
Capitole Du Libre 2024

Modify your kernel at
runtime with eBPF !
Alexis Lothoré
alexis.lothore@bootlin.com

© Copyright 2004-2024, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Alexis Lothoré

▶ Embedded Linux engineer at Bootlin since 2023
• Expertise in Embedded Linux
• Development, consulting and training
• Strong open-source focus

▶ Working on embedded systems since 2016
▶ BSP, device drivers, networking, wireless, CI, eBPF

• Training courses
• Kernel testing contributions

▶ Not really used to the mustache
▶ Lives in Toulouse, France
▶ alexis.lothore@bootlin.com

https://bootlin.com/company/staff/alexis-lothore/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

https://bootlin.com/company/staff/alexis-lothore/

You are probably already using eBPF !

$ apt install bpftool
$ bpftool prog list

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Topics

▶ What is eBPF and why should we use it?
▶ eBPF core components
▶ Processes and tools to use eBPF
▶ Showtime!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

Modify your kernel at runtime with eBPF !

eBPF: what, why, when

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

What is eBPF?

▶ ”Extended BPF”, evolution from Berkeley Packet Filter
▶ A ”virtual machine” inside the kernel, allowing to run user programs directly in

kernel space:
• without having to modify/reboot the kernel
• safely (can not make the kernel hang or crash)
• almost anywhere in the kernel

▶ Event-driven
▶ Multiple elements: a dedicated ISA, kernel helpers, a pseudo-filesystem, a

dedicated syscall, and offload mechanisms.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Why using eBPF

▶ Initially developped for networking use cases
▶ But is being used more and more for other topics: system monitoring, debugging,

profiling, security...
▶ A few (simple) examples:

• A program attached to a network interface performing some filtering and/or traffic
redirection

• A program attached to the open system call to monitor any access to a specific file
on the system

• A program attached to the malloc and free functions of your C library to create a
custom memory leak detector

• A custom scheduler ! (see scheduler/sched-ext)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

https://www.kernel.org/doc/html/latest/scheduler/sched-ext.html

Solutions and tools based on eBPF

▶ Tracing, profiling: BCC, bpftrace, pwru
▶ Network infrastructure: Cilium, Calico
▶ Monitoring, Security: Tetragon, Falco
▶ More examples: see ebpf.io

This talk is not about a specific solution but about eBPF in general

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://ebpf.io/infrastructure/

eBPF: a few dates

▶ 2014:
• eBPF interpreter added into the kernel (v3.15)
• eBPF interpreter exposed to userspace (v3.17)

▶ 2015: eBPF extended to kprobes (v4.0)
▶ 2016: XDP, eXpress Data Path (v4.7)
▶ 2017: eBPF becomes a standalone subsystem
▶ 2018: BTF (BPF Type format) is added (v4.18)
▶ 2020: GCC is able to build eBPF programs
▶ 2021: creation of the eBPF Foundation
▶ 2024: eBPF ISA RFC published (RFC 9669)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

eBPF: a few dates

eBPF: Unlocking the kernel [Official Documentary]
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

https://www.youtube.com/watch?v=Wb_vD3XZYOA

Modify your kernel at runtime with eBPF !

eBPF components

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

eBPF program lifecycle

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

eBPF ISA

▶ eBPF defines its own virtual instruction set, bringing specific instructions and
registers

▶ Those instructions are the one understood and run by the eBPF virtual machine
in the kernel

▶ An eBPF program must then use those instructions to be able to run inside the
kernel

▶ Standardization: see RFC9669

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

https://datatracker.ietf.org/doc/rfc9669/

eBPF ISA

▶ A set of standard registers and a calling convention:

Register(s) Convention
R0 function return value

R1-R5 function arguments
R6-R9 used by callee to save caller registers
R10 frame pointer

▶ A set of simple instructions:
• Load/store instruction: LD, LDX, ST, STX,...
• Arithmetic operations: ADD, SUB, MUL, DIV, OR...
• Jump operations: JEQ, JGT, JNE, CALL, EXIT...

