
Embedded Linux Conference 2023

Finding the Best Block
Filesystem
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/56

Strč prst skrz krk

Happy to be in the Czech Republic!
But let’s do the presentation in English this time

;-)
https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/56

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

Strč prst skrz krk

Happy to be in the Czech Republic!

But let’s do the presentation in English this time
;-)

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/56

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

Strč prst skrz krk

Happy to be in the Czech Republic!
But let’s do the presentation in English this time

;-)

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/56

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

Strč prst skrz krk

Happy to be in the Czech Republic!
But let’s do the presentation in English this time

;-)
https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/56

https://en.wikipedia.org/wiki/Strč_prst_skrz_krk

Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin:
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ About myself:
• Always happy to learn from every new project,

and share what I learn.
• Initial author of Bootlin’s freely available embedded Linux,

kernel and boot time reduction training materials
(https://bootlin.com/docs/)

• Current documentation maintainer for the Yocto Project
• Current maintainer of the Elixir Cross Referencer, making it

easier to study the sources of big C projects like the Linux
kernel. See https://elixir.bootlin.com.

Project
selection

Identifier
search

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/56

https://bootlin.com/docs/
https://elixir.bootlin.com

Abstract

It can be difficult to find the most appropriate filesystem for your embedded system’s eMMC or
SD card storage. You can benchmark your system with each of them, but it can be time
consuming. In this talk, we will compare all the actively maintained block filesystems supported
in the Linux kernel: Ext2, Ext4, XFS, Btrfs, F2FS, SquashFS and EROFS. Each of them will
be properly introduced, with its basic design principles and main features.

We will then compare each filesystem in terms of kernel module size and load time, filesystem
mount time (important for boot time), filesystem size, as well as read and write performance
on a few simple scenarios. We will also look for the best compression algorithms for filesystems
with compression options. Performance comparisons will be run both on a 32 bit ARM board
and on a 64 bit ARM one, both using a fast SD card as storage device.

Filesystem performance can really depend on the benchmark, on your storage and on your
CPU, so no universal results should be expected. However, you will learn what the best
solution is in specific hardware configurations and testcases.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/56

Disclaimer

▶ I’m not a filesystems expert
▶ I’m just a regular embedded Linux engineer who was given (a significant amount

of) time by his company to do some research on this topic (thanks!)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/56

Main goals
Not my first presentation on this topic:
https://bootlin.com/pub/conferences/2010/elce/elce2010-flash-filesystems.pdf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/56

https://bootlin.com/pub/conferences/2010/elce/elce2010-flash-filesystems.pdf

Main goals

▶ Rotating block devices are very rare now, especially in embedded systems.
▶ Solid State Disks didn’t exist when some filesystems were created. Filesystems

have also evolved since 2010, in particular new ones have appeared (F2FS,
EROFS).

▶ So, the main goal is to help you find out which filesystems are likely to work best
for your embedded projects with Solid State storage.

▶ We chose to make our tests on MMC/SD, the most common type of storage on
embedded systems.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/56

How to know whether a device is Solid State or not?

▶ Check whether /sys/block/<device>/queue/rotational contains 0.
▶ Unfortunately, this doesn’t work for USB mass storage, always reported as

rotational.
▶ Correct information for MMC/SD.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/56

Finding the Best Block Filesystem

Available filesystems

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/56

Ext2

One of the earliest Linux filesystem, introduced in 1993
▶ filesystems/ext2

▶ Still actively supported. Low metadata overhead, module size and RAM usage
▶ But risk of metadata corruption after an unclean shutdown. You then need to run

e2fsck, which takes time and may need operator intervention. Can’t reboot
autonomously.

▶ First successor: ext3 (2001), addressing this limitation with Journaling 1, but
wasn’t scaling well. Now deprecated.

▶ Journalism reduces corruption and loss of information ;-)
▶ Date range: December 14, 1901 – January 18, 2038!

Not recommended for embedded systems!

