
Toulouse Embedded Linux, IoT & Android meetup 2024

10 best practices for
Yocto
Jérémie Dautheribes
jeremie.dautheribes@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Jérémie Dautheribes

▶ Embedded Linux engineer at Bootlin
• Yocto expertise: i.MX6/7/8, Nvidia Jetson Nano, TI AM62x, Xilinx ZynqMP, ...
• Development, consulting and training
• Strong open-source focus

▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

10 best practices for Yocto

What is this talk about?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

What is this talk about?

▶ Yocto: tool kit for building custom Linux images for embedded systems
▶ De facto industry standard
▶ Very powerful and (too?) flexible -> Often used badly
▶ Hard to fully master
▶ Feedback from my experience and colleagues’

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

10 best practices for Yocto

Keep your layers updated

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Keep your layers updated

▶ Always use a supported Yocto release!
▶ Usual workflow: use a branch named after a supported Yocto release
▶ Update your layer to newer minor version on a regular basis
▶ Use Long Term Support (LTS) versions if you need stability (supported 4 years)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Keep your layers updated

Screenshot from https://wiki.yoctoproject.org/wiki/Releases

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://wiki.yoctoproject.org/wiki/Releases

10 best practices for Yocto

Don’t overuse local.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Don’t overuse local.conf

▶ Useful for development and quick testing
▶ Should be specific to your local build: thread limitations, network configuration,

build log management
▶ Options you want to share should be moved to distro and machine configuration

files or to image recipes
▶ For company specific needs: site.conf
▶ Possibility to use a template local.conf.sample (see advice 4)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

10 best practices for Yocto

Don’t use Poky in production

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Don’t use Poky in production

▶ Poky:
• Reference Yocto distribution
• Meant for learning, testing and optionally early development

▶ Create your own distro:
• Very easy to create in <layer>/conf/distro/<distro>.conf
• Distribute changes from local.conf
• Configure options that impact your global build: toolchain, libc implementation, init

system, Wayland compositor
• Can contain specific classes (ex: signing image)
• Can provide sample files: bblayers.conf.sample, local.conf.sample

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Minimal distro example

In <layer>/conf/distro/myDistro.conf:

DISTRO = "myDistro"
DISTRO_NAME = "My Wonderful Linux Distribution"
DISTRO_VERSION = "1.0"

Add basic features
DISTRO_FEATURES = "acl alsa argp ipv4 ipv6 largefile xattr vfat"

Add specific features
DISTRO_FEATURES:append = " rauc"

DEFAULT_TIMEZONE = "Europe/Paris"

Default settings
TCLIBC = "glibc"
TCMODE = "default" (i.e. gcc)
VIRTUAL-RUNTIME_init_manager = "sysvinit"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

More distro example

In <layer>/conf/distro/myDistro.conf:

DISTRO = "myDistro"
DISTRO_NAME = "My Powerful Linux Distribution"
DISTRO_VERSION = "1.0"

DISTRO_FEATURES = "acl pam polkit rauc seccomp systemd usrmerge xattr \
${@bb.utils.contains('HOST_ARCH', 'aarch64', 'selinux', '', d)} \
${@bb.utils.contains('HOST_ARCH', 'x86_64', 'selinux', '', d)} \

"

TCLIBC = "musl"
VIRTUAL-RUNTIME_init_manager = "systemd"
SDK_NAME = "${DISTRO}-${TCLIBC}-${SDK_ARCH}-${IMAGE_BASENAME}-${TUNE_PKGARCH}"
INHERIT += "create-spdx"
ACCEPT_FSL_EULA = "1"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

10 best practices for Yocto

Select third-party layers carefully

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Select third-party layers carefully

▶ Keep your number of layer low (as much as you can)
▶ Quality of various third-party layers is dubious
▶ BSP layers: quality of SoC vendor layers is varying, for SoM vendor layers it’s

questionable
▶ If supported in mainline, you can even drop BSP third-party layers
▶ Use third-party layers for standard complex stacks: meta-qt6, meta-flutter, ...
▶ Always estimate benefit/cost ratio

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Example of a simple layer

https://github.com/bootlin/simplest-yocto-setup/
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://github.com/bootlin/simplest-yocto-setup/

10 best practices for Yocto

Manage carefully your layer(s)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Manage carefully your custom layer(s)

▶ Important to understand what should go in image, DISTRO and MACHINE files
▶ Fine to have only 1 layer if correctly managed (small team?)
▶ If required split it in at least 3 layers: BSP, distro, custom apps
▶ Might be more flexible and easier to maintain depending on your environment

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Don’t put source code or binary inside your layers

▶ Don’t use your layers as source-control management for your packages
▶ Yocto is a big wrapper around existing projects
▶ Meant to build everything from scratch
▶ Might be fine to have some configuration files
▶ Avoid pre-compiled binaries, if you can’t (firmwares, proprietary librairies, ...):

• Write recipes fetching those binaries from remote locations
• Use bin_package.bbclass

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

10 best practices for Yocto

Leverage existing Yocto functionalities

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Leverage existing Yocto functionalities

▶ Yocto provides a lot of features, use them!
▶ Non-exhaustive list:

• bbclass: autotools/cmake/meson, kernel, fitImage, ...
• Bootloader: u-boot includes
• DISTRO_FEATURES, MACHINE_FEATURES, COMBINED_FEATURES
• IMAGE_FEATURES
• Overriding mechanism, FILESPATH, PACKAGECONFIG

