
Embedded Linux Conference Europe 2024

Inspecting and
optimizing memory
usage in Linux
João Marcos Costa
joaomarcos.costa@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

João Marcos Costa

▶ Embedded Linux engineer and trainer at Bootlin since 2023
• Embedded Linux experts
• Engineering services: Linux BSP development, kernel porting and drivers,

Yocto/Buildroot integration, real-time, boot-time, security, multimedia
• Training services: Embedded Linux, Linux kernel drivers, Yocto, Buildroot, graphics

stack, boot-time, real-time
▶ Open-source contributor
▶ Living in Lyon, France
▶ joaomarcos.costa@bootlin.com

https://bootlin.com/company/staff/joao-marcos-costa/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

https://bootlin.com/company/staff/joao-marcos-costa/

Background

▶ Project’s requirements:
• use as little memory as possible
• furthermore, understand how the memory is being used

▶ iMX93 Evaluation Kit, with 2 GiB of LPDDR4X RAM
▶ a humble enthusiast, not a memory guru!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

What is this talk about?

▶ Virtual memory
▶ Memory used by the kernel vs. by the programs
▶ Is it leaking?
▶ What if I don’t have enough of it?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Inspecting and optimizing memory usage in Linux

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Virtual memory: the basics

▶ Physical memory is not directly referred to. Virtual addresses are used instead
▶ The address translation is handled by the Memory Management Unit (MMU)
▶ The virtual address space is typically divided in 4KiB-long pages
▶ Other page sizes do exist (see Huge pages)
▶ Those pages are indexed in the MMU’s Page Tables

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

https://wiki.debian.org/Hugepages

Virtual memory: representing pages

include/linux/mm_types.h

struct page {
unsigned long flags; /* Page status, see <include/linux/page-flags.h>*/
struct list_head lru;
struct address_space *mapping;
pgoff_t index;
atomic_t _refcount; /* Usage count */
void *virtual; /* Kernel virtual address */

};

▶ This struct represents physical page, not a virtual one
▶ Example: 2GiB of RAM ≡ 524288 4KiB-long pages

• struct page is ≈ 64-bytes long
• 524288 × 64 = 32MiB to represent physical memory pages

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://elixir.bootlin.com/linux/v6.10.10/source/include/linux/mm_types.h/#L74

Virtual memory: representing pages

include/linux/mm_types.h

struct vm_area_struct {
/* VMA covers [vm_start; vm_end) addresses within mm */
unsigned long vm_start;
unsigned long vm_end;
struct mm_struct *vm_mm; /* The address space we belong to. */
const vm_flags_t vm_flags;
struct list_head anon_vma_chain;
struct anon_vma *anon_vma;
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */

};

▶ There is not a single struct to represent a virtual page
▶ Instead, Linux refers to a range of virtual addresses, or Virtual Memory Area

(VMA)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://elixir.bootlin.com/linux/v6.10.10/source/include/linux/mm_types.h/#L648

Memory zones

▶ Physical memory is divided in zones, rather than being an homogeneous pool of
addresses

▶ ZONE_DMA: the lower 16 MiB, for Direct Memory Access (legacy?)
▶ ZONE_DMA32: between 16 MiB, and below 4 GiB (64-bit Linux only)
▶ ZONE_NORMAL:

• For 32-bit machines, between 16 MiB and 896 MiB
• For 64-bit machines, all memory above 4 GiB

▶ ZONE_HIGHMEM: the memory above 896 MiB, only in 32-bit machines

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Zones and nodes

▶ Zones are attached to nodes, and nodes to CPUs
▶ One node per CPU
▶ Each node is aware of its zones and their available memory pages
▶ Non-Uniform Memory Access (NUMA)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Zones and nodes

512 MiB RAM, 32-bits machine
cat /proc/buddyinfo
Node 0, zone Normal 28 13 8 3 3 1 2 2 2 3 2 51

▶ Each column represents the number of available consecutive memory chunks of a
certain size

▶ Every chunk’s (i.e. column) size is defined by: PAGESIZE × K × 2n

▶ e.g.: the first column (K = 28, n = 0) stands for 28 chunks of 4096 bytes

32 GiB RAM, 64-bits machine
cat /proc/buddyinfo
Node 0, zone DMA 0 0 0 0 0 0 0 0 1 1 2
Node 0, zone DMA32 2241 1787 1400 1356 935 485 157 39 7 5 0
Node 0, zone Normal 26143 18051 12270 8620 5536 3278 1564 620 206 40 3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Virtual memory: what does it provide?