1https://en.wikipedia.org/wiki/Journaling_file_system
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/56

https://www.kernel.org/doc/html/latest/filesystems/ext2.html

Ext4

The modern successor of Ext2
▶ First introduced in 2006, filesystem with Journaling, without ext3 limitations.
▶ Still actively developed (new features added). However, considered in 2008 by Ted

Ts’o as a ”stop-gap” based on old technologies.
▶ The default filesystem choice for many GNU/Linux distributions (Debian, Ubuntu)
▶ The ext4 driver also supports ext2 and ext3 (one driver is sufficient).
▶ Noteworthy feature: transparent encryption (but compression not available).
▶ Date range: 1901 – 2446. Fine for embedded systems without a 400 Y+ warranty!
▶ Minimum partition size to have a journal: 8MiB.
▶ Minimum partition size without a journal: 256KiB (only 32 inodes!).
▶ Create the filesystem with mkfs.ext4.

https://en.wikipedia.org/wiki/Ext4

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/56

https://en.wikipedia.org/wiki/Ext4

XFS

A Journaling filesystem
▶ Since 1994 (started by Silicon Graphics for the IRIX OS)
▶ Actively maintained and developed by Red Hat now
▶ Features: variable block size, direct I/O, online growth...
▶ Minimum partition size: 16MiB (9.7MiB of free space)
▶ Create the filesystem with mkfs.xfs.

https://en.wikipedia.org/wiki/XFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/56

https://en.wikipedia.org/wiki/XFS

Btrfs

A copy-on-write filesystem (another Czech word!)
▶ Pronounced as ”better F S”, ”butter F S” or ”b-tree F S”, since 2009.
▶ A modern filesystem with many advanced features: volumes, snapshots,

transparent compression...
▶ Minimum partition size: 109MiB (only 32MiB of free space).
▶ Create the filesystem with mkfs.btrfs.

https://en.wikipedia.org/wiki/Btrfs

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/56

https://en.wikipedia.org/wiki/Btrfs

F2FS — Flash-Friendly File System

A log-structured filesystem
▶ Since 2012 (started by Samsung, actively maintained)
▶ Designed from the start to take into account the characteristics of solid-state

based storage (eMMC, SD, SSD)
▶ In particular, trying to make most writes sequential (best on SSD)
▶ Support for transparent encryption and compression (LZO, LZ4, Zstd), possible

on a file by file (or file type) basis, through extended file attributes.
▶ Maximum partition size: 16TB, maximum file size: 3.94TB
▶ Minimum partition size: 52MiB (8MiB free space)
▶ Create the filesystem with mkfs.f2fs.

https://en.wikipedia.org/wiki/F2FS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/56

https://en.wikipedia.org/wiki/F2FS

NILFS — New Implementation of a Log-structured File System
A log-structured filesystem too, also known as NILFS2
▶ Since 2005 (started by NTT, maintained but not very actively)
▶ Treating the storage medium as a circular buffer, new blocks are always written to

the end.
▶ Provides continuous snapshotting, easy to restore files modified or deleted at any

recent time. This create a weird behavior though: all past files (even erased ones)
are kept and this fills up all available space. Needs to run and configure
nilfs_cleanerd to avoid this (you also need to stop it before you can unmount
your partition!).

▶ Supposed to be great at latency (minimizes seek time) and be the best at
handling many small files.

▶ Minimum partition size: 129MiB (48MiB free space)
▶ Create the filesystem with mkfs.nilfs2.

https://en.wikipedia.org/wiki/NILFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/56

https://en.wikipedia.org/wiki/NILFS

SquashFS — A Read-Only and Compressed File System

The most popular choice for this usage
▶ Started by Phillip Lougher, since 2009 in the mainline kernel, actively maintained.
▶ Fine for parts of a filesystem which can be read-only (kernel, binaries...)
▶ Used in most live CDs and live USB distributions
▶ Supports several compression algorithms (Gzip, LZO, XZ, LZ4, Zstd)
▶ Supposed to give priority to compression ratio vs read performance
▶ Suitable for very small partitions
▶ Create a filesystem image with mksquashfs.

