▶ We are not ready to use a mainline U-Boot yet, so copy the fip.bin file from

https://gitlab.com/michaelopdenacker/embedded-linux-from-scratch-
riscv/-/raw/main/binaries/milk-v/duo-s/fip.bin to the boot partition.

▶ Copy the same Image file to the boot partition:

cp arch/riscv/boot/Image /mnt/boot/

▶ Also copy a DTB from a very similar board:

cp arch/riscv/boot/dts/sophgo/cv1812h-huashan-pi.dtb /mnt/boot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/67

https://gitlab.com/michaelopdenacker/embedded-linux-from-scratch-riscv/-/raw/main/binaries/milk-v/duo-s/fip.bin
https://gitlab.com/michaelopdenacker/embedded-linux-from-scratch-riscv/-/raw/main/binaries/milk-v/duo-s/fip.bin

Boot the Milk-V Duo S board

▶ Insert the micro-SD card, power the board, and in the U-Boot
prompt, type:

setenv bootargs console=ttyS0,115200; fatload mmc 0 82000000 Image;
fatload mmc 0 84000000 cv1812h-huashan-pi.dtb; booti 82000000 - 84000000

▶ However, it won’t boot because we haven’t given it a root
filesystem yet.

▶ So, let’s prepare an Initramfs to boot on, and include it into the
kernel binary.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 62/67

Initramfs for RISC-V (1)

Something that should run on any RISC-V board!
▶ Mount your root filesystem image again and copy it to a directory

sudo mount /dev/loop31p2 /mnt/rootfs
sudo rsync -aH /mnt/rootfs ~/riscv/rootfs

▶ Linux will try to start /init in the initramfs

cd ~/riscv/rootfs
ln -s sbin/init .

▶ You also need to mount the devtmpfs filesystem manually by adding this line to
etc/init.d/rcS:

mount -t devtmpfs nodev /dev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/67

Initramfs for RISC-V (2)

▶ Unlike on ARM, you also need a
/dev/console file in an Initramfs
before mounting /dev/:

sudo mknod dev/console c 5 1

▶ Now, configure Linux to bundle this
new directory as Initramfs. In
General setup, set
Initramfs source file(s) to
../rootfs.

▶ Recompile Linux and update the
Image file on the boot partition.

▶ Voilà!

[1.106406] mousedev: PS/2 mouse device common for all mice
[1.114012] sdhci: Secure Digital Host Controller Interface driver
[1.120482] sdhci: Copyright(c) Pierre Ossman
[1.125252] Synopsys Designware Multimedia Card Interface Driver
[1.131783] sdhci-pltfm: SDHCI platform and OF driver helper
[1.138127] usbcore: registered new interface driver usbhid
[1.143955] usbhid: USB HID core driver
[1.149969] NET: Registered PFOINET6 protocol family
[1.157399] Segment Routing with IPv6
[1.161377] In-situ OAM (IOAM) with IPv6
[1.165618] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[1.173106] NET: Registered PF_PACKET protocol family
[1.178579] 9pnet: Installing 9P2000 support
[1.183219] Key type dns_resolver registered
[1.229810] debug_vm_pgtable: [debug_vm_pgtable]: Validat...
[1.241117] Legacy PMU implementation is available
[1.246652] clk: Disabling unused clocks
[1.250832] ALSA device list:
[1.253991] No soundcards found.
[1.259366] dw-apb-uart 4140000.serial: forbid DMA for kernel console
[1.268035] Freeing unused kernel image (initmem) memory: 2476K
[1.274290] Run /init as init process

Please press Enter to activate this console.

BusyBox v1.36.1 (2024-04-30 06:50:07 CEST) built-in shell (ash)

~ #

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 64/67

A few things to remember

▶ Embedded Linux is just made out of simple components.
It makes it easier to get started with Linux.

▶ You just need a toolchain, a bootloader, a kernel and a few executables.
▶ RISC-V is a new, open Instruction Set Architecture, use it and support it!
▶ With Asciinema, you can copy text from videos!
▶ You will love tio as a replacement to picocom.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/67

https://asciinema.org/

Going further and thanks

▶ Drew Fustini’s unmatched presentation about Linux on
RISC-V: https://tinyurl.com/elc2023-bof

▶ Bootlin’s training materials and conference
presentations (Creative Commons CC-BY-SA licence):
https://bootlin.com/docs/

▶ Thanks to Drew Fustini for sharing his personal advice.
▶ Thanks to YOU for attending this talk!

अब आप गु� ह�

See credits for all images

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 66/67

https://tinyurl.com/elc2023-bof
https://bootlin.com/docs/
https://gitlab.com/michaelopdenacker/embedded-linux-from-scratch-riscv/-/blob/main/graphics/README

Questions? Suggestions? Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2024/risc-v/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 67/67

https://bootlin.com/pub/conferences/2024/risc-v/

	Embedded Linux from scratch in 50 minutes (on RISC-V)
	Introduction
	Cross-compiling toolchain
	The RISC-V CPU architecture
	Back to the cross-compiling toolchain
	Hardware emulator
	Booting process and privileges
	Firmware
	U-Boot bootloader
	Linux kernel
	Booting the kernel
	Booting Linux from U-Boot
	Building the root filesystem

