@o Capitole Du Libre 2024

Modify your kernel at
runtime with eBPF |

Alexis Lothoré
alexis.lothore@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

bootlin

OO\«

embedded Linux and kernel engineering

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Alexis Lothoré

Embedded Linux engineer at Bootlin since 2023

Expertise in Embedded Linux
Development, consulting and training

Strong open-source focus bootiin
Working on embedded systems since 2016 pertormance anaiyi training -

BSP, device drivers, networking, wireless, Cl, eBPF
Training courses
Kernel testing contributions

Not really used to the mustache

Lives in Toulouse, France

alexis.lothore@bootlin.com

https://bootlin.com/company/staff/alexis-lothore/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

https://bootlin.com/company/staff/alexis-lothore/

You are probably already using eBPF !

$ apt install bpftool
$ bpftool prog list

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

31

Topics

What is eBPF and why should we use it?
eBPF core components
Processes and tools to use eBPF

Showtime!

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4/1

Modify your kernel at runtime with eBPF !

eBPF: what, why, when

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

i ?
What is eBPF~

"Extended BPF", evolution from Berkeley Packet Filter

A "virtual machine” inside the kernel, allowing to run user programs directly in
kernel space:

without having to modify/reboot the kernel
safely (can not make the kernel hang or crash)
almost anywhere in the kernel

Event-driven

Multiple elements: a dedicated ISA, kernel helpers, a pseudo-filesystem, a
dedicated syscall, and offload mechanisms.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Why using eBPF

Initially developped for networking use cases

But is being used more and more for other topics: system monitoring, debugging,
profiling, security...
A few (simple) examples:
A program attached to a network interface performing some filtering and/or traffic
redirection
A program attached to the open system call to monitor any access to a specific file
on the system
A program attached to the malloc and free functions of your C library to create a
custom memory leak detector
A custom scheduler ! (see scheduler/sched-ext)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://www.kernel.org/doc/html/latest/scheduler/sched-ext.html

4% Solutions and tools based on eBPF

> Tracing, profiling: BCC, bpftrace, pwru
> Network infrastructure: Cilium, Calico
> Monitoring, Security: Tetragon, Falco

> More examples: see ebpf.io

b¢ 8%3 cilium %/(Falco

This talk is not about a specific solution but about eBPF in general

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

8/1

https://ebpf.io/infrastructure/

eBPF: a few dates

2014:

eBPF interpreter added into the kernel (v3.15)
eBPF interpreter exposed to userspace (v3.17)

2015:
2016:
2017:
2018:
2020:
2021:
2024:

eBPF extended to kprobes (v4.0)

XDP, eXpress Data Path (v4.7)

eBPF becomes a standalone subsystem
BTF (BPF Type format) is added (v4.18)
GCC is able to build eBPF programs
creation of the eBPF Foundation

eBPF ISA RFC published (RFC 9669)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

eBPF: a few dates

HeBPF

| DOCUMENTARY FILM

eBPF: UNLOCKING

THE KERNEL

= SPEAKEASY

PRODUCTIONS

eBPF: Unlocking the kernel [Official Documentary]

bootlin-

https://www.youtube.com/watch?v=Wb_vD3XZYOA

Modify your kernel at runtime with eBPF !

eBPF components

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

ao eBPF program lifecycle

myprog.bpf.c

¢ clang

myprog.bpf.o

v

userspace tool
bpf()

userspace

kernel

verifier

rogram runs
myprog program u

attach on event

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

12/1

eBPF ISA

eBPF defines its own virtual instruction set, bringing specific instructions and
registers

Those instructions are the one understood and run by the eBPF virtual machine
in the kernel

An eBPF program must then use those instructions to be able to run inside the
kernel

Standardization: see RFC9669

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

https://datatracker.ietf.org/doc/rfc9669/

eBPF ISA

A set of standard registers and a calling convention:

Register(s) Convention
RO function return value
R1-R5 function arguments
R6-R9 used by callee to save caller registers
R10 frame pointer

A set of simple instructions:

Load/store instruction: LD, LDX, ST, STX,...
Arithmetic operations: ADD, SUB, MUL, DIV, OR...
Jump operations: JEQ, JGT, JNE, CALL, EXIT...

