@o Toulouse Embedded Linux, loT & Android meetup 2024

10 best practices for
Yocto

Jérémie Dautheribes
jeremie.dautheribes@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Jérémie Dautheribes

Embedded Linux engineer at Bootlin

Yocto expertise: i.MX6/7/8, Nvidia Jetson Nano, TI AM62x, Xilinx ZyngMP, ...
Development, consulting and training
Strong open-source focus

Living in Toulouse, France

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

2/1

10 best practices for Yocto

What is this talk about?

0O0tlIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

What is this talk about?

Yocto: tool kit for building custom Linux images for embedded systems
De facto industry standard

Very powerful and (too?) flexible -> Often used badly
Hard to fully master

Feedback from my experience and colleagues’

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/1

10 best practices for Yocto

Keep your layers updated

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Keep your layers updated

Always use a supported Yocto release!
Usual workflow: use a branch named after a supported Yocto release
Update your layer to newer minor version on a regular basis

Use Long Term Support (LTS) versions if you need stability (supported 4 years)

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

6/1

4% Keep your layers updated

Yocto Project . Poky BitBake L
Codename N Release Date Current Version Support Level N Maintainer
Version Version branch

VRS 52 April 2025 Future N/A 212 Richard purdie)
Walna) <richard.purdie@linuxfoundation.org>
Styhead Support for 7 months (until May

O . 5.1 October 2024 | 5.1 (October 2024) N/A 2.10 Steve Sakoman <steve@sakoman.com>
(like 'try head’) 2025)

5.0.5 (N b L Te St t (until April
Scarthgap 50 April 2024 (November, ong Term Support (until April 28 Steve Sakoman <steve@sakoman.coms
2024) 2028)

Nanbield 43 November | , 3 4 (april 2024) EOL N/A 26 Steve Sakoman <steve@sakoman.com>
(like 'man field") 2023
Mickledore 42 May 2023 ;)zz'g)mecember EOL N/A 24 Steve Sakoman <steve@sakoman.com>
Langdale 4.1 October 2022 | 4.1.4 (May 2023) EOL N/A 22 Steve Sakoman <steve@sakoman.com>
Kirkstone 4.0 May 2022 OBy Long Term Support (Apr. 2026") | N/A 20 Steve Sakoman <steve@sakoman.com>
(like 'kirk stun’) g Y 2024) & [EITTS ! "
Honister 34 October 2021 | 3.4.4 (May 2022) EOL N/A 152 Anuj Mittal <anuj.mittal@intel.com>
Hardknott 33 April 2021 3.3.6 (April 2022) EOL N/A 1.50 Anuj Mittal <anuj.mittal@intel.com>
Gatesgarth 82 Oct 2020 3.2.4 (May 2021) EOL N/A 1.48 Anuj Mittal <anuj.mittal@intel.com>
Dunfell 31 April 2020 3.1.33 (May 2024) EOL- LTS’ 23.0 1.46 Steve Sakoman <steve@sakoman.com>

Screenshot from https://wiki.yoctoproject.org/wiki/Releases

-
POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

7/1

https://wiki.yoctoproject.org/wiki/Releases

10 best practices for Yocto

Don’t overuse local.conf

DOOtN - Kernel, drivers and embedded Linux - Development, consul

It

ng, training and support - https://bootlin.com

8/1

Don’t overuse local.conf

Useful for development and quick testing

Should be specific to your local build: thread limitations, network configuration,
build log management

Options you want to share should be moved to distro and machine configuration
files or to image recipes

For company specific needs: site.conf

Possibility to use a template local.conf.sample (see advice 4)

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

9/1

10 best practices for Yocto

Don't use Poky in production

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Don't use Poky in production

Poky:

Reference Yocto distribution

Meant for learning, testing and optionally early development
Note

While Poky is a “complete” distribution specification and is tested and put through QA, you cannot use it as a product “out of the box" in its current form.

Create your own distro:
Very easy to create in <layer>/conf/distro/<distro>.conf
Distribute changes from local.conf
Configure options that impact your global build: toolchain, libc implementation, init
system, Wayland compositor
Can contain specific classes (ex: signing image)
Can provide sample files: bblayers.conf.sample, local.conf.sample

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

‘Qb Minimal distro example

In <layer>/conf/distro/myDistro.conf:

DISTRO = "myDistro"
DISTRO_NAME = "My Wonderful Linux Distribution"
DISTRO_VERSION = "1.0"

Add basic features
DISTRO_FEATURES = "acl alsa argp ipv4 ipv6 largefile xattr vfat"

Add specific features
DISTRO_FEATURES:append = " rauc"

DEFAULT_TIMEZONE = "Europe/Paris"

Default settings

TCLIBC = "glibc"

TCMODE = "default" (i.e. gcc)

VIRTUAL-RUNTIME_init_manager = "sysvinit"

