
Live Embedded Event #3

LLVM tools for the
Linux kernel
Michael Opdenacker
michael.opdenacker@bootlin.com

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Michael Opdenacker

▶ Founder and Embedded Linux engineer at Bootlin:
▶ Embedded Linux expertise
▶ Development, consulting and training
▶ Strong open-source focus

▶ Free Software contributor:
▶ Current maintainer of the Elixir Cross Referencer,

making it easier to study the sources of big C projects
like the Linux kernel. See
https://elixir.bootlin.com

▶ Current documentation maintainer for the Yocto Project
▶ Co-author of Bootlin’s freely available embedded Linux

and kernel training materials
(https://bootlin.com/docs/)

Project
selection

Identifier
search

Source
browsing

All versions
available

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 

https://elixir.bootlin.com
https://bootlin.com/docs/


Disclaimer

▶ I’m neither a Clang/LLVM expert, nor involved in the project to build the Linux
kernel with Clang.

▶ I’m just interested in the topic, and sharing my own findings with you.
▶ This is also why this is a short presentation!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



LLVM tools for the Linux kernel

Compiling the Linux kernel with Clang

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Definitions and conventions in this document

▶ Clang: compiler front-end for C, C++, Objective-C, OpenCL, CUDA...
▶ clang: the command provided by the Clang project
▶ LLVM: compiler back-end, and name of the project Clang is part of.
▶ GCC: GNU Compiler Collection.
▶ Gcc or gcc: the C compiler in GCC

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Why compiling the Linux kernel with Clang?

▶ Google reason: have only one toolchain and build all of Android with Clang.
▶ Good to support two different compilers, to shake out code that relies on

undefined behavior in the compiler.
▶ Get different warnings from Clang.
▶ Access further optimizations such as Link Time Optimization (LTO).
▶ Interest in LLVM static analysis tools.
▶ Linux is a big and complex project: it can also allow to find Clang bugs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Differences between clang and gcc

▶ gcc needs to be compiled for each architecture you want to support. Therefore,
many different gcc cross-compilers are available.

▶ clang supports all target architectures at the same time. The same executable
can generate code for all the architectures it supports.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Linux kernel: Clang support status

Source: https://www.kernel.org/doc/html/latest/kbuild/llvm.html
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 

https://www.kernel.org/doc/html/latest/kbuild/llvm.html


Environment setup for Clang (Ubuntu 22.04)

Common packages:

sudo apt install build-essential flex bison libssl-dev

Clang packages:

sudo apt install clang llvm lld

Environment for compiling the kernel:

export ARCH=arm
export LLVM=1

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Environment setup for GCC (Ubuntu 22.04)

Gcc packages:

sudo apt install gcc-12-arm-linux-gnueabihf
sudo update-alternatives --install /usr/bin/arm-linux-gnueabihf-gcc \

arm-linux-gnueabihf-gcc /usr/bin/arm-linux-gnueabihf-gcc-12 12

Environment for compiling the kernel:

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
unset LLVM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Compile time and size results

With Clang 14

cd linux-5.18-rc6
make omap2plus_defconfig
time make -j8 zImage

real 25m59,392s
user 84m4,292s
sys 13m27,629s

du -s arch/arm/boot/zImage
4912 arch/arm/boot/zImage

With GCC 12

cd linux-5.18-rc6
make omap2plus_defconfig
time make -j8 zImage

real 24m11,143s
user 80m34,624s
sys 9m55,833s

du -s arch/arm/boot/zImage
4908 arch/arm/boot/zImage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Compile time compared

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Boot time comparisons

On BeagleBone Black, booting Linux 5.18-rc6 on a small initramfs with Busybox, time
between U-Boot SPL and Please press Enter:
▶ Kernel built with Clang 14:

Average boot time: 6.427 s
▶ Kernel built with gcc 12:

Average boot time: 6.422 s (-5 ms)
Conclusion: the boot time difference is negligible.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Link Time Optimization (LTO)

▶ Clang allows to implement global optimizations at link time
See https://www.llvm.org/docs/LinkTimeOptimization.html for details.

▶ LTO is supposed to be able to identify and delete dead code.
▶ Three LTO options in the Linux kernel:

▶ CONFIG_LTO_NONE: no LTO (by default)
▶ CONFIG_LTO_CLANG_FULL: full LTO but heavy CPU and RAM usage at link time.

Example: needs 7.9 GB of RAM to link an arm64 kernel (defconfig configuration).
▶ CONFIG_LTO_CLANG_THIN: much lighter than full LTO on RAM usage and CPU

time. See https://clang.llvm.org/docs/ThinLTO.html.
▶ Gcc also has LTO support but is not supported for building the Linux kernel.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 

https://www.llvm.org/docs/LinkTimeOptimization.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LTO_NONE
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LTO_CLANG_FULL
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LTO_CLANG_THIN
https://clang.llvm.org/docs/ThinLTO.html


LTO tests

▶ arm64 build (Image.gz): Linux 5.18-rc7, defconfig configuration
▶ x86 build (bzImage): Linux 5.18-rc7, x86_64_defconfig configuration

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



Notes on LTO results

▶ Note that LTO (full and thin) is currently not enabled on arm (32 bit).
▶ The full LTO kernels are way bigger than non LTO ones
▶ This is most probably due to extra inlining, good for performance, but not for

boot time (a bigger kernel takes more time to load and decompress). Topic
discussed on https://github.com/ClangBuiltLinux/linux/issues/1643.

