
Embedded Linux Conference Europe 2024

Linux Power
Management features,
their relationships and
interactions
Théo Lebrun
theo.lebrun@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Théo Lebrun

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ Linux kernel device driver developer
• Suspend-to-RAM support for a TI SoC
• Upstreaming of Mobileye SoCs

▶ Open-source contributor (kernel, PipeWire ecosystem, etc.)
▶ Current maintainer of https://elixir.bootlin.com
▶ Living in Lyon, France
▶ theo.lebrun@bootlin.com

https://bootlin.com/company/staff/theo-lebrun/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

https://elixir.bootlin.com
https://bootlin.com/company/staff/theo-lebrun/

Table of Contents

1. System-wide suspend
• How different modes work?
• Device callbacks involved
• Suspend modes: their differences and tradeoffs
• Case study: s2idle & CLOCK_MONOTONIC quirk

2. Runtime Power Management
• The overall concept
• Features of runtime PM
• Interactions with system-wide suspend, with case study

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Linux Power Management features, their relationships and interactions

System-wide
suspend states

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

System-wide suspend

▶ First, stop the world by freezing all tasks.
▶ Then suspend individual devices in four steps:

1. Prepare,
2. Suspend,
3. Late suspend,
4. No-IRQ suspend.

▶ Finally, go into « suspend ».

▶ Things to think about:
• Desired suspend type: suspend-to-idle, standby, suspend-to-RAM, hibernation;
• Wakeup source;
• Targeted individual device states during suspend;
• Entry & exit latency goals.

▶ Doc: admin-guide/pm/sleep-states & admin-guide/pm/suspend-flows
▶ Code: kernel/power/suspend.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://www.kernel.org/doc/html/latest/admin-guide/pm/sleep-states.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/suspend-flows.html
https://elixir.bootlin.com/linux/latest/source/kernel/power/suspend.c

System-wide suspend

▶ First, stop the world by freezing all tasks.
▶ Then suspend individual devices in four steps:

1. Prepare,
2. Suspend,
3. Late suspend,
4. No-IRQ suspend.

▶ Finally, go into « suspend ».
▶ Things to think about:

• Desired suspend type: suspend-to-idle, standby, suspend-to-RAM, hibernation;
• Wakeup source;
• Targeted individual device states during suspend;
• Entry & exit latency goals.

▶ Doc: admin-guide/pm/sleep-states & admin-guide/pm/suspend-flows
▶ Code: kernel/power/suspend.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://www.kernel.org/doc/html/latest/admin-guide/pm/sleep-states.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/suspend-flows.html
https://elixir.bootlin.com/linux/latest/source/kernel/power/suspend.c

System-wide suspend: entering suspend

$ cat /sys/power/mem_sleep
[s2idle] deep
$ echo deep > /sys/power/mem_sleep
$ echo mem > /sys/power/state

Unable to handle kernel paging request at virtual address ...
(if you are lucky)

$ # Need debugging help?
$ echo 0 > /sys/module/printk/parameters/console_suspend
$ echo 8 > /proc/sys/kernel/printk
$ echo 1 > /sys/power/pm_print_times # ifdef CONFIG_PM_SLEEP_DEBUG
$ echo 1 > /sys/power/pm_debug_messages # same

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

System-wide suspend: entering suspend

$ cat /sys/power/mem_sleep
[s2idle] deep
$ echo deep > /sys/power/mem_sleep
$ echo mem > /sys/power/state

Unable to handle kernel paging request at virtual address ...
(if you are lucky)

$ # Need debugging help?
$ echo 0 > /sys/module/printk/parameters/console_suspend
$ echo 8 > /proc/sys/kernel/printk
$ echo 1 > /sys/power/pm_print_times # ifdef CONFIG_PM_SLEEP_DEBUG
$ echo 1 > /sys/power/pm_debug_messages # same

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

System-wide suspend: device PM callbacks

▶ See struct dev_pm_ops & doc driver-api/pm/devices.

include/linux/pm.h

struct dev_pm_ops {
int (*prepare)(struct device *dev);
int (*suspend)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*suspend_noirq)(struct device *dev);

int (*resume_noirq)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*resume)(struct device *dev);
void (*complete)(struct device *dev);

/* and more (hibernation and runtime PM)... */
};

Pseudocode (ie Python).