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

4% More distro example

In <layer>/conf/distro/myDistro.conf:

DISTRO = "myDistro"
DISTRO_NAME = "My Powerful Linux Distribution"
DISTRO_VERSION = "1.0"

DISTRO_FEATURES = "acl pam polkit rauc seccomp systemd usrmerge xattr \
${@bb.utils.contains('HOST_ARCH', 'aarch64', 'selinux', '', d)} \
${@b.utils.contains('HOST_ARCH', 'x86_64', 'selinux', "', d)} \

TCLIBC = "musl"

VIRTUAL-RUNTIME_init_manager = "systemd"

SDK_NAME = "${DISTRO}-${TCLIBC}-${SDK_ARCH} - ${ IMAGE_BASENAME}-${ TUNE_PKGARCH}"
INHERIT += "create-spdx"

ACCEPT_FSL_EULA = "1"

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

10 best practices for Yocto

Select third-party layers carefully

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Select third-party layers carefully

Keep your number of layer low (as much as you can)
Quiality of various third-party layers is dubious

BSP layers: quality of SoC vendor layers is varying, for SoM vendor layers it's
questionable

If supported in mainline, you can even drop BSP third-party layers
Use third-party layers for standard complex stacks: meta-qt6, meta-flutter, ...
Always estimate benefit/cost ratio

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

> Editpins ~ | | ® watch (9) ~

2 main ~ | ¥ 1Brar) e ©] | Addfile ~ || <> code ~ |

@) P-D-G and lucaceresoli kas: repla O 33 Commits.

B meta-kiss bid warning due to SL lict
[.configyam! kas: replace ¢ by branch
[.gitignore ilding trusted-firn a for booting

[README.md md: add link to the cumentation

[0 README

simplest-yocto-setup

simplest-yocto-setup Is an example of the simplest, but realistic and working, Yocto/OpenEmbedded setup.

It aims at providing an example of how Yocto/OE can be used as the embedded Linux build system for end
products without unnecessary complications.

Why?

While working for several Bootlin customers on their Yocto/OpenEmbedded setups we have seen many
problems caused by unnecessary complications in their layers

https://github.com/bootlin/simplest-yocto-setup/

bOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://boot1lin.com 16/1

https://github.com/bootlin/simplest-yocto-setup/

10 best practices for Yocto

Manage carefully your layer(s)

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Manage carefully your custom layer(s)

Important to understand what should go in image, DISTRO and MACHINE files
Fine to have only 1 layer if correctly managed (small team?)
If required split it in at least 3 layers: BSP, distro, custom apps

Might be more flexible and easier to maintain depending on your environment

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Don't put source code or binary inside your layers

Don't use your layers as source-control management for your packages

Yocto is a big wrapper around existing projects

Meant to build everything from scratch

Might be fine to have some configuration files

Avoid pre-compiled binaries, if you can't (firmwares, proprietary librairies, ...):

Write recipes fetching those binaries from remote locations
Use bin_package.bbclass

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

10 best practices for Yocto

Leverage existing Yocto functionalities

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4@ Leverage existing Yocto functionalities

> Yocto provides a lot of features, use them!

> Non-exhaustive list:

bbclass: autotools/cmake/meson, kernel, fitimage, ...
Bootloader: u-boot includes

DISTRO_FEATURES, MACHINE_FEATURES, COMBINED_FEATURES
IMAGE_FEATURES

Overriding mechanism, FILESPATH, PACKAGECONFIG

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-COMBINED_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILESPATH
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG

4% bbclass example

Example: fatresize recipe

SUMMARY = "Resize FAT partitions using libparted"

SECTION = "console/tools"

LICENSE = "GPL-2.0-only"

LIC_FILES_CHKSUM = "file://COPYING;md5=d32239bcb673463ab874e80d47fae504"

SRC_URI = "git://salsa.debian.org/parted-team/fatresize.git;protocol=https;branch=master \

file://0001-build-Do-not-build-.sgml-file.patch \
file://0001-configure-Do-not-add-D_FILE_OFFSET_BITS-to-CFLAGS.patch \

SRCREV = "12da22087de2ec43f0fe5af1237389e94619c483"
S = "${WORKDIR}/git"
DEPENDS = "parted"

inherit autotools pkgconfig

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

‘Qb Override mechanism
A

OVERRIDES="arm:armv7a:ti-soc:ti33x:beaglebone:poky"

KERNEL_DEVICETREE:beaglebone = "am335x-bone.dtb" # This is applied
KERNEL_DEVICETREE:dra7xx-evm = "dra7-evm.dtb" # This is ignored

Note: OVERRIDES is automatically generated, but can be easily customized

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-OVERRIDES

10 best practices for Yocto

Be careful with variable scope

0O0tlIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Be careful with variable scope

