
Embedded Linux Conference Europe 2023

A tour of USB Device
Controller (UDC) in
Linux
Hervé Codina
herve.codina@bootlin.com

© Copyright 2004-2023, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/41

Hervé Codina

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Contributor to the Renesas RZ/N1 USBF UDC driver in Linux
• Strong open-source focus

▶ Open-source contributor
▶ Living in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/41

A tour of USB Device Controller (UDC) in Linux

USB2.0 standard

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/41

USB2.0 standard

▶ https://www.usb.org/document-
library/usb-20-specification

▶ Released on April 27, 2000
▶ Defines the mechanical part, the

electrical and communication protocol
▶ Publicly available
▶ Supports

• High-speed (480 Mb/s)
• Full-speed (12 Mb/s)
• Low-speed (1.5 Mb/s)

Extracted from the USB2.0 standard

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/41

https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification

USB Bus

▶ Multiple devices using hubs
▶ Hot-plug devices
▶ Discoverable devices
▶ Each device has a unique address

assigned by the host

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/41

Communication flow

▶ USB transfers are initiated by the Host.
▶ A USB transfer is made of bus transactions
▶ Most bus transactions involve the transmission of up to three packets

• Token (IN, OUT, SETUP, ...)
First packet in a transaction
Identify transaction type and direction.
Identify transaction recipient (USB device address, Endpoint number)

• Data (DATA0, DATA1, ...)
Contains the data related to the transaction
Can be an empty data packet (zero-length packet)
wMaxPacketSize size limit on each Endpoint (max 1024 bytes)

• Handshake (ACK, NAK, STALL, ...)
Indicates whether the transfer was successful.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/41

Bulk transfers

▶ Guaranteed delivery
▶ No guarantee of bandwidth or latency

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/41

Interrupt transfers

▶ Guaranteed maximum service period
▶ Retry on next period in case of delivery failure
▶ Interrupt: periodic polling from the host

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/41

Isochronous transfers

▶ Guaranteed bandwidth and data rate
▶ No retry in case of delivery failure

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/41

Control transfers

▶ Intended to support configuration/command/status communication flow

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/41

Endpoints, Interfaces, Configuration

▶ Endpoint: Terminus of a communication flow between
the host and the device.

• Uniquely referenced (device address, endpoint number,
direction)

• EP0 (IN/OUT): Used to configure and control the
device (mandatory).

• Endpoints other than EP0 are function specific.
▶ Interface: Group of endpoints to provide a function.

• Several interfaces can be available at the same time
(multi-function printer/scanner)

▶ Configuration: Device capabilities.
• Power budget, remote wake-up support, number of

interfaces.
• One or more interfaces are present in each configuration.
• Only one configuration can be activated.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/41

Standard requests
▶ Use control transfers through EP0.

Extracted from the USB2.0 standard

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/41

Device states

Extracted from the USB2.0 standard

State Description
Attached Device is attached to the USB but is not powered.
Powered The host set VBUS. Device is powered but has not

received the USB reset.
It must not answer to any transaction.

Default Device received the USB reset.
It is addressable at the default USB address (address
0) and answers to transaction on EP0 using this USB
address.

Address The host assigned a unique device USB address using
a SET_ADDRESS request.
Device is addressable at the address assigned and an-
swers to transactions on EP0 using this unique USB
address.

Configured Device received a SET_CONFIGURATION request.
Device is ready to use, its functions are available and
it answers to the transactions on all EPs.

Suspended Device enter the suspend state when it has observed
no bus activities for a specified period.
In suspended state, it maintains its internal status
including its address and configuration.
Suspended state is exited when there is bus activity.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/41

Bus enumeration
▶ Detect devices, assign addresses, configure.
▶ Communication through standard requests.
▶ Enumeration sequence (somewhat simplified)

1. Device plugged to a powered port (the port is disabled).
VBUS is available at the device side.

2. The device connects the pull-up data line resistor.
The Hub detects the attachment and informs the host (status change).

3. The host asks the Hub for a port enable and a reset on that port.
Following the reset, the device is in the Default state.
It answers to the default address and EP0 is accessible.

4. The host assigns a unique address (SET_ADDRESS request).
The device is in the Address state.
It answers to the assigned address and EP0 is accessible.

