6@ ELC 2024 - Seattle

In the Kernel Trenches:
Mastering Ethernet
Drivers on Linux

Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

1/1

Maxime Chevallier

Embedded Linux engineer at Bootlin

Embedded Linux expertise
Development, consulting and training
Strong open-source focus

Open-source contributor

Living near Toulouse, France

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

2/1

What is this all about ?

Take a look at what Ethernet Drivers do
What are they in charge of 7

Which kernel subsystems and frameworks to they interact with ?

Focus on drivers found on Embedded Systems

Not the same constraints as a High-Speed Datacented Networking driver
What we will see still applies for these drivers :)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

3/1

ELC 2024 - Seattle

Ethernet Controller

Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

embedded Linux and kernel engineering

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

41

4% Ethernet controller - Inside look

> MII interface to PHY

> MAC : 802.3 operations (SoF, collision management, flow-control, Idle word, IPG)

> Queues and DMA

> Internal engines : Timestamping, Filtering, Parsing, Encryption, Switching...

Offload

5}
o
v
C
>=Z0

~

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

5/1

4& struct net_device

Represents a network interface

Backbone of the driver

The .probe() function of the driver usually registers via netdev_register()
net_devices are network interfaces, visible with ip link show

Each net_device has it's unique ifindex within it's namespace (struct net)
netdevs can be part of a hierarchy : lower and upper devices

Allocated through (devm_)alloc_etherdev_mgs(priv_size, txqgs, rxqgs)

Driver-specific data retrieved using netdev_priv(dev)

VVVvyVvyVvVYVvyVvVYVYYy

User-visible right after register_netdev()

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

6/1

‘% struct net_device_ops

Callbacks that the driver exposes to the net core
Referred to as "NDOs”
Some are on the data path, some on the control path

One is mandatory :
® _ndo_start_xmit(), to transmit data

v

Others might be required depending on the exposed features
Specified at init time, before registration :
® netdev->netdev_ops = &my_netdev_ops;

v

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

71

ELC 2024 - Seattle

Data Path

Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

embedded Linux and kernel engineering

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

8/1

% struct sk_buff

-

.head

skb

headroom

.data —
tail —

data

end

.mac_header - '
.network_header -~ .-
transport_header -

.dev

\.sk /

tailroom

shared_info

struct sk_buff (socket buffer)
By convention, pointers to such
objects are very often named skb

Represents a Packet through it's
traversal of the kernel networking
stack

Created by the Ethernet Driver on RX
(build_skb(data, frag_size))
Consumed on TX (kfree_skb,
dev_kfree_skb_any and similar)

Can be a simple packet, or a
fragmented packet

Contains a data section (payload +
headers) and metadata

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

9/1

Page Pool

Designed to optimize buffer allocation for DMA transfers

Maintain a pool of memory pages that stays mapped for the device
Allow buffer recycling : skb_mark_for_recycle()

Prerequisite for XDP, but can be used as-is

Not mandatory, but useful for better performances !

Documentation available at
https://docs.kernel.org/networking/page_pool.html

If Page Pool isn't used, manual DMA mapping/unmapping for RX/TX must be done.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

https://docs.kernel.org/networking/page_pool.html

TX path

.ndo_start_xmit() is called by the core, passing an skb as a parameter

The driver will create and enqueue DMA descriptors

The driver must take care of sending each fragments and segments

If supported, the tx queue on which to enqueue the frame must be retrieved with
skb_get_queue_mapping(skb)

Controllers usually raise an interrupt when a packet has been transmitted

The driver reports how many bytes were sent, for BQL (Bufferbloat)

netdev(_tx)_send_queue upon enqueueing
netdev(_tx)_completed_queue upon completion

The skb can be released once it's been sent

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

https://www.bufferbloat.net/projects/

NAPI

Process RX packets in budgeted poll loops after a first packet gets received

NAPI Instances are registered through netif_napi_add(), passing a poll
callback
1. The fist RX packet raises an interrupt
2. Driver calls napi_schedule() and keeps interrupts masked
3. The poll callback of a driver is called, with a budget of N packets to process at most
4. Once N or all packets are processed, the interrupt is re-enabled