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-COMBINED_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILESPATH
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG

bbclass example

Example: fatresize recipe

SUMMARY = "Resize FAT partitions using libparted"
SECTION = "console/tools"
LICENSE = "GPL-2.0-only"
LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI = "git://salsa.debian.org/parted-team/fatresize.git;protocol=https;branch=master \
file://0001-build-Do-not-build-.sgml-file.patch \
file://0001-configure-Do-not-add-D_FILE_OFFSET_BITS-to-CFLAGS.patch \
"

SRCREV = "12da22087de2ec43f0fe5af1237389e94619c483"

S = "${WORKDIR}/git"

DEPENDS = "parted"

inherit autotools pkgconfig

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Override mechanism

OVERRIDES="arm:armv7a:ti-soc:ti33x:beaglebone:poky"

KERNEL_DEVICETREE:beaglebone = "am335x-bone.dtb" # This is applied
KERNEL_DEVICETREE:dra7xx-evm = "dra7-evm.dtb" # This is ignored

Note: OVERRIDES is automatically generated, but can be easily customized

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-OVERRIDES

10 best practices for Yocto

Be careful with variable scope

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

Be careful with variable scope

▶ Global scope: variables defined in global configuration files (distro, machine,
local.conf, ...), will impact the build globally

▶ Local scope: the rest, i.e. variables in recipes, include files, bbclasses
▶ Bitbake provides a set of common variables (PV, S, FILEPATHS, ...), each recipe

will have its own copy
▶ .bbclass and images are ”just” recipes, i.e. local scope (except for classes

inherited globally)
▶ Avoid using operators (+=, .=, ...) within global configuration files due to

parsing order, prefer overridings (:append, :prepend, ...) which provide much
more reliable results

Tip: use bitbake-getvar tool and buildhistory feature

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-PV
https://docs.yoctoproject.org/ref-manual/variables.html#term-S
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILEPATHS

bitbake-getvar

$ bitbake-getvar PREFERRED_PROVIDER_virtual/kernel
NOTE: Starting bitbake server...
#
$PREFERRED_PROVIDER_virtual/kernel [2 operations]
set /home/jd/sources/meta-st-stm32mp/conf/machine/include/st-machine-providers-stm32mp.inc:4
"linux-stm32mp"
override[bootlinlabs]:set /home/jd/build/conf/local.conf:1
"linux-dummy"
pre-expansion value:
"linux-dummy"
PREFERRED_PROVIDER_virtual/kernel="linux-dummy"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

buildhistory

▶ See official doc for how to configure it
▶ Example when removing htop package from IMAGE_INSTALL:

Inside build/buildhistory
$ git show

diff --git a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt b/images/...
index 911e216..070d52e 100644
--- a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt
+++ b/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt
...
-IMAGE_INSTALL = packagegroup-core-boot packagegroup-bootlinlabs-games htop
+IMAGE_INSTALL = packagegroup-core-boot packagegroup-bootlinlabs-games
-IMAGESIZE = 15868
+IMAGESIZE = 15392
...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://docs.yoctoproject.org/5.0.4/singleindex.html#enabling-and-disabling-build-history
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL

buildhistory

...
diff --git a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt b/images/...
index 9bf03e7..eab4e8d 100644
--- a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt
+++ b/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt

...

--rw-r--r-- root root 1647 ./etc/ld.so.cache
+-rw-r--r-- root root 1448 ./etc/ld.so.cache
--rwxr-xr-x root root 184872 ./usr/bin/htop
--rwxr-xr-x root root 128252 ./lib/libncursesw.so.5.9
-lrwxrwxrwx root root 18 ./lib/libncursesw.so.5 -> libncursesw.so.5.9

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

10 best practices for Yocto

Use KAS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Use KAS

▶ Tool developped by Siemens for automating setting up Yocto and build images
▶ Very easy to use, especially for non-Yocto people
▶ Support containers out of the box
▶ Note: bypass template mechanism, overwrite local.conf and bblayers.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

KAS configuration example:

header:
version: 8

machine: mymachine
distro: mydistro
target:

- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
tag 2.0
commit: c212b0f3b542efa19f15782421196b7f4b64b0b9
layers:

.: excluded

openembedded-core:
url: "https://git.openembedded.org/openembedded-core"
branch: kirkstone
layers:

meta:

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

KAS configuration example

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
branch: kirkstone

meta-openembedded:
url: https://git.openembedded.org/meta-openembedded
branch: kirkstone
layers:

meta-oe:
meta-python:
meta-networking:

local_conf_header:
common-conf: |
RM_OLD_IMAGE = "1"
BB_NO_NETWORK = "1"

▶ Build in a single command:
$ kas build meta-custom/mymachine.yaml

▶ Or build inside a container:
$ kas-container build meta-custom/mymachine.yaml

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

10 best practices for Yocto

Work with the community

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Work with the community

▶ Read the official documentation
▶ Contribute to the doc (maintained by Bootlin), follow the contributor guide
▶ Niche community, very friendly and easy to talk to
▶ Mailing list based upstreaming workflow
▶ Third-party layers: usually through Git web interfaces (Github, Gitlab)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://docs.yoctoproject.org/5.0.4/singleindex.html
https://docs.yoctoproject.org/5.0.4/singleindex.html#yocto-project-and-openembedded-contributor-guide

Questions? Suggestions? Comments?

Jérémie Dautheribes
jeremie.dautheribes@bootlin.com

Bootlin ”Yocto Project and OpenEmbedded development” training
https://bootlin.com/training/yocto/

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

https://bootlin.com/training/yocto/
https://bootlin.com/pub/conferences/