5. The host read the descriptors (GET_DESCRIPTOR requests)
6. The host configure the device (SET_CONFIGURATION request).

The device is in the Configured state.
The interfaces available in the selected configuration and their endpoints are
accessible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/41

A tour of USB Device Controller (UDC) in Linux

Linux USB Device Controller (UDC)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/41

USB gadget (Linux as an USB device)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/41

UDC driver structure

▶ Includes <linux/usb/gadget.h>
• The Chapter 9 USB2.0 standard references (<uapi/linux/usb/ch9.h>) included.

▶ Provides hooks for device management (struct usb_gadget_ops)
▶ Provides hooks for endpoints management (struct usb_ep_ops)
▶ Uses functions from the Gadget Core API for

• Registering the UDC,
• Signaling USB events,
• Forwarding EP0 requests to the Gadget core,
• Signaling Endpoints end of transfers.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/41

https://elixir.bootlin.com/linux/latest/source/include/linux/usb/gadget.h
https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/usb/ch9.h
https://elixir.bootlin.com/linux/latest/ident/usb_gadget_ops
https://elixir.bootlin.com/linux/latest/ident/usb_ep_ops

Gadget ops

linux/usb/gadget.h (simplified, only basic hooks extracted)
struct usb_gadget_ops {

// ...
int (*pullup) (struct usb_gadget *, int is_on);
// ...
int (*udc_start)(struct usb_gadget *,

struct usb_gadget_driver *);
int (*udc_stop)(struct usb_gadget *);
// ...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/41

Gadget ops - udc_start() / udc_stop()

▶ udc_start(): Start the UDC
• The UDC driver is going to be used and needs to start.
• Start VBUS monitoring (if possible)
• No USB transfer should be enabled at this time

▶ udc_stop(): Stop the UDC
• The UDC driver is not used anymore.
• No more events can be signaled by the UDC.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/41

Gadget ops - pullup()

▶ pullup(): Activate or deactivate the data line pull-up
• The pullup() is called by the Gadget core after the VBUS detection is signaled.
• Activate (is_on != 0)

Connect the pull-up.
USB connect detected by the host → Beginning of USB activities (Bus enumeration).

• Deactivate (is_on == 0)
Disconnect the pull-up
USB disconnect detected by the host → End of USB activities.
No transfer anymore.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/41

Endpoint ops

linux/usb/gadget.h (simplified, only basic hooks extracted)
struct usb_ep_ops {

int (*enable) (struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc);

int (*disable) (struct usb_ep *ep);
// ...
struct usb_request *(*alloc_request) (struct usb_ep *ep,

gfp_t gfp_flags);
void (*free_request) (struct usb_ep *ep, struct usb_request *req);

int (*queue) (struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags);

int (*dequeue) (struct usb_ep *ep, struct usb_request *req);

int (*set_halt) (struct usb_ep *ep, int value);
int (*set_wedge) (struct usb_ep *ep);
// ...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/41

Endpoint ops - enable() / disable()

Endpoint chosen by the core among the available Endpoint list.
▶ enable(): Enable the endpoint

• Setup the endpoint based on struct usb_endpoint_descriptor
• Configure the hardware to handle the endpoint.

▶ disable(): Disable the endpoint
• Disable the endpoint at the hardware level.
• Complete all pending requests (usb_gadget_giveback_request() with

req.status = -ESHUTDOWN)
• The endpoint will not be used anymore.

EP0 is always enabled, never disabled.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/41

https://elixir.bootlin.com/linux/latest/ident/usb_endpoint_descriptor
https://elixir.bootlin.com/linux/latest/ident/usb_gadget_giveback_request

Endpoint ops - set_halt() / set_wedge()

▶ set_halt(): Set or clear the endpoint halt feature.
• Halted endpoint will return a STALL
• The Host GET_STATUS(endpoint) request returns the halt status.
• The Host CLEAR_FEATURE(HALT_ENDPOINT) request clears the halt state.

▶ set_wedge(): Set the endpoint halt feature.
• Same as set_halt(ep, 1) except:
• The Host CLEAR_FEATURE(HALT_ENDPOINT) request does not switch the endpoint

to its normal state.
• Only a set_halt(ep, 0) can clear the halt state.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/41

Request

▶ Data exchanged using an endpoint (struct usb_request)
▶ Chained using a queue per endpoint
▶ IN endpoint (from device to host): Data to send.

• One request → One or more data packet (max packet size).
• Zero length packet can be added if needed.

▶ OUT endpoint (from host to device): Data received.
• Merge received data packets up to the request size
• Zero length packet or short packet terminates the request
• Data Packet received cannot be split over several requests.