New-API NAPI means NAPI

Runs in softirq context, can be switched to threads
Also works for TX, for processing TX completions
There can be multiple NAPI instances (e.g. one per queue)

https://docs.kernel.org/networking/napi.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

https://docs.kernel.org/networking/napi.html

4% Timestamping

> Ethernet controllers can have precise timestamping units

v

Configured through :
® .ndo_hwtstamp_get() and .ndo_hwtstamp_set() (new)
® SIOCGHWTSTAMP ioctl (legacy)
> Upon RX, the driver grabs the timestamp from the controller
® Sets it in the skb's struct skb_shared_hwtstamps
® Retrieved using skb_hwtstamps()
> Upon TX, the driver checks skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP
® |f timestamping is possible, set
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
¢ call skb_tx_timestamp() in any case as close to the SKB being sent
¢ call skb_tstamp_tx(skb) when the timestamp is available

v

The PHY might also timestamp the packet.

v

See https://www.kernel.org/doc/html/next/networking/timestamping.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

https://www.kernel.org/doc/html/next/networking/timestamping.html

Queues - RX

MAC

l

Parser,
classifier / RSS

CPU

rxqs

irgs

It's common to have more than one queue per direction

RX queues, often called rxq
Ingress traffic is steered towards different queues
rxq can then be assigned dedicated irq
per-queue interrupt can be pinned per-CPU
Needs some hardware packet parsing support
Spread traffic across queues based on a hash : RSS
Steer individual flows towards dedicated queues : tc, rxfnc

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

14/1

4% Queues - TX

MAC
I >

Scheduler,
shaper

txgs | 2

CPU

TX queues, often called txq

Egress traffic enqueued on several queues

XPS : eXpress Packet Steering, one queue per CPU
mgprio : Queues are mapped to priorities

Can then be used for TSN and Time-aware scheduling
Can be used for QoS (DCB VLAN priorisation)

skb_get_queue_mapping() to retrieve the queue index for
an skb

® Used in .ndo_start_xmit()

https://docs.kernel.org/networking/scaling.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training an

d support - https://bootlin.com

15/1

https://docs.kernel.org/networking/scaling.html

% XDP

XDP allows running eBPF programs directly at the driver level

Useful for filtering, redirecting, analyzing traffic

XDP is driver-dependent, and requires the driver to use page_pool

eBPF program gets loaded with .ndo_bpf

If a program is loaded, run it in the NAPI poll loop

Dedicated NDO for xmit : .ndo_xdp_xmit

Documentation at https://docs.cilium.io/en/latest/bpf/progtypes/#xdp

vVvVvvyVvyVvyYVvyYyvyy

Reference driver : https://elixir.bootlin.com/linux/latest/source/
drivers/net/ethernet/marvell/mvneta.c

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

https://docs.cilium.io/en/latest/bpf/progtypes/#xdp
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvneta.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvneta.c

ELC 2024 - Seattle

bootlin

Control Plane

Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin. embedded Linux and kernel engineering

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Control Plane

Ethernet controllers are highly configurable

Stats reporting at various level (per-queue, MAC, PHY, internal engines)
Offload configuration : Vlan filters, classification, checksumming
Ethernet configuration : MTU, Link speed, Flow control

Some run under rtnl_lock
Serializes network configuration
Some ops such as ethtool_ops must be called under rtnl_lock()
Unlock with rtnl_unlock()
Use ASSERT_RTNL() if your code relies on it being held by the caller

Might still need to be fast !

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

: Entry-points

» NDOs
® netdev features, TC, MTU configuration, etc.
> Other sets of ops in net_device
® ethtool_ops, macsec_ops, ...
® Usually set prior to calling register_netdev()
> Notifiers
® Registered hooks : register_netdevice_notifiers
® e.g. switchdev relies on register_switchdev_notifiers
® Driver decides which notification is relevant for it
> loctls
¢ Timestamping (moved to NDO)
® PHY control (handled by phylib and phylink)
¢ Being gradually replaced
> Registered anciliary functions
® struct phylink_ops
® struct mii_bus
® struct ptp_clock_info

