

Adding support for PoE

Köry Maincent *kory.maincent@bootlin.com*

© Copyright 2004-2024, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

Köry Maincent

- ► Embedded Linux engineer at Bootlin
 - Embedded Linux, U-Boot, Linux kernel, Yocto, Buildroot expertise
 - Development, consulting and training
 - Strong open-source focus
- Open-source contributor
- Living in **Toulouse**, France

Agenda

- ► Introduction to Power over Ethernet
 - Principles and advantages
 - IEEE 802.3 Standards
 - Hardware description
 - PSE Basic processes
 - Power classification and class detection
- Adding support for PoE in Linux
 - What's existing?
 - Linux Netlink UAPI
 - Linux Devicetree Bindings
 - Usage of regulators framework
- ► Future features in the pipeline

What is Power over Ethernet

Köry Maincent *kory.maincent@bootlin.com*

© Copyright 2004-2024, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

- Power a device on twisted Ethernet pairs alongside data
- ▶ Remove the needs of power cable for Ethernet devices like VoIP Phone, IP Camera, router ...
- Power can be applied over 2 Ethernet pairs or 4 Ethernet pairs (PoE4 - 802.3bt standard)

PoE advantages

- Cost saving: no electricians needed anymore!
- ► Simple and flexible: one cable!
- No AC external power needed -> safer and no need for electrical certification!
- Reset easily the powered devices

IEEE 802.3 Standards

- Clause 33
 - Power over 2 Ethernet pairs
 - IEEE 802.3af-2003
 - Power up to 15.4 W
 - IEEE 802.3at-2009
 - Power up to 25.5 W for Type 2 and Class 4 devices
 - Initially named Power via Media Dependent Interface
 - Renamed to Power over Ethernet in IEEE 802.3 2022
- Clause 145
 - Power over 4 Ethernet pairs
 - IEEE 802.3bt-2018
 - Power up to 71.3 W for Type 4 and Class 8 devices

Hardware Power Sourcing Equipment (PSE) description

- ► Power source over 2/4 Ethernet pairs
 - One/two wire pair(s) for source current
 - One/two wire pair(s) for return current
- ► Ethernet are designed to work over long distance
 - Isolation transformers may be used on each pair to avoid disturbance

Hardware Powered Devices (PD) description

- ► Always 4 ports devices to be able to receive power on either pairset in either polarity
- ➤ Single signature if bridge outputs are combined, dual signature if separated (less common)

Power Interface (PI) pairsets and polarity

- ► RJ45 (8P8C)
 - 8 connectors -> 4 pairs (4 colors)
 - Straight-throught cable or Crossover cable

Power Interface (PI) pairsets and polarity

- ► RJ45 (8P8C)
 - 8 connectors -> 4 pairs (4 colors)
 - Straight-throught cable or Crossover cable
- Pairset: one wire pair for source current, one wire pair for return current
- ▶ 4 configurations possible with PoE2, plus two considering PoE4
- Pairsets references to Mode A or Mode B on PD side

Conductor	Alternative A (MDI-X)	Alternative A (MDI)	Alternative B(X)	Alternative B(S)
1	Negative V _{PSE}	Positive V _{PSE}		_
2	Negative V _{PSE}	Positive V _{PSE}		-
3	Positive V _{PSE}	Negative V _{PSE}		-
4	_		Negative V _{PSE}	Positive V _{PSE}
5	-		Negative V _{PSE}	Positive V _{PSE}
6	Positive V _{PSE}	Negative V _{PSE}	_	_
7	_	_	Positive V _{PSE}	Negative V _{PSE}
8	_	-	Positive V _{PSE}	Negative V _{PSE}

PSE Basic processes and constraints

- Ethernet Devices plugged
 - Discriminating Powered Devices from other devices that might be damaged if PoE voltages were applied
 - Assessing the basic power requirements
 - Conducting mutual discovery and power negotiation
 - Supporting surge (or inrush) power required to start up the PD
- Powered Devices at runtime
 - Supporting peak power demands from the PD
 - Supporting link-layer (LLPD) for specific configurations
 - Reacting to PD's that are drawing more power than they should
 - Supporting unbalanced load currents between pairsets
 - Limiting maximum possible current for safety
- Ethernet Devices unplugged
 - Remove power quickly enough

PoE detection and classification

- Detection
 - Periodic low-voltage pulse between 2.8V and 10V
 - Measurement of Rdet

PoE detection and classification

- Detection
 - Periodic low-voltage pulse between 2.8V and 10V
 - Measurement of Rdet
- Classification
 - Series of one to five short pulses called "class events" between 15.5V and 20.5V
 - Current draw variation of the PD on these pulses

Figure 2.6 PD Classification under the 802.3at Specification

PoE detection and classification

- Detection
 - Periodic low-voltage pulse between 2.8V and 10V
 - Measurement of Rdet
- Classification
 - Series of one to five short pulses called "class events" between 15.5V and 20.5V
 - Current draw variation of the PD on these pulses
 - One long first class event for Type 3 and 4 PSEs (Class > 4)