▶ Memory is represented in a simpler way: as a uniform and continguous address
space

▶ Each process will run in its own isolated addres space
▶ Primary and secondary memory (i.e., the disk) are abstracted as one
▶ Processes can share memory segments (e.g., shared libraries, and IPC)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Inspecting and optimizing memory usage in Linux

Memory usage in kernel-space

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

Memory usage in kernel-space

▶ Memory allocations (vmalloc() and kmalloc())
▶ Modules
▶ The kernel’s binary itself
▶ Low level allocations (simply not tracked)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

Examining the boot logs

▶ The starting point for our analysis
▶ Memory: A/B available (...)
▶ B: The total physical memory (minus OPTEE)
▶ A: B minus the memory reserved by/for the kernel (i.e., reserved field)

Kernel logs from early boot

[0.000000] Memory: 2012000K/2064384K available (7936K kernel code, 572K rwdata, 1708K
rodata, 1280K init, 328K bss, 52384K reserved, 0K cma-reserved)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Examining the boot logs

▶ kernel code: .text section of the kernel binary
▶ rwdata: initialized (and writable) global and static variables
▶ rodata: read-only kernel data as constants and strings
▶ init: initialization code, reclaimed later
▶ bss: uninitialized data
▶ reserved: an overall metric for memory reserved by/for the kernel including code,

data, and the physical pages (32 MiB, in this case)
▶ cma-reserved: Contiguous Memory Allocator

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Examining the boot logs

mm/mm_init.c
static void __init mem_init_print_info(void)
{

[...]

pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
#ifdef CONFIG_HIGHMEM

", %luK highmem"
#endif

")\n",
K(nr_free_pages()), K(physpages),
codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
K(physpages - totalram_pages() - totalcma_pages),
K(totalcma_pages)

#ifdef CONFIG_HIGHMEM
, K(totalhigh_pages())

#endif
);

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

https://elixir.bootlin.com/linux/v6.10.10/source/mm/mm_init.c/#L2634

Kernel memory usage, but from user-space

Kernel logs from early boot

[0.000000] Memory: 2012000K/2064384K available (...1280K init...

/proc/meminfo

root@xxxx-imx93:~# grep MemTotal /proc/meminfo
MemTotal: 2013280 kB

▶ Total memory slightly increased after init segment was retrieved
▶ /proc/meminfo: significant information about the kernel’s memory usage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Examining /proc/meminfo

▶ Slab: total memory utilized for caching in-kernel data structures, managed by the
Slab allocator

▶ KernelStack: memory allocated to kernel stacks
▶ PageTables: lowest level arrays of pages for address translation
▶ VmallocUsed: the used portion of vmalloc memory area

/proc/meminfo

cat /proc/meminfo
Slab: 9440 kB
KernelStack: 752 kB
PageTables: 628 kB
VmallocUsed: 15204 kB
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

The kernel binary

crypto

1.6%

block

1.7%
mm

3.8%
lib

4.3%

arch

6.4%

fs

7.3%

kernel

8.4%

net

12.7%

drivers

51.3%

misc

2.5%

Disk Usage Percentage

irqchip

1.1%

mfd

1.1%

dma

1.1%

hwtracing

1.1%

i2c

1.3%
xen

1.4%pci
2.0%

clk 2.1%

scsi 2.2%

video
2.2%

mmc

2.4%

firmware

2.8%

tty

3.1%

base

3.8%

net

4.5%

usb

7.3%

gpu45.6%

misc

15.0%

Disk Usage Percentage

▶ How much space each component takes in the final binary
▶ Rough numbers, based on the disk usage in the build directory
▶ The less code, the better!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Inspecting and optimizing memory usage in Linux