Instructions are either interpreted at run time or translated to native instructions
(JIT)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

4% A simple program

(b7)
(79)
(79)
(bf)
(07)
(2d)
(71)
an
(67)
(4f)
10: (b7)
11: (55)
12: (bf)
13: (07)
14: (b7)
15: (2d)
16: (71)
17: (15)
18: (b7)
19: (95)

OONOUITAWN -

ro
r2
ri
r3
r3
if
r3
r4
r4
r4
ro
if
r3
r3
ro
if
ri
if
ro
ex

1
*x(u64 *)(r1 +8)
*(u64 *)(r1 +0)
ril
+= 14

r3 > r2 goto pc+13
= x(u8 *)(r1 +12)
= x(u8 *)(r1 +13)
<<= 8

|= r3

=2

r4 1= 0x8 goto pc+7
=ri

+= 34

=1

r3 > r2 goto pc+3

= x(u8 *)(r1 +23)
r1 == 0x1 goto pc+1
=2
it

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

15/1

4% A simple program: dropping ICMP packets

int drop_icmp(struct xdp_md * xdp):

; int drop_icmp(struct xdp_md *xdp)

0: (b7) ro =1

void *data_end = (void *)(long)xdp->data_end;
: (79) r2 = x(u64 *x)(r1 +8)

void *data = (void *)(long)xdp->data;

—_

2: (79) r1 = *(u4 *)(r1 +0)
; if (eth + 1 > data_end)

3: (bf) r3 = ri1

4: (07) r3 += 14

; if (eth + 1 > data_end)

5: (2d) if r3 > r2 goto pc+13
; if (eth->h_proto != bpf_htons(ETH_P_IP))
6: (71) r3 = x(u8 *)(r1 +12)
7: (71) r4 = x(u8 *)(r1 +13)
8: (67) r4 <<= 8

9: (4f) r4 |=r3

10: (b7) ro = 2

; if (eth->h_proto != bpf_htons(ETH_P_IP))
11: (55) if r4 != 0x8 goto pc+7

; if (ip + 1 > data_end)

12: (bf) r3 = r1

13: (07) r3 += 34

14: (b7) ro =1

; if (ip + 1 > data_end)

15: (2d) if r3 > r2 goto pc+3

; if (ip->protocol != IPPROTO_ICMP)
16: (71) r1 = *(u8 *)(r1 +23)

17: (15) if r1 == 0x1 goto pc+1
18: (b7) ro = 2

s\

19: (95) exit

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

16/1

Program types and attach points

eBPF programs are executed on events generated by the kernel
There are different "types” of places in the kernel able to generate events:
a kernel-defined static tracepoint (see /sys/kernel/tracing/available_events)
an arbitrary kprobe
on security events (LSM)
when a packet is received in the kernel network stack
When a packet is received at network driver level
and a lot more, see bpf_attach_type

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

https://elixir.bootlin.com/linux/latest/ident/bpf_attach_type

Program types and attach points

A specific attach-point type can only be hooked with a specific program type, see
bpf_prog_type and bpf/libbpf/program_types.

The program type then defines the data passed to an eBPF program as input
when it is invoked. For example:

A BPF_PROG_TYPE_TRACEPOINT program will receive a structure containing all data
returned to userspace by the targeted tracepoint.

A BPF_PROG_TYPE_SCHED_CLS program (used to implement packets classifiers) will
receive a struct __sk_buff, the kernel representation of a socket buffer.

A BPF_PROG_TYPE_XDP will receive a struct xdp_md context representing the raw
packet received on the NIC

You can learn about the context passed to any program type by checking
include/linux/bpf_types.h

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

https://elixir.bootlin.com/linux/latest/ident/bpf_prog_type
https://www.kernel.org/doc/html/latest/bpf/libbpf/program_types.html
https://elixir.bootlin.com/linux/latest/ident/__sk_buff
https://elixir.bootlin.com/linux/latest/ident/xdp_md
https://elixir.bootlin.com/linux/latest/source/include/linux/bpf_types.h

eBPF program return value

eBPF can be used to alter the kernel behavior at runtime.