▶ Instructions are either interpreted at run time or translated to native instructions
(JIT)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

A simple program

0: (b7) r0 = 1
1: (79) r2 = *(u64 *)(r1 +8)
2: (79) r1 = *(u64 *)(r1 +0)
3: (bf) r3 = r1
4: (07) r3 += 14
5: (2d) if r3 > r2 goto pc+13
6: (71) r3 = *(u8 *)(r1 +12)
7: (71) r4 = *(u8 *)(r1 +13)
8: (67) r4 <<= 8
9: (4f) r4 |= r3
10: (b7) r0 = 2
11: (55) if r4 != 0x8 goto pc+7
12: (bf) r3 = r1
13: (07) r3 += 34
14: (b7) r0 = 1
15: (2d) if r3 > r2 goto pc+3
16: (71) r1 = *(u8 *)(r1 +23)
17: (15) if r1 == 0x1 goto pc+1
18: (b7) r0 = 2
19: (95) exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

A simple program: dropping ICMP packets

int drop_icmp(struct xdp_md * xdp):
; int drop_icmp(struct xdp_md *xdp)
0: (b7) r0 = 1
; void *data_end = (void *)(long)xdp->data_end;
1: (79) r2 = *(u64 *)(r1 +8)
; void *data = (void *)(long)xdp->data;
2: (79) r1 = *(u64 *)(r1 +0)
; if (eth + 1 > data_end)
3: (bf) r3 = r1
4: (07) r3 += 14
; if (eth + 1 > data_end)
5: (2d) if r3 > r2 goto pc+13
; if (eth->h_proto != bpf_htons(ETH_P_IP))
6: (71) r3 = *(u8 *)(r1 +12)
7: (71) r4 = *(u8 *)(r1 +13)
8: (67) r4 <<= 8
9: (4f) r4 |= r3

10: (b7) r0 = 2
; if (eth->h_proto != bpf_htons(ETH_P_IP))
11: (55) if r4 != 0x8 goto pc+7
; if (ip + 1 > data_end)
12: (bf) r3 = r1
13: (07) r3 += 34
14: (b7) r0 = 1
; if (ip + 1 > data_end)
15: (2d) if r3 > r2 goto pc+3
; if (ip->protocol != IPPROTO_ICMP)
16: (71) r1 = *(u8 *)(r1 +23)
;
17: (15) if r1 == 0x1 goto pc+1
18: (b7) r0 = 2
; \}
19: (95) exit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Program types and attach points

▶ eBPF programs are executed on events generated by the kernel
▶ There are different ”types” of places in the kernel able to generate events:

• a kernel-defined static tracepoint (see /sys/kernel/tracing/available_events)
• an arbitrary kprobe
• on security events (LSM)
• when a packet is received in the kernel network stack
• When a packet is received at network driver level
• and a lot more, see bpf_attach_type

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

https://elixir.bootlin.com/linux/latest/ident/bpf_attach_type

Program types and attach points

▶ A specific attach-point type can only be hooked with a specific program type, see
bpf_prog_type and bpf/libbpf/program_types.

▶ The program type then defines the data passed to an eBPF program as input
when it is invoked. For example:

• A BPF_PROG_TYPE_TRACEPOINT program will receive a structure containing all data
returned to userspace by the targeted tracepoint.

• A BPF_PROG_TYPE_SCHED_CLS program (used to implement packets classifiers) will
receive a struct __sk_buff, the kernel representation of a socket buffer.

• A BPF_PROG_TYPE_XDP will receive a struct xdp_md context representing the raw
packet received on the NIC

• You can learn about the context passed to any program type by checking
include/linux/bpf_types.h