Memory usage in user-space

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

First approach: using ps command

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.6 22452 3080 ? Ss Jan05 0:17 /sbin/init
root 161 0.0 0.3 5440 1728 ? Ss Jan05 0:02 /lib/systemd/systemd-udevd
root 169 0.0 1.1 13120 6024 ? Ss Jan05 1:19 /lib/systemd/systemd-journald
root 214 0.0 0.1 2776 844 ? Ss Jan05 0:00 /sbin/klogd -n

▶ Virtual Set Size and Resident Set Size
▶ VSZ: total virtual memory size, as listed in /proc/<PID>/maps
▶ RSS: the memory that is actually mapped to physical pages
▶ Equivalent to VIRT and RES in top command
▶ RSS repeatedly accounts for shared memory areas 

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Second approach: using smem command

smem -t
PID User Command Swap USS PSS RSS
290 0 /sbin/getty 38400 tty1 0 80 240 1380
281 0 /sbin/syslogd -n -O /var/lo 0 76 249 1440
284 0 /sbin/klogd -n 0 100 273 1464
1 0 init [5] 0 176 286 1172

289 0 /bin/sh /bin/start_getty 11 0 84 310 1576
325 0 smemcap 0 164 350 1528
292 0 -sh 0 216 442 1708
273 0 /usr/sbin/dropbear -r /etc/ 0 344 455 1340
162 0 /sbin/udevd -d 0 792 902 1784

9 1 0 2032 3507 13392

▶ Unique Set Size and Proportional Set Size
▶ USS: unique (private) memory per process
▶ PSS: proportional fraction of a shared memory zone
▶ if a 120Kb memory zone is shared among 3 proccesses, the PSS will be of 40Kb

for each
▶ more details in /proc/<PID>/smaps

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

Plotting the memory usage with smem

▶ Record the data on the target: smemcap > smemcap_imx93.tar
▶ Plot it on the host: smem --pie name -S smemcap_imx93.tar -s [uss|pss]

udevd

42.40%

dropbear 18.42%

sh

11.56%

init

9.42%

klogd

5.35%

start_getty

4.50% getty

4.28%
syslogd

4.07%

Total USS ratio per-process

udevd

28.57%

dropbear

14.41%

sh 14.00%

start_getty

9.82%

init

9.06%

klogd

8.65%

syslogd

7.89%
getty

7.60%

Total PSS ratio per-process

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

free command

free -h
total used free shared buff/cache available

Mem: 31Gi 18Gi 652Mi 3.5Gi 16Gi 12Gi

▶ used: unavailable memory
▶ available: used, but can be reclaimed
▶ free: not used for anything (wasted?)
▶ shared and buff/cache: tmpfs, kernel buffers, page cache, etc.
▶ check linuxatemyram.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://www.linuxatemyram.com/

Inspecting and optimizing memory usage in Linux

Optimization

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Smaller code

▶ Thinking about features in a wider perspective (graphics, networking, filesystems,
buses, virtualization, etc) then disabling the corresponding configs

▶ Compiler optimization level (size, rather than performance)
▶ Disable debugging (CONFIG_DEBUG_KERNEL)
▶ In iMX93: went from a 32MiB kernel to 11 MiB

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Catching memory leaks
▶ Monitoring procfs

• free command, for a global view
• per-process USS and/or RSS, to find the leak source
• /proc/meminfo, and /proc/<PID>/smaps respectively

0 10 20 30 40 50
Time (s)

150

200

250

300

350

400

450

500

M
iB

Memory usage

memleak
spotify
teams-for-linux
thunderbird

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Catching memory leaks

▶ Valgrind
• Detects memory management errors: leaks, invalid accesses, bad freeing of heap

blocks, etc.
• No need to rebuild your program, but it works better with -g

#include <stdlib.h>

int main() {
char *string_a, *string_b;