This is generally done thanks to the program return value, and interpretation
depends on the program type:
XDP programs can return XDP_PASS to let a packet continue its journey in the
kernel, or XDP_DROP to drop it
BPF_MODIFY_RETURN programs can replace the hooked function and provide an
arbitrary return value
LSM programs can allow or refuse an operation (opening a file, loading a kernel
module, modifying a process property...) by returning either @ or -EPERM

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

A simple program: dropping ICMP packets

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC("xdp")
int drop_icmp(struct xdp_md *xdp)
{

[...]

return XDP_DROP;

Program type Attach Type ELF section
BPF_XDP_CPUMAP | xdp/cpumap

BPF_PROG_TYPE_XDP BPF_XDP_DEVMAP | xdp/devmap
BPF_XDP xdp

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

20/1

The verifier

Any program must be accepted by the verifier before being accepted into the
kernel

Prevents programs from breaking the kernel at runtime

Works by analysing the "submitted” program and validating it against a set of
rules

Must terminate

No infinite loop

No null pointer dereference

Must not access arbitrary memory

etc

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

4% The verifier

libbpf: prog 'drop_icmp': BPF program load failed: Permission denied
libbpf: prog 'drop_icmp': -- BEGIN PROG LOAD LOG --

0: Rl=ctx() R10=fpo

; void *data = (void *)(long)xdp->data; @ simple_filter.bpf.c:12

0: (61) r2 = x(u32 *)(r1 +0) ; R1=ctx() R2_w=pkt(r=0)

; if (eth->h_proto != bpf_htons(ETH_P_IP)) @ simple_filter.bpf.c:19
1: (71) r3 = x(u8 *)(r2 +13)

invalid access to packet, off=13 size=1, R2(id=0,0ff=13,r=0)

R2 offset is outside of the packet

processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states © mark_read 0
-- END PROG LOAD LOG --

libbpf: prog 'drop_icmp': failed to load: -13

libbpf: failed to load object 'simple_filter.bpf.o'

Error: failed to load object file

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

4% eBPF maps

P Data structures manipulated by both eBPF programs and userspace programs
> Different types of maps depending on the use case
® Generic types: ARRAY, HASH, QUEUE...
Map in map: ARRAY_OF_MAPS, HASH_OF _MAPS
For large amounts of data: PERF_EVENT_ARRAY, RINGBUF...
For packets steering: DEVMAP, CPUMAP, SOCKMAP...
Storage: CGROUP_STORAGE, TASK_STORAGE, SK_STORAGE..
and many more, check bpf_map_type for the exact list

struct {
__uint{type, BTF_MAP_TYPE_ARRAY};
__type{key, int};
__type{value, int}
__uint{max_entries, 163};

} drop_count SEC{".maps"}

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://elixir.bootlin.com/linux/latest/ident/bpf_map_type

% eBPF helpers

> Set of stable kernel functions usable in eBPF programs

bpf_trace_printk: Emit a log to the trace buffer

bpf_map_{lookup, update, delete}_elem: Manipulate maps
bpf_get_current_pid_tgid: Get current Process ID and Thread group ID
bpf_get_current_uid_gid: Ger current User ID and Group ID
bpf_get_current_comm: Get the name of the executable running in the current task
bpf_get_current_task: Get the current struct task_struct

Many other helpers are available, see man 7 bpf-helpers

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

example

4% Writing eBPF programs: a simple

#include
#include
#include
#include
#include
#include

struct {

} drop_c

SEC("xdp
int drop

<linux/bpf.h>
<linux/if_ether.h>
<linux/ip.h>
<linux/in.h>
<bpf/bpf_endian.h>
<bpf/bpf_helpers.h>

__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, int);

__type(value, int);
__uint(max_entries,
ount SEC(".maps");

)
_icmp(struct xdp_md *xdp)

b

void *data_end = (void *)(long)xdp->data_end;
void *data = (void *)(long)xdp->data;

struct ethhdr *eth = data;

struct iphdr *ip;

int *count;

int key=0;

if (eth + 1 > data_end)
return XDP_DROP;

