
ELC 2024 - Seattle

In the Kernel Trenches:
Mastering Ethernet
Drivers on Linux
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Maxime Chevallier

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ Open-source contributor
▶ Living near Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



What is this all about ?

▶ Take a look at what Ethernet Drivers do
▶ What are they in charge of ?
▶ Which kernel subsystems and frameworks to they interact with ?
▶ Focus on drivers found on Embedded Systems

• Not the same constraints as a High-Speed Datacented Networking driver
• What we will see still applies for these drivers :)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



ELC 2024 - Seattle

Ethernet Controller
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Ethernet controller - Inside look

▶ MII interface to PHY
▶ MAC : 802.3 operations (SoF, collision management, flow-control, Idle word, IPG)
▶ Queues and DMA
▶ Internal engines : Timestamping, Filtering, Parsing, Encryption, Switching...

MAC
txq

rxq

Offload 
engines

Timestamping

D
M
A

To PHYTo CPU

MII

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



struct net_device

▶ Represents a network interface
▶ Backbone of the driver
▶ The .probe() function of the driver usually registers via netdev_register()
▶ net_devices are network interfaces, visible with ip link show
▶ Each net_device has it’s unique ifindex within it’s namespace (struct net)
▶ netdevs can be part of a hierarchy : lower and upper devices
▶ Allocated through (devm_)alloc_etherdev_mqs(priv_size, txqs, rxqs)
▶ Driver-specific data retrieved using netdev_priv(dev)
▶ User-visible right after register_netdev()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



struct net_device_ops

▶ Callbacks that the driver exposes to the net core
▶ Referred to as ”NDOs”
▶ Some are on the data path, some on the control path
▶ One is mandatory :

• .ndo_start_xmit(), to transmit data
▶ Others might be required depending on the exposed features
▶ Specified at init time, before registration :

• netdev->netdev_ops = &my_netdev_ops;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



ELC 2024 - Seattle

Data Path
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



struct sk_buff

headroom

data

tailroom

shared_info

skb
.head
.data
.tail
.end

.mac_header

.network_header

.transport_header

.dev

.sk

▶ struct sk_buff (socket buffer)
▶ By convention, pointers to such

objects are very often named skb
▶ Represents a Packet through it’s

traversal of the kernel networking
stack

▶ Created by the Ethernet Driver on RX
(build_skb(data, frag_size))

▶ Consumed on TX (kfree_skb,
dev_kfree_skb_any and similar)

▶ Can be a simple packet, or a
fragmented packet

▶ Contains a data section (payload +
headers) and metadata

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Page Pool

▶ Designed to optimize buffer allocation for DMA transfers
▶ Maintain a pool of memory pages that stays mapped for the device
▶ Allow buffer recycling : skb_mark_for_recycle()
▶ Prerequisite for XDP, but can be used as-is
▶ Not mandatory, but useful for better performances !
▶ Documentation available at

https://docs.kernel.org/networking/page_pool.html
If Page Pool isn’t used, manual DMA mapping/unmapping for RX/TX must be done.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 

https://docs.kernel.org/networking/page_pool.html


TX path

▶ .ndo_start_xmit() is called by the core, passing an skb as a parameter
▶ The driver will create and enqueue DMA descriptors
▶ The driver must take care of sending each fragments and segments
▶ If supported, the tx queue on which to enqueue the frame must be retrieved with

skb_get_queue_mapping(skb)
▶ Controllers usually raise an interrupt when a packet has been transmitted
▶ The driver reports how many bytes were sent, for BQL (Bufferbloat)

• netdev(_tx)_send_queue upon enqueueing
• netdev(_tx)_completed_queue upon completion

▶ The skb can be released once it’s been sent

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 

https://www.bufferbloat.net/projects/


NAPI

New API NAPI means NAPI

▶ Process RX packets in budgeted poll loops after a first packet gets received
▶ NAPI Instances are registered through netif_napi_add(), passing a poll

callback
1. The fist RX packet raises an interrupt
2. Driver calls napi_schedule() and keeps interrupts masked
3. The poll callback of a driver is called, with a budget of N packets to process at most
4. Once N or all packets are processed, the interrupt is re-enabled