▶ Give back to the Core using usb_gadget_giveback_request().

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/41

https://elixir.bootlin.com/linux/latest/ident/usb_request
https://elixir.bootlin.com/linux/latest/ident/usb_gadget_giveback_request

Endpoint ops - alloc_request() / free_request()

▶ alloc_request(): Allocate a request
• One or more requests can be allocated per endpoint.
• Can setup extra resources (DMA buffer)
• An allocated request can be used several times (i.e. queued and completed several

times)
▶ free_request(): Free a request

• The request is no longer used
• Release specific hardware request resources.
• Free the request

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/41

Endpoint ops - queue() / dequeue()

▶ queue(): Queue a request
• The request is queued to be processed.
• Automatically removed from queue at the end of processing.
• usb_gadget_giveback_request() called at the end of processing.
• Start the queue processing if not already done.

▶ dequeue(): Dequeue a request
• Dequeue an queued request.
• Complete the request (usb_gadget_giveback_request() with

req.status = -ECONNRESET).
• Was the first in queue? → Start processing the next request.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/41

https://elixir.bootlin.com/linux/latest/ident/usb_gadget_giveback_request
https://elixir.bootlin.com/linux/latest/ident/usb_gadget_giveback_request

Core API

linux/usb/gadget.h (simplified and commented, only basic functions extracted)
/* Register the UDC */
extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);

/* Unregister the UDC */
extern void usb_del_gadget_udc(struct usb_gadget *gadget);

/* Notify the VBUS status, and try to connect or disconnect gadget */
extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);

/* Notify the Core that a bus reset occurs */
extern void usb_gadget_udc_reset(struct usb_gadget *gadget,

struct usb_gadget_driver *driver);

/* Set gadget state */
extern void usb_gadget_set_state(struct usb_gadget *gadget, enum usb_device_state state);

/* Give a request back to the Core layer */
extern void usb_gadget_giveback_request(struct usb_ep *ep, struct usb_request *req);

struct usb_gadget_driver {
//...
/* Handle EP0 control requests */
int (*setup)(struct usb_gadget *, const struct usb_ctrlrequest *);
//...

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/41

myudc driver data - data & ops

struct myudc_ep {
struct usb_ep ep;
struct list_head queue;
struct myudc *myudc;
u8 id;
bool disabled;
//...

};

struct myudc {
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
/* My udc hardware supports 8 Endpoints */
struct myudc_ep ep[8];
//...

};

//...

static static struct usb_ep_ops myudc_ep_ops = {
.enable = myudc_ep_enable,
.disable = myudc_ep_disable,
.queue = myudc_ep_queue,
.dequeue = myudc_ep_dequeue,
.set_halt = myudc_ep_set_halt,
.set_wedge = myudc_ep_set_wedge,
.alloc_request = myudc_ep_alloc_request,
.free_request = myudc_ep_free_request,

}

...

static struct usb_gadget_ops myudc_gadget_ops = {
.udc_start = myudc_udc_start,
.udc_stop = myudc_udc_stop,
.pullup = myudc_pullup,

};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/41

myudc driver data - endpoints information

struct myudc_ep_info {
const char *name;
struct usb_ep_caps caps;
u16 maxpacket_limit;

};

#define EP_INFO(_name, _caps, _maxpacket_limit) \
{ \

.name = _name, \

.caps = _caps, \

.maxpacket_limit = _maxpacket_limit, \
}

/* Available endpoints (from hardware datasheet) */
static const struct myudc_ep_info myudc_ep_info[8] = {

[0] = EP_INFO("ep0-ctrl",
USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_ALL),
64),

[1] = EP_INFO("ep1-bulk",
USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_ALL),
512),

// ...
[4] = EP_INFO("ep5-int",

USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_ALL),
1024),

// ...
[7] = EP_INFO("ep7-iso",

USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_ALL),
1024),

};

▶ Used during probe() call to initialize
endpoints.