https://en.wikipedia.org/wiki/SquashFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/56

https://en.wikipedia.org/wiki/SquashFS

EROFS — Enhanced Read-Only File System

A more recent read-only, compressed solution
▶ Started by Gao Xiang (Huawei), since 2019 in the mainline kernel.
▶ Used in particular in Android phones (Huawei, Xiaomi, Oppo...)
▶ Supposed to give priority to read performance vs compression ratio
▶ EROFS implements compression into fixed 4KB blocks (better for read

performance), while SquashFS uses fixed-sized blocks of uncompressed data.
▶ Unlike Squashfs, EROFS also allows for random access to files in directories.
▶ Development seems more active than on SquashFS.
▶ Suitable for very small partitions
▶ Create a filesystem image with mkfs.erofs.

https://en.wikipedia.org/wiki/EROFS

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/56

https://en.wikipedia.org/wiki/EROFS

Filesystems we didn’t test

▶ Ext2: obsolete in 2038
▶ JFS: supported but legacy
▶ ReiserFS: lacks support, going away in a few years
▶ CramFS: supported but legacy
▶ BcacheFS: not merged yet!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/56

Finding the Best Block Filesystem

Raw benchmarks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/56

How SD cards are organized
page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
g

m
en

t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page
er

as
e

b
lo

ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

page page page page page page page page

page page page page page page page page

er
as

e
b

lo
ck

se
gm

en
t

MCU

RAM

▶ NAND flash is organized in pages
(typically 2-4K) and in erase blocks
(typically 128K).

▶ However, SD cards group several erase
blocks together in segments (typically 4M)
which allows to address and manage more
storage space. The storage will never
erase anything smaller than a segment.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/56

Comparing SD cards

1 2 3 4

5 6 7 8
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/56

How to infer the page size?

#!/bin/sh
b=512
while [$b -le 67108864]
do

echo -n $b
time -f ",%e" chrt -f 99 dd status=none if=64M.img \

of=/dev/mmcblk0 bs=$b conv=fdatasync
b=$(($b *2))

done

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

2

4

6

8

10

12

dd 64M writing time by block size

4k is obviously the page size

Time (s)

Test writing with increasing block sizes
and find the best one:

▶ Any write smaller than 4K is
inefficient.

▶ Writing bigger (sequential) blocks
is unnecessary.

▶ Good to make sure that filesystems
use at least 4K blocks.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/56

Raw write tests on 8 SD cards

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

1

2

3

4

5

6

7

8

9

10

1 - Genbasic 64GB - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

2

4

6

8

10

12

14

16

2 - Kingston 16 GB - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

1

2

3

4

5

6

7

8

9

10

3 - Sandisk Ultra 128GB - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

2

4

6

8

10

12

14

4 - Sandisk Extreme 32GB - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

2

4

6

8

10

12

5 - Sandisk Edge 16GB - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

5

10

15

20

25

30

35

6 - Kingston 8GB Taiwan - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

5

10

15

20

25

7 - Kingston 8GB China - 64M write time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

0

2

4

6

8

10

12

8 - Sandisk Extreme 64GB - 64M write time (s) by block size

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/56

Raw write tests winner(s)

1.
 G

ENBASIC
 6

4
GB -

ult
ra

 h
igh

 sp
ee

d
SDR10

4
SDXC ca

rd

2.
 K

IN
GSTON 1

6
GB C

las
s 1

0
U1

- u
ltr

a
hig

h
sp

ee
d

SDR50
 S

DHC ca
rd

3.
 S

ANDIS
K U

LT
RA 1

28
 G

B C
las

s 1
0

- u
ltr

a
hig

h
sp

ee
d

SDR10
4

SDXC ca
rd

4.
 S

ANDIS
K E

XTREM
E 3

2
GB V

30
 U

3 A
1

- u
ltr

a
hig

h
sp

ee
d

SDR10
4

SDHC ca
rd

5.
 S

ANDIS
K E

DGE 1
6

GB C
las

s 4
 -

ult
ra

 h
igh

 sp
ee

d
SDR50

 S
DHC ca

rd

6.
 K

IN
GSTON 8

GB C
las

s 4
 Ta

iw
an

 -
hig

h
sp

ee
d

SDHC ca
rd

7.
 K

IN
GSTON 8

GB C
las

s 4
 C

hin
a

- h
igh

 sp
ee

d
SDHC ca

rd

8.
 S

ANDIS
K E

XTREM
E 6

4
GB V

30
 U

3 A
2

- u
ltr

a
hig

h
sp

ee
d

SDR10
4

SDHC ca
rd

0

2

4

6

8

10

12

14

16

64 MB write time (s) with a 4K block size

Note: first time I scan an SD card with a scanner!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/56

How to infer the segment size?