▶ Runs in softirq context, can be switched to threads
▶ Also works for TX, for processing TX completions
▶ There can be multiple NAPI instances (e.g. one per queue)
▶ https://docs.kernel.org/networking/napi.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 

https://docs.kernel.org/networking/napi.html


Timestamping

▶ Ethernet controllers can have precise timestamping units
▶ Configured through :

• .ndo_hwtstamp_get() and .ndo_hwtstamp_set() (new)
• SIOCGHWTSTAMP ioctl (legacy)

▶ Upon RX, the driver grabs the timestamp from the controller
• Sets it in the skb’s struct skb_shared_hwtstamps
• Retrieved using skb_hwtstamps()

▶ Upon TX, the driver checks skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP
• If timestamping is possible, set

skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
• call skb_tx_timestamp() in any case as close to the SKB being sent
• call skb_tstamp_tx(skb) when the timestamp is available

▶ The PHY might also timestamp the packet.
▶ See https://www.kernel.org/doc/html/next/networking/timestamping.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 

https://www.kernel.org/doc/html/next/networking/timestamping.html


Queues - RX

Parser, 
classifier / RSS

MAC

CPU

irqs

rxqs

▶ It’s common to have more than one queue per direction
▶ RX queues, often called rxq

• Ingress traffic is steered towards different queues
• rxq can then be assigned dedicated irq
• per-queue interrupt can be pinned per-CPU
• Needs some hardware packet parsing support
• Spread traffic across queues based on a hash : RSS
• Steer individual flows towards dedicated queues : tc, rxfnc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Queues - TX

Scheduler, 
shaper

MAC

CPU

txqs

▶ TX queues, often called txq
• Egress traffic enqueued on several queues
• XPS : eXpress Packet Steering, one queue per CPU
• mqprio : Queues are mapped to priorities
• Can then be used for TSN and Time-aware scheduling
• Can be used for QoS (DCB VLAN priorisation)

▶ skb_get_queue_mapping() to retrieve the queue index for
an skb

• Used in .ndo_start_xmit()
▶ https://docs.kernel.org/networking/scaling.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 

https://docs.kernel.org/networking/scaling.html


XDP

▶ XDP allows running eBPF programs directly at the driver level
▶ Useful for filtering, redirecting, analyzing traffic
▶ XDP is driver-dependent, and requires the driver to use page_pool
▶ eBPF program gets loaded with .ndo_bpf
▶ If a program is loaded, run it in the NAPI poll loop
▶ Dedicated NDO for xmit : .ndo_xdp_xmit
▶ Documentation at https://docs.cilium.io/en/latest/bpf/progtypes/#xdp
▶ Reference driver : https://elixir.bootlin.com/linux/latest/source/

drivers/net/ethernet/marvell/mvneta.c

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 

https://docs.cilium.io/en/latest/bpf/progtypes/#xdp
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvneta.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/marvell/mvneta.c


ELC 2024 - Seattle

Control Plane
Maxime Chevallier
maxime.chevallier@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Control Plane

▶ Ethernet controllers are highly configurable
▶ Stats reporting at various level (per-queue, MAC, PHY, internal engines)
▶ Offload configuration : Vlan filters, classification, checksumming
▶ Ethernet configuration : MTU, Link speed, Flow control
▶ Some run under rtnl_lock

• Serializes network configuration
• Some ops such as ethtool_ops must be called under rtnl_lock()
• Unlock with rtnl_unlock()
• Use ASSERT_RTNL() if your code relies on it being held by the caller

▶ Might still need to be fast !

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



Entry-points
▶ NDOs

• netdev features, TC, MTU configuration, etc.
▶ Other sets of ops in net_device

• ethtool_ops, macsec_ops, ...
• Usually set prior to calling register_netdev()

▶ Notifiers
• Registered hooks : register_netdevice_notifiers
• e.g. switchdev relies on register_switchdev_notifiers
• Driver decides which notification is relevant for it

▶ Ioctls
• Timestamping (moved to NDO)
• PHY control (handled by phylib and phylink)
• Being gradually replaced

▶ Registered anciliary functions
• struct phylink_ops
• struct mii_bus
• struct ptp_clock_info