Each function is called,
one after the other.
for dev in devices_topdown:

prepare(dev)
for dev in devices_downtop:

suspend(dev)
for dev in devices_downtop:

suspend_late(dev)
for dev in devices_downtop:

suspend_noirq(dev)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html
https://elixir.bootlin.com/linux/v6.10.10/source/include/linux/pm.h#L62-L310

System-wide suspend: device PM callbacks

▶ See struct dev_pm_ops & doc driver-api/pm/devices.

include/linux/pm.h

struct dev_pm_ops {
int (*prepare)(struct device *dev);
int (*suspend)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*suspend_noirq)(struct device *dev);

int (*resume_noirq)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*resume)(struct device *dev);
void (*complete)(struct device *dev);

/* and more (hibernation and runtime PM)... */
};

Pseudocode (ie Python).

Each function is called,
one after the other.
for dev in devices_topdown:

prepare(dev)
for dev in devices_downtop:

suspend(dev)
for dev in devices_downtop:

suspend_late(dev)
for dev in devices_downtop:

suspend_noirq(dev)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html
https://elixir.bootlin.com/linux/v6.10.10/source/include/linux/pm.h#L62-L310

System-wide suspend: device PM callbacks
▶ See struct dev_pm_ops & doc driver-api/pm/devices.
▶ ->prepare(): do not register new children devices.

▶ ->suspend(): please stop doing I/O.
▶ ->suspend_late(): please stop.
▶ ->suspend_noirq(): please.

• Additional guarantee: IRQ handlers will not be called.

▶ Any of the ->suspend*() callbacks can/might/should/must, depending on
subsystem:

1. save device state, for later restore, and,
2. put individual device into low-power state.

▶ Summary: behavior is device specific.
No guarantees about device states are provided, and no information is exported
(apart from potential error codes).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html

System-wide suspend: device PM callbacks
▶ See struct dev_pm_ops & doc driver-api/pm/devices.
▶ ->prepare(): do not register new children devices.
▶ ->suspend(): please stop doing I/O.

▶ ->suspend_late(): please stop.
▶ ->suspend_noirq(): please.

• Additional guarantee: IRQ handlers will not be called.

▶ Any of the ->suspend*() callbacks can/might/should/must, depending on
subsystem:

1. save device state, for later restore, and,
2. put individual device into low-power state.

▶ Summary: behavior is device specific.
No guarantees about device states are provided, and no information is exported
(apart from potential error codes).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html

System-wide suspend: device PM callbacks
▶ See struct dev_pm_ops & doc driver-api/pm/devices.
▶ ->prepare(): do not register new children devices.
▶ ->suspend(): please stop doing I/O.
▶ ->suspend_late(): please stop.

▶ ->suspend_noirq(): please.
• Additional guarantee: IRQ handlers will not be called.

▶ Any of the ->suspend*() callbacks can/might/should/must, depending on
subsystem:

1. save device state, for later restore, and,
2. put individual device into low-power state.

▶ Summary: behavior is device specific.
No guarantees about device states are provided, and no information is exported
(apart from potential error codes).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html

System-wide suspend: device PM callbacks
▶ See struct dev_pm_ops & doc driver-api/pm/devices.
▶ ->prepare(): do not register new children devices.
▶ ->suspend(): please stop doing I/O.
▶ ->suspend_late(): please stop.
▶ ->suspend_noirq(): please.

• Additional guarantee: IRQ handlers will not be called.

▶ Any of the ->suspend*() callbacks can/might/should/must, depending on
subsystem:

1. save device state, for later restore, and,
2. put individual device into low-power state.