Global scope: variables defined in global configuration files (distro, machine,
local.conf, ...), will impact the build globally

Local scope: the rest, i.e. variables in recipes, include files, bbclasses

Bitbake provides a set of common variables (PV, S, FILEPATHS, ...), each recipe
will have its own copy

.bbclass and images are "just” recipes, i.e. local scope (except for classes
inherited globally)

Avoid using operators (+=, .=, ...) within global configuration files due to
parsing order, prefer overridings (:append, :prepend, ...) which provide much
more reliable results

Tip: use bitbake-getvar tool and buildhistory feature

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://docs.yoctoproject.org/ref-manual/variables.html#term-PV
https://docs.yoctoproject.org/ref-manual/variables.html#term-S
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILEPATHS

% bitbake-getvar

$ bitbake-getvar PREFERRED_PROVIDER_virtual/kernel
NOTE: Starting bitbake server...

#

$PREFERRED_PROVIDER_virtual/kernel [2 operations]

set /home/jd/sources/meta-st-stm32mp/conf/machine/include/st-machine-providers-stm32mp.inc:4
"linux-stm32mp"

override[bootlinlabs]:set /home/jd/build/conf/local.conf:1

"linux-dummy"

pre-expansion value:

"linux-dummy"

PREFERRED_PROVIDER_virtual/kernel="1inux-dummy"

v
POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

4% buildhistory

> See official doc for how to configure it

> Example when removing htop package from IMAGE_INSTALL:

Inside build/buildhistory
$ git show

diff --git a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt b/images/...
index 911e216..070d52e 100644

--- a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt

+++ b/images/bootlinlabs/glibc/bootlinlabs-image-minimal/image-info.txt

-IMAGE_INSTALL = packagegroup-core-boot packagegroup-bootlinlabs-games htop
+IMAGE_INSTALL = packagegroup-core-boot packagegroup-bootlinlabs-games
-IMAGESIZE = 15868

+IMAGESIZE = 15392

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://docs.yoctoproject.org/5.0.4/singleindex.html#enabling-and-disabling-build-history
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL

4% buildhistory

diff --git a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt b/images/...
index 9bf03e7..eab4e8d 100644

--- a/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt

+++ b/images/bootlinlabs/glibc/bootlinlabs-image-minimal/files-in-image.txt

==[{f=F==F== et root 1647 ./etc/1ld.so.cache

F==F==F== [EOL root 1448 ./etc/1ld.so.cache

--rwxr-xr-x root root 184872 ./usr/bin/htop

-=rwxr-xr-x root root 128252 ./lib/libncursesw.so0.5.9

-lrwxrwxrwx root root 18 ./lib/libncursesw.so.5 -> libncursesw.so.5.9

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

10 best practices for Yocto

Use KAS

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Use KAS

Tool developped by Siemens for automating setting up Yocto and build images
Very easy to use, especially for non-Yocto people
Support containers out of the box

Note: bypass template mechanism, overwrite local.conf and bblayers.conf

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

4% KAS configuration example:

header:

version: 8
machine: mymachine
distro: mydistro
target:

- myimage

repos:
meta-custom:

bitbake:
url: "https://git.openembedded.org/bitbake"
tag 2.0
commit: c212b0f3b542efal19f15782421196b7f4b64b0b9
layers:
: excluded

openembedded-core:
url: "https://git.openembedded.org/openembedded-core’
branch: kirkstone
layers:
meta:

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

31/1

4% KAS configuration example

meta-freescale:
url: "https://github.com/Freescale/meta-freescale"
branch: kirkstone

meta-openembedded:
url: https://git.openembedded.org/meta-openembedded
branch: kirkstone
layers:
meta-oe:
meta-python:
meta-networking:

local_conf_header:

common-conf: |
RM_OLD_IMAGE = "1"
BB_NO_NETWORK = "1"

> Build in a single command:
$ kas build meta-custom/mymachine.yaml
» Or build inside a container:
$ kas-container build meta-custom/mymachine.yaml

POOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/1

10 best practices for Yocto

Work with the community

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

33/1

Work with the community

Read the official documentation

Contribute to the doc (maintained by Bootlin), follow the contributor guide
Niche community, very friendly and easy to talk to

Mailing list based upstreaming workflow

Third-party layers: usually through Git web interfaces (Github, Gitlab)

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://docs.yoctoproject.org/5.0.4/singleindex.html
https://docs.yoctoproject.org/5.0.4/singleindex.html#yocto-project-and-openembedded-contributor-guide

Questions? Suggestions? Comments?

Jérémie Dautheribes

Jjeremie.dautheribes@bootlin.com

Bootlin "Yocto Project and OpenEmbedded development” training
https://bootlin.com/training/yocto/

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

POOtIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

https://bootlin.com/training/yocto/
https://bootlin.com/pub/conferences/