▶ Lacked time to run performance benchmarks on x86 or arm64

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 

https://github.com/ClangBuiltLinux/linux/issues/1643


clang-tidy

”clang-tidy is a clang-based C++ “linter” tool. Its purpose is to provide an extensible
framework for diagnosing and fixing typical programming errors, like style violations, interface
misuse, or bugs that can be deduced via static analysis.”
▶ Set up your environment for compiling your kernel with Clang
▶ Configure your kernel
▶ You could even run make allyesconfig to cover the whole code
▶ Run make clang-tidy or better make -j8 clang-tidy

▶ Output: no issue reported on Linux 5.18-rc6 (omap2plus_defconfig)
https://clang.llvm.org/extra/clang-tidy/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 

https://clang.llvm.org/extra/clang-tidy/


clang-analyzer

”The Clang Static Analyzer is a source code analysis tool that finds bugs in C, C++,
and Objective-C programs.”
▶ Also set up your environment for compiling your kernel with Clang and configure

your kernel (possibly with make allyesconfig).
▶ Run make clang-analyzer or better make -j8 clang-analyzer
▶ As the volume of output is huge, suggestion to duplicate it to a file:

make -j8 clang-analyzer 2>&1 | tee /tmp/clang-analyzer.log
▶ Note: static analysis takes much more time than compiling.

https://clang-analyzer.llvm.org/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 

https://clang-analyzer.llvm.org/


clang-analyzer: many false positives
...
/home/tux/linux/clang/linux-5.18-rc6/kernel/reboot.c:831:9: note: Call to function 'sprintf' is insecure as it

does not provide security checks introduced in the C11 standard. Replace with analogous functions that
support length arguments or provides boundary checks such as 'sprintf_s' in case of C11

return sprintf(buf, "%d\n", reboot_cpu);
^~~~~~~

Suppressed 40 warnings (40 in non-user code).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors

from system headers as well.
15 warnings generated.
/home/tux/linux/clang/linux-5.18-rc6/kernel/async.c:125:2: warning: Value stored to 'calltime' is never read [

clang-analyzer-deadcode.DeadStores]
calltime = ktime_get();
^ ~~~~~~~~~~~

/home/tux/linux/clang/linux-5.18-rc6/kernel/async.c:125:2: note: Value stored to 'calltime' is never read
calltime = ktime_get();
^ ~~~~~~~~~~~

...

However:
▶ The sprintf_s() function doesn’t exist in the kernel code
▶ calltime in kernel/async.c can be accessed if the configuration enables pr_debug().
▶ There are countless examples like this

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 

https://elixir.bootlin.com/linux/latest/source/kernel/async.c
https://elixir.bootlin.com/linux/latest/ident/pr_debug


Improvements to the kernel code

However, the Clang warnings have allowed to implement many improvements to the
Linux kernel code:
▶ Nathan Chancellor’s patches: https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/log/?qt=author&q=chancellor
▶ Nick Desaulniers’ patches: https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/log/?qt=author&q=desaulniers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=chancellor
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=chancellor
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=desaulniers
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=desaulniers


Further limitations and issues

▶ Difficult to run clang-analyzer on a single file
(see workaround on the next page)

▶ How to tweak clang-analyzer to keep only the warnings relevant to Linux
kernel code?

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



How to run clang-analyzer on a single file

▶ Make a copy of the compile_commands.json generated file, which just describes
one file. Let’s call it compile_commands-1file.json

▶ Then run:
python3 ./scripts/clang-tools/run-clang-tools.py clang-
analyzer compile_commands-1file.json

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Conclusions

▶ For the most popular CPU architectures, building the kernel with Clang instead of
Gcc is already possible and mature.

▶ With Clang, you don’t need a cross-compiler any more!
▶ The Clang warnings have already helped to improve the kernel code
▶ However, we haven’t reaped all the benefits of using Clang yet:

▶ No size benefits of LTO yet: LTO kernels much bigger
▶ Many clang-analyzer warnings still irrelevant

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Useful resources

▶ ClangBuiltLinux project: https://clangbuiltlinux.github.io/
Build status, bug reports, documentation, meetings.
The place to join to get involved.

▶ Kernel documentation: Building Linux with Clang/LLVM
https://www.kernel.org/doc/html/latest/kbuild/llvm.html

▶ LWN.net: Building the kernel with Clang
https://lwn.net/Articles/734071/

Thanks to Nathan Chancellor and Nick Desaulniers (Clang/LLVM Build Support kernel
maintainers) for answering my questions!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 

https://clangbuiltlinux.github.io/
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://lwn.net/Articles/734071/


Questions? Suggestions? Comments?

Michael Opdenacker
michael.opdenacker@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2022/lee/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://bootlin.com/pub/conferences/2022/lee/