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

19/1

% NDOs

> Currently 92 defined ops
Start and Stop the interface
® ip link set eth@ up/down => .ndo_open() / .ndo_close() called

> Gather stats : .ndo_get_stats64

v

» Set RX mode (e.g. promisc mode) : .ndo_set_rx_mode()
Specific features : VFs, Briding, FCoE, VLAN filtering...

v

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

4% netdev features

> features represents hardware offload capabilities

¢ Checksumming, Scatter-gather, segmentation, filtering (mac / vlan)
® see ethtool -k <iface>
® attributes of struct net_device

> Drivers set netdev.hw_features at init, and can also set netdev.features

¢ features : The current active features
® hw_features : Features that can be changed (hw /= hardware)

> Users but also the core might want to change the enabled features
® Child devices might require some features to be disabled

v

.ndo_fix_features() filters incompatible feature sets for the driver

> .ndo_set_features() applies the new feature set

v

https://docs.kernel.org/networking/netdev-features.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

21/1

https://docs.kernel.org/networking/netdev-features.html

4& ethtool

API to report and control ethernet-specific parameters

These settings and parameters are accessible with ethtool
Uses a legacy ioctl interface, superseded by netlink

Uses a dedicated set of ops : struct ethtool_ops
netdev->ethtool_ops are set before driver registration

All ethtool_ops are optional, and must run under rtnl_lock
Around 70 different ops

Userspace API :
https://docs.kernel.org/networking/ethtool-netlink.html

VVvVvyVvYvVvyVvyYVvYyy

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

https://docs.kernel.org/networking/ethtool-netlink.html

struct ethtool_ops

Fine-grained Hardware statistics gathering

Link parameters : Supported modes, flow-control, status, Link-partner, speed,
aneg...

Flow classification : Hardware steering to queues, filtering

RSS : Indirection table(s) configuration, key configuration

Channels configuration : Map queues to Interrupts

EEE, FEC, Interrupt Coalescing, WolL, SFP modules, Self-tests, Register dumps...

see struct ethtool_ops definition

More ethtool ops exists for PHY devices

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://elixir.bootlin.com/linux/v6.8.6/source/include/linux/ethtool.h#L818

%TC

| 4
| 4
»
>

| 2

Traffic Control : shaping, policing, scheduling, dropping

Some of the TC operations can be offloaded to Hardware :

.ndo_setup_tc(netdev, type, *data) is the main entry-point
type == TC_SETUP_QDISC_MQPRIO

® Setup the hardware queue prio mapping
® Setup per-queue rate-limit

type == TC_SETUP_QDISC_TAPRIO

® Time Aware per-queue scheduling
type == TC_SETUP_QDISC_CLSFLOWER

® Flow steering, assigning different RX flows to dedicated queues
type == TC_SETUP_QDISC_CBS

® Shaping: Limiting transmit speed

Documentation : see the code...

bootliN - Kernel, drive

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com

24/1

https://elixir.bootlin.com/linux/latest/source/net/sched

4% switchdev

> When the interface is part of an internal switch

P The entrypoints are based on notifiers :
® register_switchdev_notifier
® register_switchdev_blocking_notifier
» The same driver handles multiple ports (one net_device per port)
> Each port should work as a standalone interface at init
> bridging operations are then offloaded
> FDB, MDB, VLAN additions and removals are configured into hardware tables
P> see https://docs.kernel.org/networking/switchdev.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://docs.kernel.org/networking/switchdev.html

Precision Time Protocol

For timestamping, Ethernet devices might have internal clocks
These clocks can be synchronized using Precision Time Protocol
linuxptp provides userspace tools that implements PTP

struct ptp_clock represents such a clock (PHC)
Dedicated ops for clock configuration : struct ptp_clock_info
.adjfine() to adjust the frequency
.adjtime() to adjust the time
.get/settime64 to set the time
Clock is registered through ptp_clock_register
timestamping settings and clock settings are separated
Timestamping through .ndo_hwtstamp_get/set
Clock through ptp_clock_info's ops

https://docs.kernel.org/driver-api/ptp.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://docs.kernel.org/driver-api/ptp.html