Figure 2.7 PD Classification under the 802.3bt Specification

PoE classification pulses

PD Class	Events 1 & 2	Events 3-5	Power Request at the PD	Units
Class 1	10.5 mA		3.84	Watts Total on
Class 2	18.5 mA		6.5	2-Pairs or 4-Pairs
Class 3	28.0 mA		13.0	
Class 4	40.0 mA		25.5	
Class 5	40.0 mA	2.5 mA	40.0	Watts Total on
Class 6	40.0 mA	10.5 mA	51.0	4-Pairs
Class 7	40.0 mA	18.5 mA	62.0	
Class 8	40.0 mA	28.0 mA	71.3	
Class 1 (Dual)	10.5 mA	2.5 mA	3.94	Watts per Pairset
Class 2 (Dual)	18.5 mA	2.5 mA	6.5	
Class 3 (Dual)	28.0 mA	2.5 mA	13.0	
Class 4 (Dual)	40.0 mA	2.5 mA	25.5	
Class 5 (Dual)	40.0 mA	28.0 mA	35.6	

PoE classes

Power levels available [40][41]

Class	Usage	Classification current (mA)	Power range at PD (W)	Max power from PSE (W)	Class description
0	Default	0-5	0.44-12.94	15.4	Classification unimplemented
1	Optional	8-13	0.44-3.84	4.00	Very Low power
2	Optional	16-21	3.84-6.49	7.00	Low power
3	Optional	25-31	6.49-12.95	15.4	Mid power
4	Valid for Type 2 (802.3at) devices, not allowed for 802.3af devices	35-45	12.95-25.50	30	High power
5	Valid for Type 3 (802.3bt)	36-44 & 1-4	40 (4-pair)	45	
6	devices	36-44 & 9-12	51 (4-pair)	60	
7	Valid for Type 4 (802.3bt)	36-44 & 17-20	62 (4-pair)	75	
8	devices	36-44 & 26-30	71.3 (4-pair)	99	

PoE Linux support

Köry Maincent *kory.maincent@bootlin.com*

© Copyright 2004-2024, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

What's existing

- poed https://github.com/dentproject/poed
 - Userspace tool written in python
 - Need to install python on the target
 - Only support pd69200 controller
- ▶ No generic support of PoE, each constructor has its own example of code
- https://www.ti.com/product/TPS23881#software-development

State of Linux - Power over Data Line

- ▶ PoDL (IEEE 802.3 clause 30) is like PoE for Single-Pair Ethernet
- PoDL was added to Linux at the end of 2022 thanks to Oleksij Rempel
- PoDL has similar behavior as PoE in its PSE management
 - Core PSE framework support
 - Netlink UAPI description following the IEEE 802.3 standards
 - Ethtool PoDL support
- Simple PSE PoDL regulator driver and bindings added

Linux support fo PoE

- ▶ PoE development not yet merged mainline, currently in its ninth version
- https://lore.kernel.org/r/20240417-feature_poe-v9-0-242293fd1900@bootlin.com
- Adds support for two PSE controller drivers
 - Microchip PD692x0
 - TI TPS23881

Linux PoE Netlink UAPI

► Enhance netlink UAPI with PoE messages following the standards

```
a/include/uapi/linux/ethtool netlink.h
+++ b/include/uapi/linux/ethtool netlink.h
@@ -895,6 +895,9 @@ enum {
        ETHTOOL A PODL PSE ADMIN STATE.
                                               /* u32 */
        ETHTOOL A PODL PSE ADMIN CONTROL.
                                               /* u32 */
        ETHTOOL A_PODL_PSE_PW_D_STATUS,
                                               /* u32 */
        ETHTOOL_A_C33_PSE_ADMIN_STATE,
                                               /* u32 */
        ETHTOOL A C33 PSE ADMIN CONTROL.
                                               /* u32 */
        ETHTOOL A C33 PSE PW D STATUS.
                                                /* u32 */
   a/include/uapi/linux/ethtool.h
+++ b/include/uapi/linux/ethtool.h
+enum ethtool_c33_pse_admin_state {
        ETHTOOL C33 PSE ADMIN STATE UNKNOWN = 1.
        ETHTOOL C33 PSE ADMIN STATE DISABLED.
        ETHTOOL C33 PSE ADMIN STATE ENABLED.
+enum ethtool_c33_pse_pw_d_status {
        ETHTOOL_C33_PSE_PW_D_STATUS_UNKNOWN = 1,
        ETHTOOL C33 PSE PW D STATUS DISABLED.
        ETHTOOL C33 PSE PW D STATUS SEARCHING.
        ETHTOOL C33 PSE PW D STATUS DELIVERING.
        ETHTOOL C33 PSE PW D STATUS TEST.
        ETHTOOL C33 PSE PW D STATUS FAULT.
        ETHTOOL C33 PSE PW D STATUS OTHERFAULT.
```


