
Embedded Linux Conference 2024

Introduction to DAPM:
Linux power
management for
embedded audio devices
Luca Ceresoli
luca.ceresoli@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/40

Luca Ceresoli

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ Linux kernel device driver developer
▶ Bootloaders, Buildroot and Yocto integration
▶ Open-source contributor
▶ Living in Bergamo, Italy
▶ luca.ceresoli@bootlin.com

https://bootlin.com/company/staff/luca-ceresoli/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/40

https://bootlin.com/company/staff/luca-ceresoli/

Introduction to DAPM

Background
(ALSA, ASoC, DAPM)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/40

ALSA = Advanced Linux Sound Architecture

▶ Merged in v2.5, 2002
▶ 1 sound card = 1 device = 1 driver
▶ Consistent user space API based on

• Streams: capture, playback
• kcontrols to change settings

▶ User space API still in use today
▶ Hard to reuse code for components used on

different cards

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/40

ASoC = ALSA System on Chip

▶ Merged in 2006
▶ Additional ALSA layer “to provide better ALSA support for embedded

System-on-Chip processors” (https://docs.kernel.org/sound/soc/overview.html)

• Great for embedded systems where different SoCs, codecs and other components are
mixed and matched

▶ 1 sound card = N components and their interconnections + glue
▶ Each component has a separate driver
▶ Same user space API

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/40

https://docs.kernel.org/sound/soc/overview.html

Power management with ASoC

▶ Many components allow flexible routing
▶ Different routings require different components to be turned on
▶ Many combinations: code to enable only what is needed tends to be complex and

not easy to maintain

(https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1372.pdf)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/40

https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1372.pdf

DAPM: Dynamic Audio Power Management

▶ The power management component of ASoC
▶ LinuxRuntime PM works at the device level, → not suitable
▶ DAPM is independent from kernel Runtime PM, and co-existing
▶ Transparent to user space applications
▶ Describes every power-related element as a node of a graph
▶ Every power control is called a DAPM widget (graph node)
▶ Every connection between widgets is called a DAPM route (directed graph edge)
▶ DAPM automatically enables widgets based on active routes

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/40

DAPM: Dynamic Audio Power Management

▶ DAPM widgets can be controlled by a regular kcontrol

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/40

DAPM: Dynamic Audio Power Management

▶ The DAPM tree spans the whole card
• In-component widgets and routes are implemented by the component driver
• Border widgets and cross-component routes are added by the card

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/40

Documentation

▶ Documented in the official kernel docs
▶ https://docs.kernel.org/sound/soc/dapm.html

▶ Proposed improvement: https://lore.kernel.org/all/20240416-dapm-docs-v1-0-a818d2819bf6@bootlin.com/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/40

https://docs.kernel.org/sound/soc/dapm.html
https://lore.kernel.org/all/20240416-dapm-docs-v1-0-a818d2819bf6@bootlin.com/

References

▶ Audio on Linux: The End of a Golden Age?
Lars-Peter Clausen, ELCE 2016
Slides: https://elinux.org/images/e/e7/Audio_on_Linux.pdf
Video: https://www.youtube.com/watch?v=6oQF2TzCYtQ

▶ Making the Most of Dynamic Audio Power Management
Lars-Peter Clausen, ELCE 2015
Slides: https://elinux.org/images/c/c1/Dapm_clausen.pdf
Video not available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/40

https://elinux.org/images/e/e7/Audio_on_Linux.pdf
https://www.youtube.com/watch?v=6oQF2TzCYtQ
https://elinux.org/images/c/c1/Dapm_clausen.pdf

Introduction to DAPM

DAPM widgets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/40

Endpoint widgets

▶ Widgets where the sound stream originates from or terminates at
▶ ADC, DAC (PCM waveform to/from memory)
▶ Speaker, Line out, Microphone, …

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/40

Pass-through widgets

▶ Widgets on a route between other widgets
▶ Sound modifiers (PGA, Effect)
▶ Routing: Mixer, Mux, Demux, Switch

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/40

Supply widgets

▶ Suppliers to other widgets
▶ Clock, current, voltage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/40