▶ Summary: behavior is device specific.
No guarantees about device states are provided, and no information is exported
(apart from potential error codes).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html

System-wide suspend: device PM callbacks
▶ See struct dev_pm_ops & doc driver-api/pm/devices.
▶ ->prepare(): do not register new children devices.
▶ ->suspend(): please stop doing I/O.
▶ ->suspend_late(): please stop.
▶ ->suspend_noirq(): please.

• Additional guarantee: IRQ handlers will not be called.

▶ Any of the ->suspend*() callbacks can/might/should/must, depending on
subsystem:

1. save device state, for later restore, and,
2. put individual device into low-power state.

▶ Summary: behavior is device specific.
No guarantees about device states are provided, and no information is exported
(apart from potential error codes).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/latest/ident/dev_pm_ops
https://www.kernel.org/doc/html/latest/driver-api/pm/devices.html

System-wide suspend: device PM callbacks

▶ Two GPIO controllers with implementations at different stages.
▶ Implication: pinctrl-nomadik pins must be configured at ->suspend() or before.

drivers/pinctrl/renesas/pinctrl-rzg2l.c

static const struct dev_pm_ops rzg2l_pinctrl_pm_ops = {
NOIRQ_SYSTEM_SLEEP_PM_OPS(rzg2l_pinctrl_suspend_noirq,

rzg2l_pinctrl_resume_noirq)
};

drivers/pinctrl/nomadik/pinctrl-nomadik.c

static SIMPLE_DEV_PM_OPS(nmk_pinctrl_pm_ops,
nmk_pinctrl_suspend,
nmk_pinctrl_resume);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

https://elixir.bootlin.com/linux/v6.10.10/source/drivers/pinctrl/renesas/pinctrl-rzg2l.c#L2730-L2732
https://elixir.bootlin.com/linux/v6.10.10/source/drivers/pinctrl/nomadik/pinctrl-nomadik.c#L1268-L1270

System-wide suspend: device PM callbacks

▶ Careful! Moving everything to ->suspend_noirq() is not the solution.

▶ Do you need interrupts for your suspend process?
▶ Do the actions you provide, eg pinctrl_select_state(), require interrupts to

work?
▶ Goto 1: recursively think about your dependencies.

They must work as long as you do.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

https://elixir.bootlin.com/linux/latest/ident/pinctrl_select_state

System-wide suspend: device PM callbacks

▶ Careful! Moving everything to ->suspend_noirq() is not the solution.
▶ Do you need interrupts for your suspend process?
▶ Do the actions you provide, eg pinctrl_select_state(), require interrupts to

work?
▶ Goto 1: recursively think about your dependencies.

They must work as long as you do.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

https://elixir.bootlin.com/linux/latest/ident/pinctrl_select_state

System-wide suspend: device PM callbacks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

System-wide suspend: suspend-to-idle mode

▶ Always available, if CONFIG_SUSPEND=y.
▶ Piggyback on platforms’ idle loop support.

kernel/power/suspend.c

static void s2idle_enter(void) /* abbreviated! */
{

s2idle_state = S2IDLE_STATE_ENTER;
/* Push all the CPUs into the idle loop. */
wake_up_all_idle_cpus();
/* Put current CPU in idle as well, waiting for wakeup event. */
swait_event_exclusive(s2idle_wait_head, s2idle_state == S2IDLE_STATE_WAKE);
/* Wake up all CPUs for them to restore their state. */
wake_up_all_idle_cpus();
s2idle_state = S2IDLE_STATE_NONE;

}

▶ s2idle_state is set to S2IDLE_STATE_WAKE inside interrupt handlers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

https://elixir.bootlin.com/linux/v6.10.6/source/kernel/power/suspend.c#L90-L124
https://elixir.bootlin.com/linux/v6.10.6/C/ident/pm_system_wakeup

System-wide suspend: suspend-to-idle mode

▶ Always available, if CONFIG_SUSPEND=y.
▶ Piggyback on platforms’ idle loop support.