4% Other ops

» macsec_ops
¢ For MACSec (802.1AE) offloading
> xfrmdev_ops
® For IPSec offloading
> tlsdev_ops
¢ For TLS offloading
» dcbnl_ops
¢ For DataCenter Bridging offload

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

PHY

g MDIO
Timestamping MDIO
D Offload
To CPU M) MAC |: PCs PHY
A engines J
Ml

Ethernet PHYs are in charge of handling the Layer 1 aspects of a transfer
There exists dedicated chips or IP blocks, which have dedicated drivers

Ethernet drivers need to attach to a PHY, and notify the PHY layer when :

The PHY should start
The PHY should stop
A few more specific operations such as suspend/resume

The PHY layer will notify the Ethernet driver when the link changes

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

phylib

Framework to write PHY drivers and maintain a PHY's internal state

Out of the scope of this talk

Can be interacted with from Ethernet drivers

struct phy_device represents an Ethernet PHY

The Ethernet driver is in charge of registering the PHY and attaching to it

In some cases, the Ethernet driver will also act as a MDIO bus driver

Needs to register a struct mii_bus
see https://www.kernel.org/doc/html/next/networking/phy.html
phylink is now preferred, instead of manually dealing with the PHY

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://www.kernel.org/doc/html/next/networking/phy.html

4% phylink

>
>
>
>
>

>

>

phylink handles the link between the Ethernet controller and the PHY
The MIT (MAC to PHY) link can sometimes need dynamic reconfiguration
phylink manages the PHY, using phylib and deals with it's registration.

phylink supports SFP cages connection
The Ethernet driver shall provide phylink_mac_ops

® .mac_link_up() and .mac_link_down() called depending on the link state

m Established link settings can be configured
m speed, duplex, pause settings

¢ .mac_config called when the link changes:
m phy_interface_t modification
= Autoneg mode : From PHY, Inband or Fixed
phylink_create(cfg, fwnode, interface, ops); then
phylink_of_phy_connect(pl, dn, flags);

see https://www.kernel.org/doc/html/next/networking/sfp-phylink.html

bootliN - Kernel, drive

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com

30/1

https://www.kernel.org/doc/html/next/networking/sfp-phylink.html

PCS

o MDIO
Timestamping . | MDIO !

5 (s
2 ToCPU ;fgﬁ]aei —— | wac | ros PHY
' A o P J

Some Ethernet Controllers can have one or more Physical Coding Sublayer blocks

PCS can also sometimes be handled through an external driver

phylink supports dedicated PCS control through struct phylink_pcs

The phylink_pcs is either locally crafted, or use dedicated drivers
Retrieved from the device-tree through pcs-handle

The Ethernet driver indicates to phylink which PCS to use
.mac_select_pcs phylink ops

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

4% Coding style

» Comments must be :

/* I am a comment

* using netdev-style format
* this is beautiful

*x/

» and not :

/*

* I am not a comment

* using netdev-style format
*x/

> Use reverse christmas-tree (RCS)
declaration

> local variables declaration from longest
to shortest if possible:

struct net_device *dev;
struct sk_buff xskb;
unsigned int rxq;

int err;

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

32/1

4% Contributing

» Send your patches to the netdev@vger.kernel.org list (lore archive)
> Two git trees are maintained :
® net-next : For new features
m https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git
® net : For fixes
m https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git
> net-next closes during each merge window (no patches accepted)
® Quick status check here : https://patchwork.hopto.org/net-next.html
> Indicate the tree (net or net-next) your patches target in the subject :
® git format-patch --subject-prefix='PATCH net-next'

P Fast-paced development, but high-volume list

v

Help with reviews can't hurt :)

> https://www.kernel.org/doc/html/next/process/maintainer-netdev.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

https://lore.kernel.org/netdev/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git
https://patchwork.hopto.org/net-next.html
https://www.kernel.org/doc/html/next/process/maintainer-netdev.html

Questions? Suggestions? Comments?

Maxime Chevallier

maxime.chevallier@bootlin.com

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/2024/elc/mastering-ethernet-drivers-linux.pdf

DOoOtiN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://bootlin.com/pub/conferences/2024/elc/mastering-ethernet-drivers-linux.pdf