Introduction to DAPM

DAPM in action

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/40

Phase 1: determining power state

▶ Source widgets are powered if they are active (used by a stream) and have a route
to an active sink widget

▶ Sink widgets are powered if they are active (used by a stream) and have a route
to an active source widget

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/40

Phase 1: determining power state

▶ Pass-through widgets are powered if they are on the route between two powered
endpoint widgets

▶ Computed by DAPM automatically

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/40

Phase 1: determining power state

▶ Supply widgets are powered if they have a path to a powered widget
▶ Computed by DAPM automatically

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/40

Phase 2: Powering sequence

1. Compute difference between previous and new configurations
2. Power down newly-disabled widgets
3. Apply routing changes
4. Power up newly-enabled widgets

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/40

Introduction to DAPM

Using DAPM in device drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/40

Defining DAPM widgets

▶ A widget is defined by struct snd_soc_dapm_widget

include/sound/soc-dapm.h

struct snd_soc_dapm_widget {
enum snd_soc_dapm_type id;
const char *name; /* widget name */
const char *sname; /* stream name */
struct snd_soc_dapm_context *dapm;
/* ... */
struct pinctrl *pinctrl; /* attached pinctrl */
/* ... */
int reg; /* negative reg = no direct dapm */
unsigned char shift; /* bits to shift */
unsigned int mask; /* non-shifted mask */
unsigned int on_val; /* on state value */
unsigned int off_val; /* off state value */
/* ... */
unsigned short event_flags; /* flags to specify event types */
int (*event)(struct snd_soc_dapm_widget*, struct snd_kcontrol *, int);

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/40

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h

Defining DAPM widgets

▶ Do not use struct snd_soc_dapm_widget directly!
▶ Use the SND_SOC_DAPM_*() macros defined in include/sound/soc-dapm.h

▶ Each macro fills a struct snd_soc_dapm_widget

sound/soc/codecs/adau1372.c

static const struct snd_soc_dapm_widget adau1372_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("AIN0"), /* An input pin */
SND_SOC_DAPM_SUPPLY("MICBIAS0", ADAU1372_REG_MICBIAS, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA("PGA0", ADAU1372_REG_PGA_CTRL(0), 6, 1, NULL, 0),
SND_SOC_DAPM_ADC("ADC0", NULL, ADAU1372_REG_ADC_CTRL2, 0, 0),
SND_SOC_DAPM_SUPPLY("ADC0 Filter", ADAU1372_REG_DECIM_PWR, 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Output ASRC0 Decimator", ADAU1372_REG_DECIM_PWR, 4, 0, NULL, 0),
SND_SOC_DAPM_MUX("Decimator0 Mux", SND_SOC_NOPM, 0, 0, &adau1372_decimator0_1_mux_control),
SND_SOC_DAPM_OUTPUT("HPOUTL"), /* An output pin */
/* ... */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/40

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h
https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_widget
https://elixir.bootlin.com/linux/latest/source/sound/soc/codecs/adau1372.c

regmap

▶ Widget macros take register offset but no base
▶ Each widget can set the correct register thanks regmap
▶ Regmap abstracts register access from the underlying bus

• Originated from ASoC, now a generic kernel feature
• Allows a single driver for dual (I²C/SPI) CODECs
• Optimizes access via register cache
• and much more

▶ regmap is recommended for register access in ASoC
• In ASoC, a regmap is automatically added
• By snd_soc_add_component()
• In widget->component->regmap

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/40

https://elixir.bootlin.com/linux/latest/ident/snd_soc_add_component

Defining DAPM routes

▶ A route is defined by struct snd_soc_dapm_route

include/sound/soc-dapm.h

struct snd_soc_dapm_route {
const char *sink;
const char *control;
const char *source;
/* ... */

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/40

https://elixir.bootlin.com/linux/latest/ident/snd_soc_dapm_route
https://elixir.bootlin.com/linux/latest/source/include/sound/soc-dapm.h

Defining DAPM routes

static const char * const adau1372_decimator_mux_text[] = { "ADC", "DMIC", };
static SOC_ENUM_SINGLE_DECL(adau1372_decimator0_1_mux_enum, ADAU1372_REG_ADC_CTRL2,