A good solution is to use flashbench from Arnd
Bergmann:

▶ Available as a Debian/Ubuntu package.
▶ Can help to find the segment size by reading

across several block size boundaries.
▶ Also offers useful -f option for looking for special

”FAT” sectors with better performance.
▶ See Optimizing Linux with cheap flash drives

https://lwn.net/Articles/428584/

https://git.linaro.org/people/arnd/flashbench.git/

$ sudo flashbench -a /dev/mmcblk0
align 4294967296 pre 1.39ms on 1.47ms post 1.28ms diff 139µs
align 2147483648 pre 1.3ms on 1.47ms post 1.33ms diff 158µs
align 1073741824 pre 1.24ms on 1.36ms post 1.21ms diff 139µs
align 536870912 pre 1.26ms on 1.39ms post 1.29ms diff 114µs
align 268435456 pre 1.24ms on 1.38ms post 1.25ms diff 131µs
align 134217728 pre 1.26ms on 1.38ms post 1.24ms diff 130µs
align 67108864 pre 1.4ms on 1.54ms post 1.52ms diff 81.6µs
align 33554432 pre 1.3ms on 1.48ms post 1.33ms diff 161µs
align 16777216 pre 1.35ms on 1.47ms post 1.35ms diff 116µs
align 8388608 pre 1.22ms on 1.41ms post 1.32ms diff 140µs
align 4194304 pre 1.17ms on 1.32ms post 1.18ms diff 147µs
align 2097152 pre 1.21ms on 1.28ms post 1.2ms diff 78.4µs
align 1048576 pre 1.18ms on 1.26ms post 1.19ms diff 81.4µs
align 524288 pre 1.19ms on 1.27ms post 1.19ms diff 77.5µs
align 262144 pre 1.19ms on 1.28ms post 1.17ms diff 96.5µs
align 131072 pre 1.16ms on 1.25ms post 1.18ms diff 81.2µs
align 65536 pre 1.16ms on 1.25ms post 1.18ms diff 74.4µs
align 32768 pre 1.18ms on 1.28ms post 1.17ms diff 103µs

Tests on SD card 2 (KINGSTON 16 GB Class 10 U1)
Here, there is a clear level change at 4M.
That’s less obvious with several of the other SD cards
we surveyed, but in all cases, 4M turns out to be a
safe choice (no risk to take a value that’s the double
of the actual one).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/56

https://lwn.net/Articles/428584/
https://git.linaro.org/people/arnd/flashbench.git/

Raw read tests on 8 SD cards

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
0

2

4

6

8

10

12

14

16

18

20

1 - Genbasic 64GB - 1 GB time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
23

24

25

26

27

28

29

30

31

2 - Kingston 16 GB - 1G read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
0

2

4

6

8

10

12

14

16

18

3 - Sandisk Ultra 128GB - 1GB read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
0

5

10

15

20

25

4 - Sandisk Extreme 32GB - 1G read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
22

23

24

25

26

27

28

29

5 - Sandisk Edge 16GB - 1G read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
46

47

48

49

50

51

52

53

54

6 - Kingston 8GB Taiwan - 1G read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
45

46

47

48

49

50

51

52

53

7 - Kingston 8GB China - 1G read time (s) by block size

Bloc
k s

ize
 (b

)
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

26
84

35
45

6

53
68

70
91

2

10
73

74
18

24
0

2

4

6

8

10

12

14

16

18

20

8 - Sandisk Extreme 64GB - 1G read time (s) by block size

See the level change at 1M!
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/56

Finding the Best Block Filesystem

Filesystem benchmarks

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/56

Ext4 vs...

Ext4

▶ Ext4 was created originally for rotating block storage.
Couldn’t find any mkfs.ext4 option which could help on
solid state storage.