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

https://elixir.bootlin.com/linux/latest/ident/bpf_prog_type
https://www.kernel.org/doc/html/latest/bpf/libbpf/program_types.html
https://elixir.bootlin.com/linux/latest/ident/__sk_buff
https://elixir.bootlin.com/linux/latest/ident/xdp_md
https://elixir.bootlin.com/linux/latest/source/include/linux/bpf_types.h

eBPF program return value

▶ eBPF can be used to alter the kernel behavior at runtime.
▶ This is generally done thanks to the program return value, and interpretation

depends on the program type:
• XDP programs can return XDP_PASS to let a packet continue its journey in the

kernel, or XDP_DROP to drop it
• BPF_MODIFY_RETURN programs can replace the hooked function and provide an

arbitrary return value
• LSM programs can allow or refuse an operation (opening a file, loading a kernel

module, modifying a process property...) by returning either 0 or -EPERM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

A simple program: dropping ICMP packets

#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

SEC("xdp")
int drop_icmp(struct xdp_md *xdp)
{

[...]

return XDP_DROP;

}

Program type Attach Type ELF section

BPF_PROG_TYPE_XDP
BPF_XDP_CPUMAP xdp/cpumap
BPF_XDP_DEVMAP xdp/devmap
BPF_XDP xdp

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

The verifier

▶ Any program must be accepted by the verifier before being accepted into the
kernel

▶ Prevents programs from breaking the kernel at runtime
▶ Works by analysing the ”submitted” program and validating it against a set of

rules
• Must terminate
• No infinite loop
• No null pointer dereference
• Must not access arbitrary memory
• etc

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

The verifier

libbpf: prog 'drop_icmp': BPF program load failed: Permission denied
libbpf: prog 'drop_icmp': -- BEGIN PROG LOAD LOG --
0: R1=ctx() R10=fp0
; void *data = (void *)(long)xdp->data; @ simple_filter.bpf.c:12
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx() R2_w=pkt(r=0)
; if (eth->h_proto != bpf_htons(ETH_P_IP)) @ simple_filter.bpf.c:19
1: (71) r3 = *(u8 *)(r2 +13)
invalid access to packet, off=13 size=1, R2(id=0,off=13,r=0)
R2 offset is outside of the packet
processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0
-- END PROG LOAD LOG --
libbpf: prog 'drop_icmp': failed to load: -13
libbpf: failed to load object 'simple_filter.bpf.o'
Error: failed to load object file

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

eBPF maps

▶ Data structures manipulated by both eBPF programs and userspace programs
▶ Different types of maps depending on the use case

• Generic types: ARRAY, HASH, QUEUE...
• Map in map: ARRAY_OF_MAPS, HASH_OF_MAPS
• For large amounts of data: PERF_EVENT_ARRAY, RINGBUF...
• For packets steering: DEVMAP, CPUMAP, SOCKMAP...
• Storage: CGROUP_STORAGE, TASK_STORAGE, SK_STORAGE...
• and many more, check bpf_map_type for the exact list

struct {
__uint{type, BTF_MAP_TYPE_ARRAY};
__type{key, int};
__type{value, int}
__uint{max_entries, 16};

} drop_count SEC{".maps"}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

https://elixir.bootlin.com/linux/latest/ident/bpf_map_type

eBPF helpers

▶ Set of stable kernel functions usable in eBPF programs
• bpf_trace_printk: Emit a log to the trace buffer
• bpf_map_{lookup,update,delete}_elem: Manipulate maps
• bpf_get_current_pid_tgid: Get current Process ID and Thread group ID
• bpf_get_current_uid_gid: Ger current User ID and Group ID
• bpf_get_current_comm: Get the name of the executable running in the current task
• bpf_get_current_task: Get the current struct task_struct
• Many other helpers are available, see man 7 bpf-helpers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

https://elixir.bootlin.com/linux/latest/ident/task_struct
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

Writing eBPF programs: a simple example

#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <bpf/bpf_endian.h>
#include <bpf/bpf_helpers.h>

struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, int);
__type(value, int);
__uint(max_entries, 1);

} drop_count SEC(".maps");

SEC("xdp")
int drop_icmp(struct xdp_md *xdp)
{

void *data_end = (void *)(long)xdp->data_end;
void *data = (void *)(long)xdp->data;
struct ethhdr *eth = data;
struct iphdr *ip;
int *count;
int key=0;

if (eth + 1 > data_end)
return XDP_DROP;

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Writing eBPF programs

[...]