2, adau1372_decimator_mux_text);

static const struct snd_soc_dapm_route adau1372_dapm_routes[] = {
{ "PGA0", NULL, "AIN0" },
{ "ADC0", NULL, "PGA0" },
{ "Decimator0 Mux", "ADC", "ADC0" },
{ "Decimator0 Mux", "DMIC", "DMIC0_1" },
{ "HPOUTL", NULL, "OP_STAGE_LP" },
{ "HPOUTL", NULL, "OP_STAGE_LN" },
/* ... */

};

▶ Control is a standard ALSA kcontrol for selection of mux input, demux output,
mixer levels, PGA gain, …

▶ Matching based on strings

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/40

Adding DAPM widgets and routes

▶ Just point to the defined arrays in struct snd_soc_component_driver

static const struct snd_soc_component_driver adau1372_driver = {
.set_bias_level = adau1372_set_bias_level,
.controls = adau1372_controls,
.num_controls = ARRAY_SIZE(adau1372_controls),
.dapm_widgets = adau1372_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(adau1372_dapm_widgets),
.dapm_routes = adau1372_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(adau1372_dapm_routes),

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/40

https://elixir.bootlin.com/linux/latest/ident/snd_soc_component_driver

Adding DAPM widgets and routes dynamically

▶ DAPM routes can be added dynamically, e.g. based on codec model

static const struct snd_soc_dapm_widget wm8994_dapm_widgets[] = { ... };
static const struct snd_soc_dapm_route wm8994_intercon[] = { ... };

static int wm8994_component_probe(struct snd_soc_component *component)
{

/* ... */
switch (control->type) {
case WM8994:

snd_soc_dapm_new_controls(dapm, wm8994_specific_dapm_widgets,
ARRAY_SIZE(wm8994_specific_dapm_widgets));

/* ... */
snd_soc_dapm_add_routes(dapm, wm8994_intercon,

ARRAY_SIZE(wm8994_intercon));
/* ... */

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/40

Connecting widgets to the DAI stream

▶ The endpoints of the DAPM graph are
• The external input/output pins

SND_SOC_DAPM_INPUT(), SND_SOC_DAPM_OUTPUT()
• The DAI (digital audio interface)

Via the stream name defined by the DAI driver, using (sub)string-based matching

static const struct snd_soc_dapm_widget wm9705_dapm_widgets[] = {
SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback", SND_SOC_NOPM, 0, 0),

...

static struct snd_soc_dai_driver wm9705_dai[] = {
{

.name = "wm9705-hifi",

.playback = {
.stream_name = "HiFi Playback",

...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/40

Introduction to DAPM

Inspecting the DAPM state at runtime

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/40

Inspecting DAPM

▶ DAPM is internal, not exposed to user space
▶ It is managed automatically
▶ It just works, no need to inspect it! :-)

▶ OK, so you want to learn? Debug? Well…

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/40

debugfs

▶ Each widget is exposed as a file in debugfs
▶ /sys/kernel/debug/asoc/${CARD}/${COMPONENT}/dapm/${WIDGET}

▶ /sys/kernel/debug/asoc/${CARD}/dapm/${WIDGET} for card-level widgets

cat "/sys/kernel/debug/asoc/STM32MP15-DK/cs42l51.0-004a/dapm/Left ADC"
Left ADC: Off in 1 out 0 - R2(0x2) mask 0x2
stream Left HiFi Capture inactive
out "static" "Capture"
in "static" "Left PGA"

#

▶ Widget name can be ambiguous (same widget name in different components)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/40

debugfs: proposed improvement

▶ Proposed improvements: https://lore.kernel.org/all/20240416-vizdapm-ng-v1-0-5d33c0b57bc5@bootlin.com

▶ Add widget type
▶ Add component name for in/out routes

cat "/sys/kernel/debug/asoc/STM32MP15-DK/cs42l51.0-004a/dapm/Left ADC"
Left ADC: Off in 1 out 0 - R2(0x2) mask 0x2
stream Left HiFi Capture inactive
widget-type adc
out "static" "Capture" "cs42l51.0-004a"
in "static" "Left PGA" "cs42l51.0-004a"