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



NDOs

▶ Currently 92 defined ops
▶ Start and Stop the interface

• ip link set eth0 up/down => .ndo_open() / .ndo_close() called
▶ Gather stats : .ndo_get_stats64
▶ Set RX mode (e.g. promisc mode) : .ndo_set_rx_mode()
▶ Specific features : VFs, Briding, FCoE, VLAN filtering...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



netdev features

▶ features represents hardware offload capabilities
• Checksumming, Scatter-gather, segmentation, filtering (mac / vlan)
• see ethtool -k <iface>
• attributes of struct net_device

▶ Drivers set netdev.hw_features at init, and can also set netdev.features
• features : The current active features
• hw_features : Features that can be changed (hw != hardware)

▶ Users but also the core might want to change the enabled features
• Child devices might require some features to be disabled

▶ .ndo_fix_features() filters incompatible feature sets for the driver
▶ .ndo_set_features() applies the new feature set
▶ https://docs.kernel.org/networking/netdev-features.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 

https://docs.kernel.org/networking/netdev-features.html


ethtool

▶ API to report and control ethernet-specific parameters
▶ These settings and parameters are accessible with ethtool
▶ Uses a legacy ioctl interface, superseded by netlink
▶ Uses a dedicated set of ops : struct ethtool_ops
▶ netdev->ethtool_ops are set before driver registration
▶ All ethtool_ops are optional, and must run under rtnl_lock
▶ Around 70 different ops
▶ Userspace API :

https://docs.kernel.org/networking/ethtool-netlink.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 

https://docs.kernel.org/networking/ethtool-netlink.html


struct ethtool_ops

▶ Fine-grained Hardware statistics gathering
▶ Link parameters : Supported modes, flow-control, status, Link-partner, speed,

aneg...
▶ Flow classification : Hardware steering to queues, filtering
▶ RSS : Indirection table(s) configuration, key configuration
▶ Channels configuration : Map queues to Interrupts
▶ EEE, FEC, Interrupt Coalescing, WoL, SFP modules, Self-tests, Register dumps...
▶ see struct ethtool_ops definition

More ethtool ops exists for PHY devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 

https://elixir.bootlin.com/linux/v6.8.6/source/include/linux/ethtool.h#L818


TC

▶ Traffic Control : shaping, policing, scheduling, dropping
▶ Some of the TC operations can be offloaded to Hardware :
▶ .ndo_setup_tc(netdev, type, *data) is the main entry-point
▶ type == TC_SETUP_QDISC_MQPRIO

• Setup the hardware queue prio mapping
• Setup per-queue rate-limit

▶ type == TC_SETUP_QDISC_TAPRIO
• Time Aware per-queue scheduling

▶ type == TC_SETUP_QDISC_CLSFLOWER
• Flow steering, assigning different RX flows to dedicated queues

▶ type == TC_SETUP_QDISC_CBS
• Shaping: Limiting transmit speed

▶ Documentation : see the code...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 

https://elixir.bootlin.com/linux/latest/source/net/sched


switchdev

▶ When the interface is part of an internal switch
▶ The entrypoints are based on notifiers :

• register_switchdev_notifier
• register_switchdev_blocking_notifier

▶ The same driver handles multiple ports (one net_device per port)
▶ Each port should work as a standalone interface at init
▶ bridging operations are then offloaded
▶ FDB, MDB, VLAN additions and removals are configured into hardware tables
▶ see https://docs.kernel.org/networking/switchdev.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 

https://docs.kernel.org/networking/switchdev.html


Precision Time Protocol

▶ For timestamping, Ethernet devices might have internal clocks
▶ These clocks can be synchronized using Precision Time Protocol
▶ linuxptp provides userspace tools that implements PTP
▶ struct ptp_clock represents such a clock (PHC)
▶ Dedicated ops for clock configuration : struct ptp_clock_info

• .adjfine() to adjust the frequency
• .adjtime() to adjust the time
• .get/settime64 to set the time

▶ Clock is registered through ptp_clock_register
▶ timestamping settings and clock settings are separated

• Timestamping through .ndo_hwtstamp_get/set
• Clock through ptp_clock_info’s ops