▶ mkfs.ext4’s default block size, 4K, is a good value according
to our raw write tests.

▶ Did you know? By default, this command will automatically
select suitable inode_ratio, block_size and inode_size
values according to the size of the filesystem. You can
override this with the -T option and profiles in the
/etc/mke2fs.conf file.

...
[fs_types]

...
small = {

inode_ratio = 4096
}
floppy = {

inode_ratio = 8192
}
big = {

inode_ratio = 32768
}
huge = {

inode_ratio = 65536
}
...
largefile4 = {

inode_ratio = 4194304
blocksize = -1

}
hurd = {

blocksize = 4096
inode_size = 128
warn_y2038_dates = 0

}

Profiles in /etc/mke2fs.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/56

Ext4 vs... Ext4

▶ Ext4 was created originally for rotating block storage.
Couldn’t find any mkfs.ext4 option which could help on
solid state storage.

▶ mkfs.ext4’s default block size, 4K, is a good value according
to our raw write tests.

▶ Did you know? By default, this command will automatically
select suitable inode_ratio, block_size and inode_size
values according to the size of the filesystem. You can
override this with the -T option and profiles in the
/etc/mke2fs.conf file.

...
[fs_types]

...
small = {

inode_ratio = 4096
}
floppy = {

inode_ratio = 8192
}
big = {

inode_ratio = 32768
}
huge = {

inode_ratio = 65536
}
...
largefile4 = {

inode_ratio = 4194304
blocksize = -1

}
hurd = {

blocksize = 4096
inode_size = 128
warn_y2038_dates = 0

}

Profiles in /etc/mke2fs.conf

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/56

XFS vs XFS

▶ Didn’t find options which could increase performance on Solid State storage.
▶ By default, mkfs.xfs picks a 4K block size, which is good with SD cards.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/56

Btrfs vs Btrfs

▶ By default, mkfs.btrfs picks a 4K
block size, which is good with SD
cards.

▶ mkfs.btrfs does detect an SSD when
given an SD card partition.

▶ In past versions, mkfs.btrfs was then
creating the filesystem with the
-m single. This corresponds to not
duplicating metadata to two physical
locations (-m dup).

▶ However, this information is not
trustworthy and we now always have
-m dup by default.

▶ See DUP profiles on a single device.

Rea
d

tim
e

W
rit

e
tim

e

Rea
d-

writ
e

tim
e

Rem
ov

e
tim

e

Vide
o

writ
e

Vide
o

re
ad

0
50

100
150
200
250
300
350
400
450

Time (s) - Linux 6.3 (Beaglebone Black, arm)

btrfs btrfs with “mkfs.btrfs -m single”

mkfs.btrfs -m single reduces space (-3.5%) and
increases read and write performance. Keeping this
option!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/56

https://btrfs.readthedocs.io/en/latest/mkfs.btrfs.html#man-mkfs-dup-profiles-on-a-single-device

Btrfs ssd options

▶ Btrfs offers SSD related mount options:
ssd, ssd_spread and nossd.

▶ ssd is enabled by default if your storage is
detected as SSD:
[915.149865] BTRFS info (device
mmcblk0p3): enabling ssd
optimizations
Otherwise (USB mass storage), you may
need to set it manually.

▶ Didn’t manage to use ssd_spread, was
causing No space left on device errors
even though there was plenty of space.

▶ See https://btrfs.readthedocs.io/
en/latest/ch-mount-options.html.

Rea
d

tim
e

W
rit

e
tim

e

Rea
d-

writ
e

tim
e

Rem
ov

e
tim

e

Vide
o

writ
e

Vide
o

re
ad

0

50

100

150

200

250

300

350

400

Time (s) - Linux 6.3 (Beaglebone Black, arm)

btrfs with “nossd” mount option btrfs with “ssd” mount option

The ssd mount option brings minor read and write
speedups (< 1%).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/56

https://btrfs.readthedocs.io/en/latest/ch-mount-options.html
https://btrfs.readthedocs.io/en/latest/ch-mount-options.html

Btrfs compression options

▶ Btrfs also offers mount options for compression:
compress=none|zlib|lzo|zstd (default: none).
See mount options.