▶ Endpoint name
• Format "epN*" with N the endpoint

number
▶ Endpoint capabilities USB_EP_CAPS()

▶ Endpoint max packet size limit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/41

https://elixir.bootlin.com/linux/latest/ident/USB_EP_CAPS

UDC driver probe()

▶ Initialize gadget fields (name,
max_speed, ops)

▶ Initialize available endpoints
• Disabled (will be enabled later)
• Initialize the request queue
• Initialize endpoint fields (name, ops)
• Set the endpoint capabilities (caps)
• Set the maximum packet size limit

(usb_ep_set_maxpacket_limit())
▶ Set the specific EP0
▶ Set the available endpoint list

(endpoints other than EP0)
▶ Register the UDC driver

static int myudc_probe(struct platform_device *pdev)
{

struct myudc_ep *myudc_ep;
struct myudc *myudc;

// 1. Allocate myudc
myudc = devm_kzalloc(dev, sizeof(*myudc), GFP_KERNEL);
// ...
// 2. Initialize gadget fields
myudc->gadget.name = "myudc";
myudc->gadget.max_speed = USB_SPEED_HIGH;
myudc->gadget.ops = &myudc_gadget_ops;
// 3. Initialize endpoints
INIT_LIST_HEAD(&myudc->gadget.ep_list);
for (i = 0; i < ARRAY_SIZE(myudc->ep); i++) {

myudc_ep = &myudc->myudc_ep[i];
INIT_LIST_HEAD(&myudc_ep->queue);
myudc_ep->id = i;
myudc_ep->disabled = 1;
myudc_ep->myudc = myudc;
myudc_ep->ep.ops = &myudc_ep_ops;
myudc_ep->ep.name = myudc_ep_info[i].name;
myudc_ep->ep.caps = myudc_ep_info[i].caps;
usb_ep_set_maxpacket_limit(&myudc_ep->ep,

myudc_ep_info[i].maxpacket_limit);
// ...
if (myudc_ep->id == 0) {

//4.a Set the specific EP0
myudc->gadget.ep0 = &myudc_ep->ep;

} else {
//4.b Add the endpoint to the available endpoint list
INIT_LIST_HEAD(&myudc_ep->ep.ep_list);
list_add_tail(&myudc_ep->ep.ep_list,

&myudc->gadget.ep_list);
}

}
// ...
// 5. Register the UDC driver
return usb_add_gadget_udc(dev, &myudc->gadget);

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/41

https://elixir.bootlin.com/linux/latest/ident/usb_ep_set_maxpacket_limit

Startup & Reset - VBUS en USB reset events

▶ VBUS change events
• Signal event to the core.

it will call pullup (on/off).

static void myudc_handler_vbus(struct myudc *myudc)
{

bool is_vbus;
// ...
is_vbus = my_udc_get_vbus(myudc);
if (is_vbus) {

usb_udc_vbus_handler(&myudc->gadget, true);
usb_gadget_set_state(&myudc->gadget, USB_STATE_POWERED);

} else {
usb_udc_vbus_handler(&myudc->gadget, false);
usb_gadget_set_state(&myudc->gadget, USB_STATE_NOTATTACHED);

}
//...

}

▶ USB reset events
• Complete all pending requests
• Speed negotiated during USB reset
• Reset the address to the USB default

address.
• Signal the reset to the core
• Only EP0 is available after a reset

static void myudc_handler_usb_reset(struct myudc *myudc)
{

// ...

for (i = 0; i < ARRAY_SIZE(myudc->ep); i++)
myudc_ep_nuke(&myudc->ep[i], -ESHUTDOWN);

myudc_disable_all_endpoints(myudc);

/* Set speed */
udc->gadget.speed = myudc_is_high_speed(myudc) ?

USB_SPEED_HIGH : USB_SPEED_FULL;

/* Use USB default address */
myudc_set_usb_address(myudc, 0x00);

/* Setup endpoint zero */
myudc_ep0_setup(myudc);

/* Signal the reset to the core */
if (myudc->driver)

usb_gadget_udc_reset(&myudc->gadget, myudc->driver);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/41

Startup & Reset - Putting all together

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/41

EP0 Control requests handling
▶ Fully handled at UDC Level for some control requests

• SET_ADDRESS: Set the unique USB address
• GET_STATUS(Device): Remote WakeUp, Self powered
• GET_STATUS(Endpoint): Endpoint Halt state
• {SET,CLEAR}_FEATURE(Device): Remote WakeUp
• {SET,CLEAR}_FEATURE(Endpoint): Endpoint Halt state

▶ Delegate to the Core for others
ret = myudc->driver->setup(&myudc->gadget, ctrlrequest)

• The Core performs the related operations
• Queue a request in the EP0 queue for the data or status stage

data stage if data (IN or OUT) are needed (control read/write)
status stage if no data are needed (control without data)