kernel/power/suspend.c

static void s2idle_enter(void) /* abbreviated! */
{

s2idle_state = S2IDLE_STATE_ENTER;
/* Push all the CPUs into the idle loop. */
wake_up_all_idle_cpus();
/* Put current CPU in idle as well, waiting for wakeup event. */
swait_event_exclusive(s2idle_wait_head, s2idle_state == S2IDLE_STATE_WAKE);
/* Wake up all CPUs for them to restore their state. */
wake_up_all_idle_cpus();
s2idle_state = S2IDLE_STATE_NONE;

}

▶ s2idle_state is set to S2IDLE_STATE_WAKE inside interrupt handlers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

https://elixir.bootlin.com/linux/v6.10.6/source/kernel/power/suspend.c#L90-L124
https://elixir.bootlin.com/linux/v6.10.6/C/ident/pm_system_wakeup

System-wide suspend: platform-provided modes (standby, S2R)

▶ Next states are calling into platform code.
▶ States might not be supported!

kernel/power/suspend.c

typedef int __bitwise suspend_state_t;
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
#define PM_SUSPEND_TO_IDLE ((__force suspend_state_t) 1)
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 2) /* Standby */
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3) /* Suspend-to-RAM */
#define PM_SUSPEND_MIN PM_SUSPEND_TO_IDLE
#define PM_SUSPEND_MAX ((__force suspend_state_t) 4)

struct platform_suspend_ops {
int (*valid)(suspend_state_t state);
int (*enter)(suspend_state_t state);
/* ... */

};
extern void suspend_set_ops(const struct platform_suspend_ops *ops);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

https://elixir.bootlin.com/linux/v6.10.10/source/kernel/power/suspend.c/#L90-L124

System-wide suspend: platform-provided modes (standby, S2R)

▶ Expected behavior of standby and suspend-to-RAM? No one knows.
▶ S2R should lower the memory frequency and put it in self-refresh.

▶ Else?
• Standby could be implemented using an idle loop (cpu_do_idle(), WFI).
• Whole SoC could be turned off.
• None/some/all CPU caches could be stopped.
• None/some clocks could be stopped.
• Few drivers customize their behavior using the pm_suspend_target_state global.
• The regulator subsystem exposes OF properties for picking suspend state:

regulator-state-*.

▶ Summary: behavior is platform specific.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

https://elixir.bootlin.com/linux/latest/ident/pm_suspend_target_state
https://elixir.bootlin.com/linux/v6.10.10/source/drivers/regulator/of_regulator.c#L18-L22

System-wide suspend: platform-provided modes (standby, S2R)

▶ Expected behavior of standby and suspend-to-RAM? No one knows.
▶ S2R should lower the memory frequency and put it in self-refresh.
▶ Else?

• Standby could be implemented using an idle loop (cpu_do_idle(), WFI).
• Whole SoC could be turned off.
• None/some/all CPU caches could be stopped.
• None/some clocks could be stopped.
• Few drivers customize their behavior using the pm_suspend_target_state global.
• The regulator subsystem exposes OF properties for picking suspend state:

regulator-state-*.

▶ Summary: behavior is platform specific.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

https://elixir.bootlin.com/linux/latest/ident/pm_suspend_target_state
https://elixir.bootlin.com/linux/v6.10.10/source/drivers/regulator/of_regulator.c#L18-L22

System-wide suspend: platform-provided modes examples

▶ S2R often implies code running from SRAM. See arm/mach-mvebu or
arm/mach-at91 for examples fully handled inside Linux.

▶ PSCI: look into drivers/firmware/psci/psci.c. No standby support, only S2R.
Offloaded to firmware with a PSCI_1_0_FN64_SYSTEM_SUSPEND call.

▶ arm/mach-at91 has 5 different suspend modes:
from AT91_PM_STANDBY (WFI + reduce DRAM power)
to AT91_PM_BACKUP (SoC off + DDR self-refresh + many clocks disabled).
Standby & S2R can be configured to any of those using a module parameter:
atmel.pm_modes=ulp0,backup.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-mvebu/pm.c#L67
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c#L589
https://elixir.bootlin.com/linux/latest/source/drivers/firmware/psci/psci.c
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c

System-wide suspend: platform-provided modes examples

▶ S2R often implies code running from SRAM. See arm/mach-mvebu or
arm/mach-at91 for examples fully handled inside Linux.

