
Embedded Linux Conference Europe 2022

Walking Through the
Linux-Based Graphics
Stack
Paul Kocialkowski
paul@bootlin.com

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

 

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

 



Paul Kocialkowski

▶ Embedded Linux engineer at Bootlin
• Embedded Linux expertise
• Development, consulting and training
• Strong open-source focus

▶ Open-source contributor
• Co-maintainer of the cedrus VPU driver in V4L2
• Author of the ov5648 and ov8865 V4L2 camera sensor drivers
• Author of the logicvc-drm DRM display controller driver
• Contributor to the sun4i-drm DRM display controller driver
• Developed the displaying and rendering graphics with Linux training

▶ Living in Toulouse, south-west of France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

 



Talk Outline

Agenda:
▶ Big Picture Overview of Graphics
▶ Early Graphics
▶ Graphics on a Running System

Focus:
▶ System-level aspects
▶ Shed light on little-known aspects
▶ Code references to popular/reference projects

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

 



Walking Through the Linux-Based Graphics Stack

Big Picture Overview of Graphics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

 



Graphics Hardware: Memory

Rationale: where is the graphics data stored, how is it accessed?

Graphics data (pixels) storage:
▶ Framebuffers are the memory areas for pixles
▶ Memory location depends on the situation:

• System memory or dedicated graphics memory
• Paged (fragmented) or contiguous memory

▶ Specific formats, modifiers, compression, lack of meta-data

Graphics memory access:
▶ Hardware-side memory access: DMA, IOMMU
▶ System-side memory access: bus mapping, cache

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

 



Graphics Hardware: Displaying

Rationale: going from memory to photons

▶ Pixels mixing: planes/layers (rotation, scaling, format and more)
▶ Timings generation: CRTC
▶ Interface layer: encoder (controller, PHY)
▶ Transcoding: bridge
▶ Surface: panel, monitor, various technologies

Framebuffer

Framebuffer

Plane

Plane

CRTC Encoder Bridge Panel / Monitor

Memory FIFOs Sync FIFO Display Interface Display Interface

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

 



Graphics Hardware: Rendering

Rationale: generating pixels from primitives

▶ GPUs are the all-in-one approach for rendering 3D and 2D
• Vector drawing units exist but are rarely used
• Pixels mixers also left out in most cases

▶ Specific hardware features for the task:
• Programmable pipeline with shaders: vertex, geometry, fragment
• Dedicated vector/SIMD instruction set(s)
• Texture mapping units, cache
• Tiled framebuffer representations

▶ Requires a dedicated compiler for shaders
▶ Configured via a command stream in memory
▶ High complexity and power usage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

 



Graphics APIs: Linux kernel

Rationale: providing low-level applications access to hardware features

Linux kernel subsystms and uAPIs:
▶ Fbdev: covers display, legacy: missing many many features
▶ DRM: modern subsystem for graphics

• KMS: covers display, up-to-date
• KMS atomic: extension for atomic state changes
• GEM: memory management, zero-copy (PRIME), fences (Syncobj)
• Render: covers rendering, driver-specific

Low-level libraries:
▶ libdrm: wrapper for DRM syscalls

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

 



Graphics APIs: Displaying in Userspace

Rationale: allowing applications to display their contents

Low-level display server APIs:
▶ X11: legacy protocol with various issues, various extensions
▶ Wayland: modern protocol, various extensions

Associated low-level libraries:
▶ Xlib, XCB: X11 protocol and extensions wrapper
▶ libwayland-{display,server}: Wayland protocols marshalling

Higher-level graphics libraries/toolkits:
▶ Qt, GTK, EFL: widget-based toolkits
▶ SDL: drawing-oriented toolkit

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

 



Graphics APIs: 2D Rendering in Userspace

Rationale: providing high-level access to 2D rendering/operations

Base drawing libraries:
▶ Cairo: vector drawing
▶ Skia: vector drawing

Pixel-level libraries:
▶ Pixman: pixel-level operations
▶ FFmpeg swscale: format, scaling
▶ G’MIC: processing

Font rendering:
▶ FreeType: Font rendering
▶ Harfbuzz: Font rendering

UI rendering:
▶ Graphics toolkits
▶ ImGui, nuklear: Immediate-mode

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

 



Graphics APIs: 3D Rendering in Userspace

Rationale: providing high-level access to 3D rendering

Standard APIs/formats:
▶ OpenGL (ES): Stateful high-level rendering

• GLSL: OpenGL shading language
▶ EGL: Window system integration

• GBM: EGL-DRM KMS glue
▶ Vulkan: Stateless lower-level, low-overhead rendering

• SPIR-V: Intermediate representation for shaders

Implementations:
▶ Mesa 3D: reference free software, using DRM
▶ Proprietary: hardware-specific, various issues