string_a = malloc(10); /* 10 bytes leaking */
free(string_b); /* Invalid free */

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Catching memory leaks

valgrind --leak-check=full --show-leak-kinds=all ./memleak
==941479== Memcheck, a memory error detector
==941479== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==941479== Using Valgrind-3.22.0 and LibVEX; rerun with -h for copyright info
==941479== Command: ./memleak
==941479==
==941479== Conditional jump or move depends on uninitialised value(s)
==941479== at 0x4845ADF: free (vg_replace_malloc.c:985)
==941479== by 0x401157: main (memleak.c:7)
==941479==
==941479==
==941479== HEAP SUMMARY:
==941479== in use at exit: 10 bytes in 1 blocks
==941479== total heap usage: 1 allocs, 0 frees, 10 bytes allocated
==941479==
==941479== 10 bytes in 1 blocks are definitely lost in loss record 1 of 1
==941479== at 0x484280F: malloc (vg_replace_malloc.c:442)
==941479== by 0x401147: main (memleak.c:6)
==941479==
==941479== LEAK SUMMARY:
==941479== definitely lost: 10 bytes in 1 blocks
==941479== indirectly lost: 0 bytes in 0 blocks
==941479== possibly lost: 0 bytes in 0 blocks
==941479== still reachable: 0 bytes in 0 blocks
==941479== suppressed: 0 bytes in 0 blocks
==941479==
==941479== Use --track-origins=yes to see where uninitialised values come from
==941479== For lists of detected and suppressed errors, rerun with: -s
==941479== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Swap

▶ Freeing memory by moving pages to the disk
▶ Not quite suited for embedded systems: wearing out flash disks, unresponsiveness

(thrashing), etc.
▶ Can be tuned with /proc/sys/vm/swappiness, ranging from 0 to 200
▶ Use it to balance swapping and filesystem paging (e.g., 100 means equal IO cost)
▶ Setting it to 0...

• Disables it in a memory control group context
• Does *not* disable it in a system-wide context

Documentation/admin-guide/cgroup-v1/memory.rst
Please note that unlike during the global reclaim, limit reclaim enforces that 0 swappiness really prevents from
any swapping even if there is a swap storage available. This might lead to memcg OOM killer if there are no file
pages to reclaim.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

https://elixir.bootlin.com/linux/v6.10.10/source/Documentation/admin-guide/cgroup-v1/memory.rst/#L614

ZRAM: like swap, but better

▶ Pages are compressed then stored into a RAM-based block device
▶ Faster than disk-based swap

Device Drivers --->
[*] Block devices --->

<M> Compressed RAM block device support
[*] Write back incompressible or idle page to backing device
[*] Track zRam block status

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Out of memory killer

▶ Last resource: a process is killed to reclaim memory
▶ Heuristic choice: the more memory the process takes, the higher its badness

mm/oom_kill.c
long oom_badness(struct task_struct *p, unsigned long totalpages)
{

/* (...) */

/*
* The baseline for the badness score is the proportion of RAM that each
* task's rss, pagetable and swap space use.
*/

points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
mm_pgtables_bytes(p->mm) / PAGE_SIZE;

/* Normalize to oom_score_adj units */
adj *= totalpages / 1000;
points += adj;

return points;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

https://elixir.bootlin.com/linux/v6.10.10/source/mm/oom_kill.c/#L202

Out of memory killer

▶ Tuning OOM Killer: /proc/<PID>/oom_score_adj
▶ This adjustment parameter ranges from -1000 to 1000

include/uapi/linux/oom.h
/*
* /proc/<pid>/oom_score_adj set to OOM_SCORE_ADJ_MIN disables oom killing for
* pid.
*/

#define OOM_SCORE_ADJ_MIN (-1000)
#define OOM_SCORE_ADJ_MAX 1000

▶ Example: echo -1000 > /proc/`pgrep myapp`/oom_score_adj
cat /proc/`pgrep firefox`/oom_score
738
echo -1000 > /proc/`pgrep firefox`/oom_score_adj
cat /proc/`pgrep firefox`/oom_score
0

▶ Firefox is now immune to the OOM Killer!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/oom.h

Questions? Suggestions? Comments?

João Marcos Costa
joaomarcos.costa@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

https://bootlin.com/pub/conferences/

	Inspecting and optimizing memory usage in Linux
	Introduction
	Memory usage in kernel-space
	Memory usage in user-space