• Returns USB_GADGET_DELAYED_STATUS if status stage request will be queued later.
▶ Process queue (IN or OUT) if needed.
▶ Don’t forget the status stage (send/receive Zero length packet)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/41

https://elixir.bootlin.com/linux/latest/ident/USB_GADGET_DELAYED_STATUS

Other EP handling

▶ Data processing done at the Core/Function level
▶ The UDC performs the data transfers

• Just process the EP queue according to the EP direction.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/41

A tour of USB Device Controller (UDC) in Linux

How to test?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/41

testusb

▶ http://www.linux-usb.org/usbtest/

▶ A Bootlin blog post related to testusb (https://bootlin.com/blog/test-a-
linux-kernel-usb-device-controller-driver-with-testusb/)

▶ Quite old tool
▶ Host part (test tooling)

• Dedicated kernel driver: usbtest.ko (CONFIG_USB_TEST=m).
• A user-space program that asks for test: testusb (kernel sources tools/usb/)
• usbtest.ko can hang on some failures (reboot needed).

Use it on a dedicated tool board, not your workstation.
▶ Target part (system under test)

• Precomposed g_zero gadget is sufficient (CONFIG_USB_ZERO=m)
• The UDC to be tested

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/41

http://www.linux-usb.org/usbtest/
https://bootlin.com/blog/test-a-linux-kernel-usb-device-controller-driver-with-testusb/
https://bootlin.com/blog/test-a-linux-kernel-usb-device-controller-driver-with-testusb/
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_USB_TEST
https://elixir.bootlin.com/linux/latest/source/tools/usb/
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_USB_ZERO

testusb
▶ On the target

modprobe g_zero

▶ On the host
• Transfers other than isochronous

modprobe usbtest
testusb -a -v512
[220.276460] usbtest 2-1:3.0: TEST 0: NOP
[220.292316] usbtest 2-1:3.0: TEST 1: write 1024 bytes 8 times
[220.324711] usbtest 2-1:3.0: TEST 2: read 1024 bytes 8 times
...
[223.250355] usbtest 2-1:3.0: TEST 29: Clear toggle between bulk writes 8 times
#

• Isochronous transfers (supported by g_zero running on the target)

modprobe usbtest alt=1
testusb -a -v512
...
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/41

Interesting precomposed gadget

▶ g_mass_storage (CONFIG_USB_MASS_STORAGE)
• Halts some endpoints.
• Useful to test the halt feature.

▶ g_ether (CONFIG_USB_ETH)
• Uses transfer sizes that are not a multiple of MaxPacketSize.
• Useful to test transfers spanned on multiple packets.
• The last packet can be less than MaxPacketSize.

▶ g_serial (CONFIG_USB_G_SERIAL)
• In a basic configuration, each byte sent is echoed.
• Test very short packets
• Easy to isolate transfers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/41

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_USB_MASS_STORAGE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_USB_ETH
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_USB_G_SERIAL

g_mass_storage

Errors appear if the endpoint halt feature is not well implemented.

▶ On the target
• Create a file for the mass storage
• Load the gadget

dd if=/dev/zero of=/tmp/storage.part bs=1M count=8
modprobe g_mass_storage file=/tmp/storage.part

▶ On the host
• New USB removable disk detected.
• Format the disk.
• Transfer files.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/41

g_ether

One UDC USB request ↔ one Ethernet packet.
The completed UDC USB request size = The Ethernet packet size.

▶ On the target
• Load the gadget
• Retrieve files from host

modprobe g_ether
wget http://192.168.0.106:8080/test_file.bin

▶ On the host
• Run a web server to serve various file sizes.
• Trace the Ethernet transfers (Wireshark).

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/41

g_serial

Each character typed on the host is echoed.
When your hit ’enter’, the whole buffer is echoed.

▶ On the target
• Load the gadget
• Do a loopback

modprobe g_serial
cat /dev/ttyGS0 > /dev/ttyGS0

▶ On the host
• Open and play with the TTY (picocom)

picocom -b115200 /dev/ttyACM0

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/41

Questions? Suggestions? Comments?

Hervé Codina
herve.codina@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/41

https://bootlin.com/pub/conferences/

A tour of USB Device Controller (UDC) in Linux

Extra slides

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/41

Data transfers, IN queue processing (from device to host)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/41

Data transfers, OUT queue processing (from host to device)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/41

EP0 handling

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/41

	A tour of USB Device Controller (UDC) in Linux
	USB2.0 standard
	Linux USB Device Controller (UDC)
	How to test?