if (eth->h_proto != bpf_htons(ETH_P_IP))
return XDP_PASS;

ip = data+sizeof(struct ethhdr);
if (ip + 1 > data_end)

return XDP_DROP;

if (ip->protocol != IPPROTO_ICMP)
return XDP_PASS;

char fmt[] = "Dropping ICMP packet !";
bpf_trace_printk(fmt, sizeof(fmt));

count = bpf_map_lookup_elem(&drop_count, &key);
if (count)

*count+=1;

return XDP_DROP;
}

char __license[] SEC("license") = "GPL";

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

Modify your kernel at runtime with eBPF !

Processes and tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

Building eBPF programs

▶ We need of a compiler able to translate C programs into eBPF instructions.
▶ As of today, both LLVM (clang) and GCC are capable.

clang -target bpf -O2 -g -c my_program.bpf.c -o my_program.bpf.o

or

bpf-unknown-gcc -O2 -g -c my_program.bpf.c -o my_program.bpf.o

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

Loading eBPF programs

▶ Multiple ways of loading a program:
• Write our own loader and use the bpf() syscall, see man 2 bpf syscall
• Use bpftool and/or iproute2
• Write our custom loader but with higher level languages/libraries

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

https://man7.org/linux/man-pages/man2/bpf.2.html

Loading eBPF programs: bpf() syscall

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

▶ A single syscall for all eBPF operations, split into subcommands:
• BPF_PROG_LOAD
• BPF_MAP_CREATE
• BPF_MAP_LOOKUP_ELEM
• BPF_MAP_UPDATE_ELEM
• BPF_MAP_DELETE_ELEM
• BPF_BTF_LOAD
• BPF_LINK_CREATE
• BPF_PROG_TEST_RUN
• ...

▶ Most subcommands work on file descriptors (pointing to a program, a map, btf
data...)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Loading eBPF programs: bpftool

▶ The swiss army knife of eBPF development/management/debugging
▶ Developed in the kernel source tree, see tools/bpf/bpftool/
▶ A single commandline tool to manipulate programs, maps, links, btf data, etc...

$ bpftool help
Usage: bpftool [OPTIONS] OBJECT { COMMAND | help }

bpftool batch file FILE
bpftool version

OBJECT := { prog | map | link | cgroup | perf | net | feature | btf | gen | struct_ops | iter }
OPTIONS := { {-j|--json} [{-p|--pretty}] | {-d|--debug} |

{-V|--version} }

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

https://elixir.bootlin.com/linux/latest/source/tools/bpf/bpftool/

bpftool

▶ List loaded programs

$ bpftool prog
348: tracepoint name sched_tracer tag 3051de4551f07909 gpl
loaded_at 2024-08-06T15:43:11+0200 uid 0
xlated 376B jited 215B memlock 4096B map_ids 146,148
btf_id 545

▶ Load (and possibly attach) a program

$ mkdir /sys/fs/bpf/myprog
$ bpftool prog loadall trace_execve.bpf.o /sys/fs/bpf/myprog [loadall]

▶ Unload a program

$ rm -rf /sys/fs/bpf/myprog

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

bpftool
▶ Dump a loaded program

$ bpftool prog dump xlated id 348
int sched_tracer(struct sched_switch_args * ctx):
; int sched_tracer(struct sched_switch_args *ctx)

0: (bf) r4 = r1
1: (b7) r1 = 0

; __u32 key = 0;
2: (63) *(u32 *)(r10 -4) = r1

; char fmt[] = "Old task was %s, new task is %s\n";
3: (73) *(u8 *)(r10 -8) = r1
4: (18) r1 = 0xa7325207369206b
6: (7b) *(u64 *)(r10 -16) = r1
7: (18) r1 = 0x7361742077656e20

[...]