▶ PSCI: look into drivers/firmware/psci/psci.c. No standby support, only S2R.
Offloaded to firmware with a PSCI_1_0_FN64_SYSTEM_SUSPEND call.

▶ arm/mach-at91 has 5 different suspend modes:
from AT91_PM_STANDBY (WFI + reduce DRAM power)
to AT91_PM_BACKUP (SoC off + DDR self-refresh + many clocks disabled).
Standby & S2R can be configured to any of those using a module parameter:
atmel.pm_modes=ulp0,backup.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-mvebu/pm.c#L67
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c#L589
https://elixir.bootlin.com/linux/latest/source/drivers/firmware/psci/psci.c
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c

System-wide suspend: platform-provided modes examples

▶ S2R often implies code running from SRAM. See arm/mach-mvebu or
arm/mach-at91 for examples fully handled inside Linux.

▶ PSCI: look into drivers/firmware/psci/psci.c. No standby support, only S2R.
Offloaded to firmware with a PSCI_1_0_FN64_SYSTEM_SUSPEND call.

▶ arm/mach-at91 has 5 different suspend modes:
from AT91_PM_STANDBY (WFI + reduce DRAM power)
to AT91_PM_BACKUP (SoC off + DDR self-refresh + many clocks disabled).
Standby & S2R can be configured to any of those using a module parameter:
atmel.pm_modes=ulp0,backup.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-mvebu/pm.c#L67
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c#L589
https://elixir.bootlin.com/linux/latest/source/drivers/firmware/psci/psci.c
https://elixir.bootlin.com/linux/v6.10.10/source/arch/arm/mach-at91/pm.c

System-wide suspend: hibernation

▶ The most efficient mode: shutdown!
▶ Beforehand, save all state to disk.
▶ Hibernation is not shutdown:

• Some peripherals might be configured as wakeup sources.
• It is useful if userspace takes a long time to initialize at boot.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

System-wide suspend: tradeoff

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

System-wide suspend: s2idle & CLOCK_MONOTONIC quirk

▶ What is the expected behavior of
clock_gettime(CLOCK_MONOTONIC, tp)
across suspend?

1. It should continue ticking,
2. It should be stopped.
3. It depends on the suspend type.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

System-wide suspend: s2idle & CLOCK_MONOTONIC quirk

$ man clock_gettime.2
...
CLOCK_MONOTONIC

A nonsettable system-wide clock that represents monotonic time since—
as described by POSIX—"some unspecified point in the past". On
Linux, that point corresponds to the number of seconds that the sys‐
tem has been running since it was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in
the system time (e.g., if the system administrator manually changes
the clock), but is affected by frequency adjustments. This clock
does not count time that the system is suspended. All CLOCK_MONOTO‐
NIC variants guarantee that the time returned by consecutive calls
will not go backwards, but successive calls may—depending on the ar‐
chitecture—return identical (not-increased) time values.

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

System-wide suspend: s2idle & CLOCK_MONOTONIC quirk

▶ For a working s2idle, interrupts must be kept enabled (as wakeup source).
▶ Interrupt handlers make one assumption: the timekeeping subsystem is running.
▶ CLOCK_MONOTONIC is driven by the timekeeping subsystem.
▶ =⇒ In s2idle, the kernel breaks its promise.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

System-wide suspend: s2idle & CLOCK_MONOTONIC quirk

▶ Tip: use tiny tool clkdump to dump clocks.
▶ It prints all clocks then sleep(1), and loop.
▶ Guess when the s2idle happened:

$./clkdump | grep 'MONOTONIC\s' # output is abbreviated
Sat, 1 Jan 2000 00:35:10 GMT CLOCK_MONOTONIC 1.000084 s
Sat, 1 Jan 2000 00:35:11 GMT CLOCK_MONOTONIC 1.000083 s
Sat, 1 Jan 2000 00:35:12 GMT CLOCK_MONOTONIC 1.000080 s
Sat, 1 Jan 2000 00:35:55 GMT CLOCK_MONOTONIC 43.095237 s
Sat, 1 Jan 2000 00:35:56 GMT CLOCK_MONOTONIC 1.000138 s
Sat, 1 Jan 2000 00:35:57 GMT CLOCK_MONOTONIC 1.000097 s
Sat, 1 Jan 2000 00:35:58 GMT CLOCK_MONOTONIC 1.000128 s

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

https://github.com/tleb/clkdump

System-wide suspend: s2idle & CLOCK_MONOTONIC quirk

▶ Except if the kernel offloads the idle loop to a cpuidle device, that can enter
s2idle with interrupts disabled. In that case, timekeeping is suspended then
resumed and CLOCK_MONOTONIC behaves as expected.

▶ The code path is completely different inbetween s2idle and s2idle + cpuidle.
▶ Most platforms are safe. Try disabling your cpuidle driver!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Linux Power Management features, their relationships and interactions

Runtime Power Management
(pm_runtime)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Runtime PM

▶ Individual device suspend
and resume

▶ Doc: power/runtime_pm

include/linux/pm.h

struct dev_pm_ops {
/* Device is active but not needed anymore. */
int (*runtime_suspend)(struct device *dev);

/* Device is suspended but needed. */
int (*runtime_resume)(struct device *dev);

/* ... */
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

https://www.kernel.org/doc/html/latest/power/runtime_pm.html
https://elixir.bootlin.com/linux/v6.10.10/source/include/linux/pm.h#L62-L310

Runtime PM

▶ Devices don’t suspend & resume
themselves manually.

▶ Think of the device model as a
tree of devices.

▶ Device users touch a usage
reference counter.

/* Pseudocode for mental model! */

void pm_runtime_get(struct device *dev) {
dev.power.usage_count++;
if (dev->parent)

pm_runtime_get(dev->parent);
if (dev->power.usage_count == 1)

runtime_resume(dev);
}

void pm_runtime_put(struct device *dev) {
dev.power.usage_count--;
if (dev.power.usage_count == 0)

runtime_suspend(dev);
if (dev->parent)

pm_runtime_put(dev->parent);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Runtime PM: features

▶ Kind of! This code is slightly oversimplified.

▶ What happens when calling pm_runtime_get|put() inside an IRQ?
• ->runtime_suspend|resume() is marked IRQ safe or,
• The call will be done async (put request into workqueue).
• See pm_runtime_irq_safe() and RPM_ASYNC.

▶ Devices can be disabled.
• dev->power.disable_depth, yet another refcount.
• Devices’ default state is disabled (refcount=1).
• Disabling a device runtime PM does not force suspend it!

You can disable a device while it is active, and it will stay put.
• See pm_runtime_enable() and pm_runtime_disable().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_irq_safe
https://elixir.bootlin.com/linux/latest/ident/RPM_ASYNC
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_enable
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_disable

Runtime PM: features

▶ Kind of! This code is slightly oversimplified.
▶ What happens when calling pm_runtime_get|put() inside an IRQ?

• ->runtime_suspend|resume() is marked IRQ safe or,
• The call will be done async (put request into workqueue).
• See pm_runtime_irq_safe() and RPM_ASYNC.

▶ Devices can be disabled.
• dev->power.disable_depth, yet another refcount.
• Devices’ default state is disabled (refcount=1).
• Disabling a device runtime PM does not force suspend it!

You can disable a device while it is active, and it will stay put.
• See pm_runtime_enable() and pm_runtime_disable().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_irq_safe
https://elixir.bootlin.com/linux/latest/ident/RPM_ASYNC
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_enable
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_disable

Runtime PM: features

▶ Kind of! This code is slightly oversimplified.
▶ What happens when calling pm_runtime_get|put() inside an IRQ?

• ->runtime_suspend|resume() is marked IRQ safe or,
• The call will be done async (put request into workqueue).
• See pm_runtime_irq_safe() and RPM_ASYNC.