DOOLIIN - Kernel, drivers an

d embedded Linux - Development, consulting, training and support - https://bootlin. com

25/1

Writing eBPF programs

[...]

if (eth->h_proto != bpf_htons(ETH_P_IP))
return XDP_PASS;

ip = datatsizeof(struct ethhdr);
if (ip + 1 > data_end)
return XDP_DROP;

if (ip->protocol != IPPROTO_ICMP)
return XDP_PASS;

char fmt[] = "Dropping ICMP packet !";
bpf_trace_printk(fmt, sizeof(fmt))

count = bpf_map_lookup_elem(&drop_count, &key);
if (count)
*count+=1;

return XDP_DROP;
}

char __license[] SEC("license") = "GPL";

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Modify your kernel at runtime with eBPF !

Processes and tools

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

4% Building eBPF programs

> We need of a compiler able to translate C programs into eBPF instructions.
> As of today, both LLVM (clang) and GCC are capable.

clang -target bpf -02 -g -c my_program.bpf.c -o my_program.bpf.o

or

bpf-unknown-gcc -02 -g -c my_program.bpf.c -o my_program.bpf.o

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Loading eBPF programs

Multiple ways of loading a program:
Write our own loader and use the bpf() syscall, see man 2 bpf syscall
Use bpftool and/or iproute2
Write our custom loader but with higher level languages/libraries

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://man7.org/linux/man-pages/man2/bpf.2.html

4% Loading eBPF programs: bpf() syscall

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

> A single syscall for all eBPF operations, split into subcommands:
® BPF_PROG_LOAD

BPF_MAP_CREATE

BPF_MAP_LOOKUP_ELEM

BPF_MAP_UPDATE_ELEM

BPF_MAP_DELETE_ELEM

BPF_BTF_LOAD

BPF_LINK_CREATE

BPF_PROG_TEST_RUN

» Most subcommands work on file descriptors (pointing to a program, a map, btf
data...)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

4% Loading eBPF programs: bpftool

» The swiss army knife of eBPF development/management/debugging
> Developed in the kernel source tree, see tools/bpf/bpftool/

> A single commandline tool to manipulate programs, maps, links, btf data, etc...

$ bpftool help

Usage: bpftool [OPTIONS] OBJECT { COMMAND | help }
bpftool batch file FILE
bpftool version

OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter }
OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} |
{-V|--version} }

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

https://elixir.bootlin.com/linux/latest/source/tools/bpf/bpftool/

4% bpftool

> List loaded programs

$ bpftool prog

348: tracepoint name sched_tracer tag 3051de4551f07909 gpl
loaded_at 2024-08-06T15:43:11+0200 uid @

xlated 376B jited 215B memlock 4096B map_ids 146,148
btf_id 545

» Load (and possibly attach) a program

$ mkdir /sys/fs/bpf/myprog
$ bpftool prog loadall trace_execve.bpf.o /sys/fs/bpf/myprog [loadall]

» Unload a program

$ rm -rf /sys/fs/bpf/myprog

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

4% bpftool

» Dump a loaded program

$ bpftool prog dump xlated id 348
int sched_tracer(struct sched_switch_args * ctx):
; int sched_tracer(struct sched_switch_args *ctx)
0: (bf) r4 = ri
1: (b7) r1 =0

; __u32 key = 0;
2: (63) *(u32 *)(r10 -4) = r1i
; char fmt[] = "Old task was %s, new task is %s\n";

3: (73) *(u8 *)(r10 -8) = r1

4: (18) r1 = 0xa7325207369206b

6: (7b) *(u64 *)(r10 -16) = ri

7: (18) r1 = 0x7361742077656e20
[...]