▶ Compression helps a bit with read time (- 10% at
best), but significantly hurts write time (though
acceptably with lzo), at least on the 1GHz CPU we
tested.

▶ Compression is smart: giving up if file contents turn
out not to be compressible (e.g. video).

▶ Sticking to none, otherwise would use lzo if
compression is needed, or zlib if compression rate
matters more than performance.

▶ Here, what you choose will depend on your system,
how often you write, what kind of files...

Rea
d

tim
e

W
rit

e
tim

e

Rea
d-

writ
e

tim
e

Rem
ov

e
tim

e

Vide
o

writ
e

Vide
o

re
ad

0

100

200

300

400

500

600

700

Btrfs performance by compression option
Linux 6.3 (Beaglebone Black, arm)

none zlib lzo zstd

none zlib lzo zstd
0

200000

400000

600000

800000

1000000

1200000

1400000

Btrfs compression - Used space (bytes)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/56

https://btrfs.readthedocs.io/en/latest/ch-mount-options.html

F2FS vs F2FS

▶ F2FS compression options are not very straightforward
to use. They allow for selective compression of files
(specific files, files with a given extension). However,
it’s possible to try to compress all files.

▶ Need to create the filesystem as follows:
mkfs.f2fs -O compression,extra_attr

▶ Need to mount the filesystem as follows:
-o compress_extension=*,compress_algorithm=lzo|
lz4|zstd|lzo-rle

▶ Also tried the lazytime and atgc,gc_merge mount
options, but they didn’t help with performance, except
marginally for video writing.

▶ See https://www.kernel.org/doc/html/latest/
filesystems/f2fs.html and
https://wiki.archlinux.org/title/F2FS.

Rea
d

tim
e

W
rit

e
tim

e

Rea
d-

writ
e

tim
e

Rem
ov

e
tim

e

Vide
o

writ
e

Vide
o

re
ad

0

50

100

150

200

250

300

350

400

450

500

f2fs performance by compression option
Linux 6.3 (Beaglebone Black, arm)

none lzo lz4 zstd lzo-rle

Compression can be useful, but here there
are no sizable performance benefits. Keeping
the uncompressed version.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/56

https://www.kernel.org/doc/html/latest/filesystems/f2fs.html
https://www.kernel.org/doc/html/latest/filesystems/f2fs.html
https://wiki.archlinux.org/title/F2FS

nilfs2 vs nilfs2

▶ Didn’t see any mount option which could help with performance.
▶ See https://www.kernel.org/doc/html/latest/filesystems/nilfs2.html
▶ mkfs.nilfs2 options:

• -b (block-size) already has a good default value (4K)
• -B (blocks-per-segment) too (8M)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/56

https://www.kernel.org/doc/html/latest/filesystems/nilfs2.html

SquashFS vs SquashFS
Comparing the read performance of the various compression
options (using a Raspberry Pi OS Lite root filesystem, 1.2
GB, ARM binaries).

gzip lzo lz4 xz zstd
0

100

200

300

400

500

600

700

Squashfs compression tests
Linux 6.3 (Beaglebone Black, arm)

Image size (MiB)

Read-time (s)

lzo looks like the best compromise in terms of speed and
space. We will use SquashFS with this compression scheme.

Notes: tried several promising
non-default kernel configuration options:

▶ SQUASHFS_4K_DEVBLK_SIZE:
enforcing 4K blocks. This slightly
degraded performance.

▶ SQUASHFS_FILE_DIRECT: directly
decompressing to the file cache.
Didn’t see any noticeable impact
on read performance.