▶ Devices can be disabled.
• dev->power.disable_depth, yet another refcount.
• Devices’ default state is disabled (refcount=1).
• Disabling a device runtime PM does not force suspend it!

You can disable a device while it is active, and it will stay put.
• See pm_runtime_enable() and pm_runtime_disable().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_irq_safe
https://elixir.bootlin.com/linux/latest/ident/RPM_ASYNC
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_enable
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_disable

Runtime PM: features (bis)

▶ Devices can be allowed/forbidden from runtime PM.
• dev->power.runtime_auto boolean.
• This is different from disabling!
• Default state is true.
• See pm_runtime_allow() and pm_runtime_forbid().

▶ A device can ask to ignore its ->runtime_suspend|resume() callbacks.
• You are a minor, ie your parent (device) handles PM for you.
• See pm_runtime_no_callbacks().

▶ Autosuspend!
• Don’t suspend as soon as dev->power.usage_count == 0, wait a bit.
• Think storage device that you do not want to toggle on/off all the time.
• See pm_runtime_use_autosuspend() and pm_runtime_set_autosuspend_delay().
• Userspace might play with it: /sys/devices/.../power/autosuspend_delay_ms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_allow
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_forbid
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_no_callbacks
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_use_autosuspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_set_autosuspend_delay
 https://elixir.bootlin.com/linux/v6.10.7/source/Documentation/ABI/testing/sysfs-devices-power#L186

Runtime PM: features (bis)

▶ Devices can be allowed/forbidden from runtime PM.
• dev->power.runtime_auto boolean.
• This is different from disabling!
• Default state is true.
• See pm_runtime_allow() and pm_runtime_forbid().

▶ A device can ask to ignore its ->runtime_suspend|resume() callbacks.
• You are a minor, ie your parent (device) handles PM for you.
• See pm_runtime_no_callbacks().

▶ Autosuspend!
• Don’t suspend as soon as dev->power.usage_count == 0, wait a bit.
• Think storage device that you do not want to toggle on/off all the time.
• See pm_runtime_use_autosuspend() and pm_runtime_set_autosuspend_delay().
• Userspace might play with it: /sys/devices/.../power/autosuspend_delay_ms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_allow
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_forbid
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_no_callbacks
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_use_autosuspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_set_autosuspend_delay
 https://elixir.bootlin.com/linux/v6.10.7/source/Documentation/ABI/testing/sysfs-devices-power#L186

Runtime PM: features (bis)

▶ Devices can be allowed/forbidden from runtime PM.
• dev->power.runtime_auto boolean.
• This is different from disabling!
• Default state is true.
• See pm_runtime_allow() and pm_runtime_forbid().

▶ A device can ask to ignore its ->runtime_suspend|resume() callbacks.
• You are a minor, ie your parent (device) handles PM for you.
• See pm_runtime_no_callbacks().

▶ Autosuspend!
• Don’t suspend as soon as dev->power.usage_count == 0, wait a bit.
• Think storage device that you do not want to toggle on/off all the time.
• See pm_runtime_use_autosuspend() and pm_runtime_set_autosuspend_delay().
• Userspace might play with it: /sys/devices/.../power/autosuspend_delay_ms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_allow
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_forbid
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_no_callbacks
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_use_autosuspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_set_autosuspend_delay
 https://elixir.bootlin.com/linux/v6.10.7/source/Documentation/ABI/testing/sysfs-devices-power#L186

Runtime PM: features (bis)

▶ Devices can be allowed/forbidden from runtime PM.
• dev->power.runtime_auto boolean.
• This is different from disabling!
• Default state is true.
• See pm_runtime_allow() and pm_runtime_forbid().

▶ A device can ask to ignore its ->runtime_suspend|resume() callbacks.
• You are a minor, ie your parent (device) handles PM for you.
• See pm_runtime_no_callbacks().