Linux PSE PoDL devicetree binding

- ▶ PoDL PI composed by only one pair -> does not need much information
- ► The PSE port number is enough

```
pse_til1: ethernet-pse {
   compatible = "podl-pse-foo-controller";
   pse-supply = <&reg_til1>;
   #pse-cells = <!>;
};

&ethernet_phy1 {
   pses = <&pse_til1 @>;
}

&ethernet_phy2 {
   pses = <&pse_til1 !>;
}
```


Linux PSE PoE devicetree binding

- ► The PoE PI has more information due to the 4 pairs:
- ▶ PSE Port number, pairset configuration, polarity supported

```
ethernet-pse@20 {
  compatible = "ti.tps23881":
  reg = <0 \times 20 >:
  channels {
    #address-cells = <1>:
    #size-cells = <0>:
    phys0: channel@0 {
      reg = <0>:
    phys1: channel@1 {
      reg = <1>:
    phys2: channel@2 {
      reg = <2>:
```

```
pse-pis {
    #address-cells = <1>:
    #size-cells = <0>;
    pse pi0: pse-pi@0 {
     reg = <0>:
     \#pse-cells = <0>:
     pairset-names = "alternative-a". "alternative-b":
     pairsets = <&phys0>, <&phys1>;
      polarity-supported = "MDI". "S":
     vpwr-supply = <&vpwr>;
    pse_pi1: pse-pi@1 {
     reg = <1>;
     \#pse-cells = <0>:
     pairset-names = "alternative-a";
     pairsets = <&phys2>;
      polarity-supported = "MDI";
     vpwr-supply = <&vpwr>:
&ethernet_phv0 {
  pses = <&pse_pi0>:
&ethernet_phv1 {
  pses = <&pse pi1>:
```


- ▶ PSE is like a regulator but for Ethernet devices
- Add code complexity with function wrappers
- Benefit from the already written regulator API
 - Power limit
 - Power/voltage status
 - Temperature limit
 - Sysfs description
- New features like power priorities could also benefit regulator API


```
static int
devm_pse_pi_regulator_register(struct pse_controller_dev *pcdev,
                              char *name, int id)
       rdesc->id = id;
       rdesc->name = name;
       rdesc->type = REGULATOR_CURRENT;
       rdesc->ops = &pse_pi_ops;
       rdesc->owner = pcdev->owner;
       rinit_data->constraints.valid_ops_mask = REGULATOR_CHANGE_STATUS:
       rinit_data->supply_regulator = "vpwr";
       rconfig.dev = pcdev->dev;
       rconfig.driver_data = pcdev:
       rconfig.init_data = rinit_data:
       rdev = devm_regulator_register(pcdev->dev, rdesc, &rconfig);
       pcdev->pi[id].rdev = rdev:
       return 0:
```



```
static int pse_ethtool_c33_set_config(struct pse_control *psec,
                                     const struct pse_control_config *config)
       int err = 0:
       /* Look at admin state enabled status to not call regulator enable
        * or regulator_disable twice creating a regulator counter mismatch
       switch (config->c33_admin_control) {
       case ETHTOOL C33 PSE ADMIN STATE ENABLED:
               if (!psec->pcdev->pi[psec->id].admin state enabled)
                       err = regulator_enable(psec->ps);
               break:
       case ETHTOOL C33 PSE ADMIN STATE DISABLED:
               if (psec->pcdev->pi[psec->id].admin_state_enabled)
                       err = regulator_disable(psec->ps);
               break:
       default:
               err = -EOPNOTSUPP:
       return err:
```


What's next?

Köry Maincent *kory.maincent@bootlin.com*

© Copyright 2004-2024, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

Lack of a Linux Ethernet port abstraction

- Linux current state with this PoE development
 - The PHY driver gets the PSE PI
 - No way to get a PSE from a Network Interface Card driver
 - The PSE PIs regulator provider and consumer are currently the same
- ▶ In reality the PSE PIs are only related to the RJ45 ports
- ▶ Maxime Chevallier is working on the Linux Ethernet port abstraction

Next features

- ► Set and read Power limit
- ► Read power and/or voltage status
- Read PoE class
- Read failure reason
- Configure PSE port priority
- Configure persistent configuration

Demo time!

Köry Maincent & kory.maincent & bootlin.com

© Copyright 2004-2024, Bootlin.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

References

- References:
 - https://community.fs.com/article/power-over-ethernet-tutorial.html
 - https://en.wikipedia.org/wiki/Power_over_Ethernet
 - https://sifos.com/wp-content/uploads/IEEE-802.3-PoE-Technology-Overview-Sifos-Technologies.pdf
 - https://www.poepower.net/
- Sponsored by Dent Project

Questions? Suggestions? Comments?

Köry Maincent kory.maincent@bootlin.com

Slides under CC-BY-SA 3.0

 $\label{lin:com/pub/conferences/2024/eoss/maincent-adding-support-for-poe/maincent-support-go-support-for-poe/maincent-support-go-support-go-support-go-support-go-support-go-support-go-support-go-support-go-support-go-support-go-support-go-support-go-su$