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

 



Graphics APIs: Summary Diagram

Applications

Toolkits

Display Server

User space

o

o

o

2D rendering
libraries

Mesa 3D

API

Display protocol

API

OpenGL, Vulkan
EGL

OpenGL, VulkanDisplay protocol

Kernel space

DRM KMS DRM GEM DRM Render

Driver uAPIlibdrm

Hardware

DRAM/VRAMDisplay Engine GPU

Registers Command streamAllocation, mapping

DMA DMA

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

 



Walking Through the Linux-Based Graphics Stack

Early Graphics

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

 



Framebuffer Console

▶ Why do we need early graphics?
• Show a sign of life before init
• Kernel and init logs for debugging
• LUKS password entry in initramfs

▶ fbcon implements a VT/TTY bridge with graphics:
• stdin is grabbed via the input subsystem
• stdout is rendered and displayed via fbdev
• Can be used for kernel logs: console=tty1
• Enabled with CONFIG_FRAMEBUFFER_CONSOLE
• Can also display a logo: CONFIG_LOGO

▶ Framebuffer device provided by:
• Boot software: VESA, EFI, device-tree (simple-framebuffer)
• Dedicated driver: hardware-specific
• DRM fb helper: compatibility layer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

 



Framebuffer Console: Code Highlights

Linux kernel:
▶ drivers/video/fbdev/core/fbcon.c:

• struct consw fb_con
• fbcon_set_bitops()
• fbcon_prepare_logo()
• do_fbcon_takeover()
• fbcon_redraw()
• fbcon_putc()

▶ drivers/video/fbdev/core/bitblit.c:
• bit_putcs()

▶ drivers/tty/vt/vt.c:
• struct tty_operations con_ops
• do_update_region()
• do_take_over_console

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

 



DRM FB Helper: Code Highlights

Linux kernel:
▶ drivers/gpu/drm/drm_fb_helper.c:

• struct fb_ops drm_fbdev_fb_ops
• drm_fbdev_generic_setup
• drm_fb_helper_generic_probe()
• __drm_fb_helper_initial_config_and_unlock()
• drm_fb_helper_single_fb_probe()
• drm_fb_helper_pan_display

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

 



Bootsplash

▶ Users expect a waiting screen rather than logs
▶ Not a kernel-level feature:

• Dedicated applications for the task
• Running after init, as root
• Typically in the initramfs

▶ Using either fbdev or DRM KMS directly
▶ Often show systemd boot progress
▶ Various implementations exist:

• Plymouth: most advanced, progress, animations, supports DRM KMS and fbdev
• Psplash: from Yocto Project, progress, uses fbdev
• Fbsplash: themable, progress, uses fbdev

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

 



Walking Through the Linux-Based Graphics Stack

Running System

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

 



VT Mode

▶ fbcon takes over VT at boot
• As soon as framebuffer is available

▶ VT sharing between fbcon/userspace:
• Access to the display must be exclusive
• Privileged operations
• Fbcon needs to be detached
• Requires active cooperation

▶ VT modes reflect the current VT state:
• KD_TEXT: fbcon is attached to the VT
• KD_GRAPHICS: ready for userspace graphics use
• Switched upon request with KDSETMODE ioctl,

using the TTY fd (controlling terminal or not)
▶ Similar mechanism exists for input

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

 



VT Switching

▶ Multiple VTs/TTYs are spawned at boot:
• A single VT is active at a time (tty1 at boot)
• Switching triggered with: Ctrl + Alt + F[n]
• No userspace intervention for fbcon

▶ Coordination required when userspace uses graphics:
• Kernel needs to notify application of VT switching
• Signal-based release/acquire handlers registered with VT_SETMODE ioctl
• Graphics resources need to be released/re-acquired
• Kernel waits for acknowledge (can hang)

▶ Implications for complex systems:
• Multiple graphics sessions can run in parallel!
• Typically the case with the login manager
• Other limitations might restrict this ability

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

 



VT Mode and Switching: Code Highlights

Linux kernel:
▶ drivers/tty/vt/vt_ioctl.c:

• vt_k_ioctl()
• vt_kdsetmode()
• change_console()
• complete_change_console()

▶ drivers/tty/vt/vt.c:
• set_console()
• console_callback()

Weston:
▶ libweston/weston-launch.c:

• setup_tty()
• handle_signal()

▶ libweston/launcher-direct.c:
• setup_tty()
• vt_handler()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

 



Sytemd Logind

▶ Configuring graphics (and VT) are privileged operations
• Corresponds to DRM KMS master privilege:

DRM_IOCTL_SET_MASTER/DRM_IOCTL_DROP_MASTER on DRM KMS fd
• Typically restricted to the root user
• Used to require running the display server as root
• (Very) problematic security implications