▶ Autosuspend!
• Don’t suspend as soon as dev->power.usage_count == 0, wait a bit.
• Think storage device that you do not want to toggle on/off all the time.
• See pm_runtime_use_autosuspend() and pm_runtime_set_autosuspend_delay().
• Userspace might play with it: /sys/devices/.../power/autosuspend_delay_ms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_allow
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_forbid
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_no_callbacks
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_use_autosuspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_set_autosuspend_delay
 https://elixir.bootlin.com/linux/v6.10.7/source/Documentation/ABI/testing/sysfs-devices-power#L186

Runtime PM vs system-wide suspend

▶ Implicit pm_runtime_disable() before suspend-late.
▶ Almost. Standard pm_runtime_disable() wakes up the device if there is a

resume request pending.

▶ Implicit pm_runtime_enable() after resume-early.
▶ Each driver must take explicit action!

1. Do nothing, the default;
2. pm_runtime_force_suspend() & pm_runtime_force_resume();
3. Custom behavior otherwise.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_suspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_resume

Runtime PM vs system-wide suspend

▶ Implicit pm_runtime_disable() before suspend-late.
▶ Almost. Standard pm_runtime_disable() wakes up the device if there is a

resume request pending.
▶ Implicit pm_runtime_enable() after resume-early.

▶ Each driver must take explicit action!
1. Do nothing, the default;
2. pm_runtime_force_suspend() & pm_runtime_force_resume();
3. Custom behavior otherwise.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_suspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_resume

Runtime PM vs system-wide suspend

▶ Implicit pm_runtime_disable() before suspend-late.
▶ Almost. Standard pm_runtime_disable() wakes up the device if there is a

resume request pending.
▶ Implicit pm_runtime_enable() after resume-early.
▶ Each driver must take explicit action!

1. Do nothing, the default;
2. pm_runtime_force_suspend() & pm_runtime_force_resume();
3. Custom behavior otherwise.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_suspend
https://elixir.bootlin.com/linux/latest/ident/pm_runtime_force_resume

Runtime PM vs system-wide suspend: example issue

commit 7da7fd7e66ac9b0d4287aefba516795145f3c722
Author: Thomas Richard <thomas.richard@bootlin.com>
Date: Thu Jun 13 15:13:28 2024 +0200

i2c: omap: wakeup the controller during suspend() callback

A device may need the controller up during suspend_noirq() or resume_noirq().
But if the controller is autosuspended, there is no way to wake it up during
suspend_noirq() or resume_noirq() because runtime PM is disabled.

The suspend() callback wakes up the controller, so it is available until
its suspend_noirq() callback (pm_runtime_force_suspend()). During the resume,
it is restored by resume_noirq() callback (pm_runtime_force_resume()).
Then resume() callback enables autosuspend.

So the controller is up during a little time slot in suspend and resume
sequences even if it is not used.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Runtime PM vs system-wide suspend: example issue

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Summary

▶ Behavior is device and platform specific.
« X is suspended » does not tell you much.

▶ Issues arise when subsystems, each with their suspend assumptions,
come in contact.

▶ Beware of code paths that differ from one suspend type to another.

▶ To be continued...
genpd, QoS, wakeup sources, and more (?).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Summary

▶ Behavior is device and platform specific.
« X is suspended » does not tell you much.

▶ Issues arise when subsystems, each with their suspend assumptions,
come in contact.

▶ Beware of code paths that differ from one suspend type to another.

▶ To be continued...
genpd, QoS, wakeup sources, and more (?).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Summary

▶ Behavior is device and platform specific.
« X is suspended » does not tell you much.

▶ Issues arise when subsystems, each with their suspend assumptions,
come in contact.

▶ Beware of code paths that differ from one suspend type to another.

▶ To be continued...
genpd, QoS, wakeup sources, and more (?).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Summary

▶ Behavior is device and platform specific.
« X is suspended » does not tell you much.

▶ Issues arise when subsystems, each with their suspend assumptions,
come in contact.

▶ Beware of code paths that differ from one suspend type to another.

▶ To be continued...
genpd, QoS, wakeup sources, and more (?).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Questions? Suggestions? Comments?

Théo Lebrun
theo.lebrun@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

https://bootlin.com/pub/conferences/