▶ Dump eBPF program logs

$ bpftool prog tracelog
kworker/u80:0-11 [013] d..41 1796.003605: bpf_trace_printk: Old task was kworker/u80:0, new task is swapper/13
<idle>-0 [013] d..41 1796.003609: bpf_trace_printk: Old task was swapper/13, new task is kworker/u80:0
sudo-18640 [010] d..41 1796.003613: bpf_trace_printk: Old task was sudo, new task is swapper/10
<idle>-0 [010] d..41 1796.003617: bpf_trace_printk: Old task was swapper/10, new task is sudo
[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

bpftool
▶ List created maps

$ bpftool map
80: array name counter_map flags 0x0

key 4B value 8B max_entries 1 memlock 256B
btf_id 421

82: array name .rodata.str1.1 flags 0x80
key 4B value 33B max_entries 1 memlock 288B
frozen

96: array name libbpf_global flags 0x0
key 4B value 32B max_entries 1 memlock 280B

[...]

▶ Show a map content

$ sudo bpftool map dump id 80
[{

"key": 0,
"value": 4877514
}

]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

Manipulating attached programs

▶ We need to interact with attached programs:
• Retrieve logs
• Read maps
• Modify maps

▶ Keeping using bpftool is unhandy, we may rather prefer to develop our own
programs dedicated to our eBPF-based feature

▶ Contrarily to eBPF programs, we can use a wider variety of languages/frameworks
to write those:

• C: libbpf
• Go: ebpf-go, libbpfgo
• Rust: libbpf-rs, redbpf, aya

The eBPF program can also be written in Rust

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

libbpf

▶ easy-to-use C library to ease eBPF tooling writing:
• eBPF program loader
• high and low levels APIs for userspace
• Wrapper APIs to call bpf helpers in eBPF programs
• CO-RE
• Supports bpftool skeletons

▶ Sources are maintained in the kernel source tree, see tools/lib/bpf/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

https://elixir.bootlin.com/linux/latest/source/tools/lib/bpf/

libbpf and bpftool

$ bpftool gen skeleton simple_filter.bpf.o name simple_filter > simple_filter.bpf.skel.h
$ gcc simple_filter.c -o simple_filter. -lbpf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

Writing our userspace program

#include <bpf/libbpf.h>
#include <unistd.h>
#include <signal.h>
#include <net/if.h>
#include "simple_filter.bpf.skel.h"

static bool quit = false;

void sigint(int unused)
{

quit = true;
}

int main(int argc, char *argv[])
{

int ifindex, key=0, count, ret, prog_fd;
struct simple_filter *skel;

signal(SIGINT, sigint);

[...]

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

Writing our userspace program

[...]

skel = simple_filter__open_and_load();
if (!skel)

exit(EXIT_FAILURE);

prog_fd = bpf_program__fd(skel->progs.drop_icmp);
ifindex = if_nametoindex("lo");
ret = bpf_xdp_attach(ifindex, prog_fd, 0, NULL);

while(!quit){
ret = bpf_map__lookup_elem(skel->maps.drop_count, &key, sizeof(int),

&count, sizeof(int), 0);
if (!ret)

fprintf(stdout, "%d packets dropped\n", count);
sleep(2);

}
bpf_xdp_detach(ifindex, 0, NULL);
simple_filter__destroy(skel);

return 0;
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

Modify your kernel at runtime with eBPF !

Showtime

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

Resources

▶ https://github.com/Tropicao/ebpf_simple_filter.git
▶ The official eBPF documentaion
▶ Bootlin ”Debugging, Tracing, and Profiling” training
▶ Kernel tests: tools/testing/selftests/bpf/
▶ Learning eBPF, Liz Rice

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

https://github.com/Tropicao/ebpf_simple_filter.git
https://docs.ebpf.io/
https://bootlin.com/training/debugging/
https://elixir.bootlin.com/linux/latest/source/tools/testing/selftests/bpf/
https://cilium.isovalent.com/hubfs/Learning-eBPF%20-%20Full%20book.pdf

Questions?

Alexis Lothoré
alexis.lothore@bootlin.com

Bootlin is hiring!
We also have internships available for 2025
More on bootlin.com and at our booth

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

https://bootlin.com/blog/2025-internships-at-bootlin/
bootlin.com
https://bootlin.com/pub/conferences/