▶ Haven’t tried the multi-threaded
decompression options yet.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/56

https://elixir.bootlin.com/linux/latest/K/ident/SQUASHFS_4K_DEVBLK_SIZE
https://elixir.bootlin.com/linux/latest/K/ident/SQUASHFS_FILE_DIRECT

EROFS vs EROFS (1)

Comparing the read performance of the various
compression options (using an Raspberry Pi OS Lite root
filesystem (1.2 GB, ARM binaries).

none lz4hc lz4hc,12 Lz4hc-C65536
0

200

400

600

800

1000

1200

EROFS compression tests
Linux 6.3 (Beaglebone Black, arm)

Image size (MiB)

Read-time (s)

We tried 4 options to create an EROFS
image with mkfs.erofs:

▶ No option: no compression
▶ -zlz4hc: compresses with the

MicroLZMA compressor (Linux
5.16+)

▶ -zlz4hc,12: compresses with the
MicroLZMA compressor, best
compression

▶ -C65536: adding big pcluster
feature for bigger clusters (Linux
5.13+)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/56

EROFS vs EROFS (2)

none lz4hc lz4hc,12 Lz4hc-C65536
0

10

20

30

40

50

60

70

80

90

EROFS read-time (s) by compression mode
Linux 6.3 (Beaglebone Black, arm)

▶ We will continue tests with
-zlz4hc,12, giving the best time
results.

▶ There just seems to be a penalty
on the host machine creating the
image!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/56

Finding the Best Block Filesystem

Filesystem benchmarks - Real comparisons

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/56

Kernel module size

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

500000

1000000

1500000

2000000

2500000

Filesystem module size - Linux 6.3 (arm)

Module size

With dependencies

S
iz

e
(b

yt
es

)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/56

Module loading time

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Module loading time (s) - Linux 6.3 (Beaglebone Black, arm)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/56

Mounting time

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mounting time (s) - Linux 6.3 (Beaglebone Black, arm)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/56

Boot time: module loading and mounting time

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

0.5

1

1.5

2

2.5

Module loading + mounting time (s)
Linux 6.3 (Beaglebone Black, arm)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/56

Used space

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Used space - Linux 6.3

Contents: Raspberry Pi OS Lite root
filesystem, 1.2 GB, ARM binaries.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/56

Reading time

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

20

40

60

80

100

120

Reading time (s) - Linux 6.3
(Beaglebone Black, arm)

Reading all the files in the filesystem
(contents of a Raspberry Pi OS Lite
root filesystem, 1.2 GB, ARM
binaries).

#!/bin/sh
tar cf /dev/null /mnt/data

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/56

Writing time

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

140

160

180

Writing time (s) - Linux 6.3
(Beaglebone Black, arm)

Copying a Debian ARM root
filesystem (319M) 5 times from a
pre-loaded ramfs to the target
filesystem.

#!/bin/sh
num=5
for i in `seq $num`
do

cp -r /mnt/ramfs/debian-arm /mnt/data/$i
echo "Copying $i / $num"

done
sync

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/56

Reading, removing and writing time

ext4 xfs btrfs f2fs nilfs2
0

50

100

150

200

250

300

350

400

Read-write time (s) - Linux 6.3
(Beaglebone Black, arm) Continued from the previous tests.

Remove 1 directory out of 5 (Debian
ARM root filesystem, 319M), copy
the oldest remaining one to a new
one, all this 5 times.

#!/bin/sh
num=5
i=1
while [$i -le $num]
do

echo "Loop $i..."
rm -rf /mnt/data/$i
i=`expr $i + 1`
cp -r /mnt/data/$i /mnt/data/`expr $i + 4`

done
sync

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/56

Removing time

ext4 xfs btrfs f2fs nilfs2
0

10

20

30

40

50

60

Remove time (s) - Linux 6.3
(Beaglebone Black, arm)

Continued from the previous tests.
Remove all 5 directories (Debian
ARM root filesystem, 319M).

#!/bin/sh
/bin/rm -rf /mnt/data/*
sync

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/56

Sequential write time

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

140

160

Video write time (s) - Linux 6.3
(Beaglebone Black, arm)

New test. Copy a preloaded video
(big_buck_bunny_720p_surround.
avi, 317M) to the filesystem, 5 times.