» Dump eBPF program logs

$ bpftool prog tracelog
kworker/u80:0-11 [013] d..41 1796.003605: bpf_trace_printk: 0ld task was kworker/u80:0, new task is swapper/13

<idle>-0 [013] d..41 1796.003609: bpf_trace_printk: Old task was swapper/13, new task is kworker/u80:0
sudo-18640 [010] d..41 1796.003613: bpf_trace_printk: 0ld task was sudo, new task is swapper/10
<idle>-0 [010] d..41 1796.003617: bpf_trace_printk: 0ld task was swapper/10, new task is sudo

Cocodl

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

4% bpftool

b List created maps

$ bpftool map
80: array name counter_map flags 0x0

key 4B value 8B max_entries 1 memlock 256B

btf_id 421

82: array name .rodata.str1.1 flags 0x80
key 4B value 33B max_entries 1 memlock 288B

frozen
96: array name libbpf_global flags 0x0

key 4B value 32B max_entries 1 memlock 280B

[...]

> Show a map content

$ sudo bpftool map dump id 80
[{

"key": 0,

"value": 4877514

}
1

-
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

34/1

Manipulating attached programs

We need to interact with attached programs:

Retrieve logs

Read maps

Modify maps
Keeping using bpftool is unhandy, we may rather prefer to develop our own
programs dedicated to our eBPF-based feature
Contrarily to eBPF programs, we can use a wider variety of languages/frameworks
to write those:

C: libbpf

Go: ebpf-go, libbpfgo

Rust: 1libbpf-rs, redbpf, aya

The eBPF program can also be written in Rust

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

35/1

libbpf

easy-to-use C library to ease eBPF tooling writing:
eBPF program loader
high and low levels APIs for userspace
Wrapper APIs to call bpf helpers in eBPF programs
CO-RE
Supports bpftool skeletons

Sources are maintained in the kernel source tree, see tools/1lib/bpf/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

https://elixir.bootlin.com/linux/latest/source/tools/lib/bpf/

4% libbpf and bpftool

clang/gcc
program.bpf.c —————3 program.bpf.
bpftool
program.bpf.skel.h
=
#include
program.c
lclang/gcc

program

o

$ bpftool gen skeleton simple_filter.bpf.o name simple_filter > simple_filter.bpf.skel.h
$ gcc simple_filter.c -o simple_filter. -1lbpf

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

‘Qb Writing our userspace program

#include <bpf/libbpf.h>

#include <unistd.h>

#include <signal.h>

#include <net/if.h>

#include "simple_filter.bpf.skel.h"

static bool quit = false;
void sigint(int unused)

quit = true;

}

int main(int argc, char *argv[])

¢ int ifindex, key=0, count, ret, prog_fd;
struct simple_filter #*skel;
signal (SIGINT, sigint);

[...]

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

‘Qb Writing our userspace program
Al
[...]

}

skel = simple_filter__open_and_load();
if (!skel)
exit(EXIT_FAILURE);

prog_fd = bpf_program__fd(skel->progs.drop_icmp);
ifindex = if_nametoindex("lo");
ret = bpf_xdp_attach(ifindex, prog_fd, 0, NULL);

while(!quit){

ret = bpf_map__lookup_elem(skel->maps.drop_count, &key, sizeof(int),

&count, sizeof(int), 0);
if (!ret)
fprintf(stdout, "%d packets dropped\n", count);

sleep(2);
3
bpf_xdp_detach(ifindex, @, NULL);
simple_filter__destroy(skel);

return 0;

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Modify your kernel at runtime with eBPF !

Showtime

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

4% Resources
A

https://github.com/Tropicao/ebpf_simple_filter.git
The official eBPF documentaion

Bootlin "Debugging, Tracing, and Profiling” training
Kernel tests: tools/testing/selftests/bpf/

Learning eBPF, Liz Rice

vVvyyvyyvyy

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

https://github.com/Tropicao/ebpf_simple_filter.git
https://docs.ebpf.io/
https://bootlin.com/training/debugging/
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/bpf/
https://cilium.isovalent.com/hubfs/Learning-eBPF%20-%20Full%20book.pdf

Questions?

Alexis Lothoré

alexis.lothore@bootlin.com

Bootlin is hiring!
We also have internships available for 2025
More on bootlin.com and at our booth

Slides under CC-BY-SA 3.0

https://bootlin.com/pub/conferences/

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

https://bootlin.com/blog/2025-internships-at-bootlin/
bootlin.com
https://bootlin.com/pub/conferences/