▶ Systemd introduced systemd-logind:
• Runs as root and opens DRM KMS and VT TTY fds
• Provides a D-Bus service for applications (display servers):

org.freedesktop.login1
• DRM KMS fd is passed over UNIX socket
• VT operations are made available as methods
• Applications can run as regular users!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

 



Sytemd Logind: Code Highlights

Systemd:
▶ src/login/logind-session-device.c:

• session_device_open()

▶ src/login/logind-session.c:
• manager_vt_switch()

▶ src/login/logind-session.c:
• session_open_vt()/session_prepare_vt()
• session_restore_vt()/session_leave_vt()

▶ src/login/logind-session-dbus.c:
• method_take_device()/method_release_device()

Weston:
▶ libweston/launcher-logind.c:

• launcher_logind_take_device()/launcher_logind_release_device
• launcher_logind_activate_vt()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

 



Login manager

Rationale: users needs to login in multi-user/general-purpose setups

▶ Login managers provide a graphical equivalent to getty

▶ Run their own display server under their own user
▶ Started at the end of the boot process (on first VT)
▶ Allow selecting between different sessions:

• X.org: /usr/share/xsessions/ desktop files
• Wayland: /usr/share/wayland-sessions/ desktop files

▶ Starts display server in user context:
• Usually authenticated via PAM
• Usually in a dedicated VT

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

 



Display Server: Submitting Pixels

Rationale: applications want to submit pixels to the display server

▶ Actualy transfer of pixels is deprecated:
• Zero-copy buffer sharing with display server is used instead
• Buffers are identified by API-specific identifiers (e.g. fds)

▶ Buffer sharing has two major instances:
• SHM: Typically drawn by the CPU
• EGL: Typically drawn by the GPU

▶ Allocation is often managed by APIs
• Zero-copy import may be possible:

e.g. EGL_EXT_image_dma_buf_import
• Might cause hardware access issues (but usually works)

▶ Coordination with the display server for presentation:
• Damage region provided by application (e.g. wl_surface_damage)
• Sync point when ready for presentation (e.g. wl_surface_commit)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

 



Display Server: Submitting Pixels: Code Highlights

Weston:
▶ clients/simple-damage.c:

• create_window()
• redraw()

▶ clients/simple-shm.c:
• create_display()
• redraw()

▶ clients/simple-egl.c:
• create_surface()
• init_egl()
• redraw()

▶ clients/simple-dmabuf-egl.c:
• create_dmabuf_buffer()
• redraw()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

 



Display Server: Compositing

Rationale: display servers need to gather applications buffers

▶ A unique buffer is submitted to the display hardware:
• Contains the contents of all visible applications
• Stacked according to window manager policy
• Needs to be redrawn upon (visible) application indication

▶ Compositing is a very demanding task:
• Full redraw must be avoided at all costs!
• Can run up to display frame rate (e.g. 60 Hz)
• Damage is tracked and used for clipping regions

▶ Hardware acceleration is leveraged (if not necessary):
• Typically renderd with the GPU, buffers as textures
• Hardware planes can be leveraged, but usually not (prinary only)
• Cursor is typically composited by the hardware with a dedicated plane

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

 



Display Server: Compositing: Code Highlights

Weston:
▶ libweston/pixman-renderer.c:

• pixman_renderer_repaint_output()
• draw_view()
• repaint_region()
• composite_clipped()

▶ libweston/renderer-gl/gl-renderer.c:
• gl_renderer_repaint_output()
• draw_view()
• repaint_region()
• texture_region()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

 



Display Server: Page Flipping

Rationale: achieving glitch-free display contents update

▶ Tearing is a well-known issue with display sync:
• Display hardware scans out buffer at given address
• Scanout happens continuouslty at refresh rate
• Display server needs to update the presented contents
• Concurrent read (hardware) and write (displays erver) causes a glitch

▶ Tearing is resolved with a double-buffering approach:
• Front buffer is shown, back buffer is being prepared
• Roles are exchanged at next vertical sync (vblank) point
• More buffers can be used but increase latency

▶ DRM KMS ensures page flipping happens at vblank:
• Scheduled using DRM_IOCTL_MODE_PAGE_FLIP (with target)
• Scheduled with atomic commit using DRM_IOCTL_MODE_ATOMIC
• Can notify userspace (blocking or async event) when done

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

 



Display Server: Page Flipping: Code Highlights

Weston:
▶ libweston/backend-drm/kms.c:

• drm_output_apply_state_atomic()
• drm_pending_state_apply_atomic()
• drm_output_apply_state_legacy()
• drm_output_set_cursor()
• atomic_flip_handler()/page_flip_handler()

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

 



Questions? Suggestions? Comments?

Paul Kocialkowski
paul@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

https://bootlin.com/pub/conferences/