#!/bin/sh
for i in `seq 5`
do

cp /mnt/ramfs/video.avi /mnt/data/video.avi.$i
done
sync

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 48/56

Sequential read time

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

Video read time (s) - Linux 6.3
(Beaglebone Black, arm)

Continued from the previous test.
After unmounting and remounting the
filesystem, read the stored videos
(big_buck_bunny_720p_surround.
avi, 317M, 5 times)

#!/bin/sh
cat /mnt/data/video.avi.* > /dev/null

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 49/56

The BIG picture

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

0.5

1

1.5

2

2.5

Module loading + mounting time (s)
Linux 6.3 (Beaglebone Black, arm)

ext4 xfs btrfs f2fs nilfs2 squashfs erofs
0

20

40

60

80

100

120

Reading time (s) - Linux 6.3
(Beaglebone Black, arm)

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

140

160

180

Writing time (s) - Linux 6.3
(Beaglebone Black, arm)

ext4 xfs btrfs f2fs nilfs2
0

50

100

150

200

250

300

350

400

Read-write time (s) - Linux 6.3
(Beaglebone Black, arm)

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

140

160

Video write time (s) - Linux 6.3
(Beaglebone Black, arm)

ext4 xfs btrfs f2fs nilfs2
0

20

40

60

80

100

120

Video read time (s) - Linux 6.3
(Beaglebone Black, arm)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/56

Our observations
Boot
time

Mount
time

Read Seq.
read

Write Seq.
write

read
write
delete

Delete Space

ext4 very
good

very
good

fair good best very
good

good good good

xfs bad average fair good very
good

best average fair fair

btrfs worst good fair good good good fair worst good

f2fs fair average good good fair very
good

very
good

average worst

nilfs2 bad worst fair worst worst worst best best fair

squashfs excel-
lent

best very
good

best

erofs best best best very
good

Caution: specific to our own tests!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/56

What to remember

▶ Seems like Ext2 is going away (2038 limit)
▶ EROFS seems to be the fastest read-only filesystem as expected.
▶ SquashFS is great to minimize space while keeping very good read performance.
▶ Ext4 remains a very good default choice for read-write filesystem in all aspects.
▶ F2FS seems to be the second best choice.
▶ Btrfs turns out to be bulky, complicated and powerful, but created with

-m single, is a solid choice too (except for boot time).
▶ XFS is a pretty good choice too, and easy to use.
▶ Compression doesn’t seem to help with performance (at least with our rather

slow, single-core CPU).
▶ Nilfs2 can give you great results, but also the worst ones, depending on your

usage scenario.
Always try with your own hardware and applications!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/56

Lessons learned

▶ Flashing an SD card with dd: the page size (usually 4K) is the best block size.
Don’t exceed 1M.

▶ Reading an SD card with dd: the segment size is one of the best block sizes.
Bigger or smaller blocks degrade performance.

▶ Tried to use flashbench -f to look for special ”FAT” segment with better
performance. Didn’t find anything noticeable.

▶ Anyway, for Journaling filesystems, the journal cannot fit in the first sectors,s as it
is too big anyway. You may store it elsewhere though, if you have faster storage.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/56

Limitations

▶ Haven’t tested on ARM64 yet (faster CPU), and with multi-core CPUs either
▶ Haven’t tested real random writing (modifying random files in place) and reading.
▶ Tests made only on one SD card, not on eMMC, and neither on USB nor on

NVME, SATA...

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/56

Further resources

▶ Peter Chubb: SD cards and filesystems for embedded systems (2015)
http://mirror.linux.org.au/pub/linux.conf.au/2015/Case_Room_2/
Friday/SD_Cards_and_filesystems_for_Embedded_Systems.webm

▶ Richard Weinberger: EROFS vs. SquashFS: A Gentle Benchmark (2022)
https://blog.sigma-star.at/post/2022/07/squashfs-erofs/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/56

http://mirror.linux.org.au/pub/linux.conf.au/2015/Case_Room_2/Friday/SD_Cards_and_filesystems_for_Embedded_Systems.webm
http://mirror.linux.org.au/pub/linux.conf.au/2015/Case_Room_2/Friday/SD_Cards_and_filesystems_for_Embedded_Systems.webm
https://blog.sigma-star.at/post/2022/07/squashfs-erofs/

Questions?
Suggestions?
Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2023/eoss/

Na shledanou!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/56

https://bootlin.com/pub/conferences/2023/eoss/

	Finding the Best Block Filesystem
	Available filesystems
	Raw benchmarks
	Filesystem benchmarks
	Filesystem benchmarks - Real comparisons