▶ https://docs.kernel.org/driver-api/ptp.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 

https://docs.kernel.org/driver-api/ptp.html


Other ops

▶ macsec_ops
• For MACSec (802.1AE) offloading

▶ xfrmdev_ops
• For IPSec offloading

▶ tlsdev_ops
• For TLS offloading

▶ dcbnl_ops
• For DataCenter Bridging offload

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



PHY

MAC
txq

rxq

Offload 
engines

Timestamping

D
M
A

To CPU PHYPCS

MDIO

MII

MDIO

▶ Ethernet PHYs are in charge of handling the Layer 1 aspects of a transfer
▶ There exists dedicated chips or IP blocks, which have dedicated drivers
▶ Ethernet drivers need to attach to a PHY, and notify the PHY layer when :

• The PHY should start
• The PHY should stop
• A few more specific operations such as suspend/resume

▶ The PHY layer will notify the Ethernet driver when the link changes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



phylib

▶ Framework to write PHY drivers and maintain a PHY’s internal state
▶ Out of the scope of this talk
▶ Can be interacted with from Ethernet drivers
▶ struct phy_device represents an Ethernet PHY
▶ The Ethernet driver is in charge of registering the PHY and attaching to it
▶ In some cases, the Ethernet driver will also act as a MDIO bus driver

• Needs to register a struct mii_bus
▶ see https://www.kernel.org/doc/html/next/networking/phy.html
▶ phylink is now preferred, instead of manually dealing with the PHY

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 

https://www.kernel.org/doc/html/next/networking/phy.html


phylink

▶ phylink handles the link between the Ethernet controller and the PHY
▶ The MII (MAC to PHY) link can sometimes need dynamic reconfiguration
▶ phylink manages the PHY, using phylib and deals with it’s registration.
▶ phylink supports SFP cages connection
▶ The Ethernet driver shall provide phylink_mac_ops

• .mac_link_up() and .mac_link_down() called depending on the link state
Established link settings can be configured
speed, duplex, pause settings

• .mac_config called when the link changes:
phy_interface_t modification
Autoneg mode : From PHY, Inband or Fixed

▶ phylink_create(cfg, fwnode, interface, ops); then
phylink_of_phy_connect(pl, dn, flags);

▶ see https://www.kernel.org/doc/html/next/networking/sfp-phylink.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 

https://www.kernel.org/doc/html/next/networking/sfp-phylink.html


PCS

MAC
txq

rxq

Offload 
engines

Timestamping

D
M
A

To CPU PHYPCS

MDIO

MII

MDIO

▶ Some Ethernet Controllers can have one or more Physical Coding Sublayer blocks
▶ PCS can also sometimes be handled through an external driver
▶ phylink supports dedicated PCS control through struct phylink_pcs
▶ The phylink_pcs is either locally crafted, or use dedicated drivers

• Retrieved from the device-tree through pcs-handle
▶ The Ethernet driver indicates to phylink which PCS to use

• .mac_select_pcs phylink ops

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

 



Coding style

▶ Comments must be :
/* I am a comment
* using netdev-style format
* this is beautiful
*/
▶ and not :

/*
* I am not a comment
* using netdev-style format
*/

▶ Use reverse christmas-tree (RCS)
declaration

▶ local variables declaration from longest
to shortest if possible:

struct net_device *dev;
struct sk_buff *skb;
unsigned int rxq;
int err;

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

 



Contributing

▶ Send your patches to the netdev@vger.kernel.org list (lore archive)
▶ Two git trees are maintained :

• net-next : For new features
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git

• net : For fixes
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git

▶ net-next closes during each merge window (no patches accepted)
• Quick status check here : https://patchwork.hopto.org/net-next.html

▶ Indicate the tree (net or net-next) your patches target in the subject :
• git format-patch --subject-prefix='PATCH net-next' ...

▶ Fast-paced development, but high-volume list
▶ Help with reviews can’t hurt :)
▶ https://www.kernel.org/doc/html/next/process/maintainer-netdev.html

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

 

https://lore.kernel.org/netdev/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git
https://patchwork.hopto.org/net-next.html
https://www.kernel.org/doc/html/next/process/maintainer-netdev.html


Questions? Suggestions? Comments?

Maxime Chevallier
maxime.chevallier@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2024/elc/mastering-ethernet-drivers-linux.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://bootlin.com/pub/conferences/2024/elc/mastering-ethernet-drivers-linux.pdf