#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/40

https://lore.kernel.org/all/20240416-vizdapm-ng-v1-0-5d33c0b57bc5@bootlin.com

vizdapm

▶ Simple shell script developed by Dimitris Papastamos, Wolfson Micro
▶ Generates a graph of DAPM widgets and routes as a PNG picture
▶ Based on dot from graphviz
▶ Repository disappeared, still available in some git forks

vizdapm /sys/kernel/debug/asoc/STM32MP15-DK/cs42l51.0-004a/dapm out.png

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/40

vizdapm

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/40

dapm-graph: new proposed tool

▶ Inspired by vizdapm and also based on dot from graphviz
▶ Yet another shell script but more powerful and simpler to use
▶ Shows all components and their connections
▶ Works with BuyBox shell
▶ Basic usage:

• dapm-graph -o dapm.svg -c STM32MP15-DK

▶ Remote mode:
• dapm-graph -o dapm.svg -c STM32MP15-DK -r root@192.168.0.1
• Gets the status from target, processes on the host

▶ And more
▶ Proposed for kernel inclusion in the same series:

https://lore.kernel.org/all/20240416-vizdapm-ng-v1-0-5d33c0b57bc5@bootlin.com

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/40

https://lore.kernel.org/all/20240416-vizdapm-ng-v1-0-5d33c0b57bc5@bootlin.com

dapm-graph: new proposed tool

Usage:
dapm-graph [options] -c CARD - Local sound card
dapm-graph [options] -c CARD -r REMOTE_TARGET - Card on remote system
dapm-graph [options] -d STATE_DIR - Local directory

Options:
-c CARD Sound card to get DAPM state of
-r REMOTE_TARGET Get DAPM state from REMOTE_TARGET via SSH and SCP

instead of using a local sound card
-d STATE_DIR Get DAPM state from a local copy of a debugfs tree
-o OUT_FILE Output file (default: dapm.dot)
-D Show verbose debugging info
-h Print this help and exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/40

dapm-graph

ROOT

4000b000.audio-controller

cs42l51.0-004ahdmi-audio-codec.1.auto

Amplifier
[out_drv]

capture
[dai_out]

playback
[dai_in]

I2S Playback
[dai_in]

Capture
[dai_out]

AIN1L
[input]

PGA-ADC Mux Left
[mux]

AIN1R
[input]

PGA-ADC Mux Right
[mux]

AIN2L
[input]

AIN2R
[input]

Capture
[dai_out]

DAC Mux
[mux]

Left DAC
[dac]

Right DAC
[dac]

HPL
[output]

HPR
[output]

Left ADC
[adc]

Left PGA
[pga]

MCLK
[supply]

Playback
[dai_in]

MICL
[input]

Mic Preamp Left
[mixer]

MICR
[input]

Mic Preamp Right
[mixer]

Mic Bias
[supply]

Right PGA
[pga]

Right ADC
[adc]

TX
[output]

RX
[output]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/40

Inspecting the internals with ftrace
▶ Using ftrace

trace-cmd record -e 'snd_soc_*' -l 'rk3308_codec*' -p function_graph play ...
trace-cmd report

▶ rk3308_codec_hw_params()
▶ dapm_power_widgets()

• snd_soc_dapm_start: card=rk3308card event=1

snd_soc_dapm_widget_power fills list of widgets to be powered on/off
snd_soc_dapm_path propagates state through routes
snd_soc_dapm_walk_done: rk3308card: checks 34 power, 26 path, 36
neighbour
snd_soc_bias_level_start/done for each component (in separate kthreads)
and snd_soc_dapm_widget_event_start/done for widgets having events

• snd_soc_dapm_done: card=rk3308card event=1

▶ Audio stream…
▶ Rollback

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/40

Questions? Suggestions? Comments?

Luca Ceresoli
luca.ceresoli@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/40

https://bootlin.com/pub/conferences/

	Introduction to DAPM: Linux power management for embedded audio devices
	Background (ALSA, ASoC, DAPM)
	DAPM widgets
	DAPM in action
	Using DAPM in device drivers
	Inspecting the DAPM state at runtime

