
Embedded Linux Conference Europe 2022

Basics of I²C on Linux
Luca Ceresoli
luca.ceresoli@bootlin.com

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Luca Ceresoli

▶ Embedded Linux engineer at Bootlin
• Embedded Linux experts
• Engineering services: Linux BSP development, kernel porting and drivers,

Yocto/Buildroot integration, real-time, boot-time, security, multimedia
• Training services: Embedded Linux, Linux kernel drivers, Yocto, Buildroot, graphics

stack, boot-time, real-time
▶ Linux kernel and bootloader development, Buildroot and Yocto integration
▶ Open-source contributor
▶ Living in Bergamo, Italy
▶ luca.ceresoli@bootlin.com

https://bootlin.com/company/staff/luca-ceresoli/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

https://bootlin.com/company/staff/luca-ceresoli/

Basics of I²C on Linux

What is I²C

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

What is I²C

I2C
Master

I2C
Slave

SCL

SDA

I2C
Slave

I2C
Slave

VDD

https://docs.kernel.org/i2c/summary.html

▶ A bus for Inter-Integrated-Circuit communication
▶ Design for hardware simplicity: 2 wires, many chips per bus, flexible
▶ Not discoverable, not plug-and-play
▶ Low speed: 100-400 kHz (with 1 MHz and 3.4 MHz extensions)
▶ Also known as: I2C, IIC, TWI, TWSI, …
▶ https://en.wikipedia.org/wiki/I²C

▶ https://docs.kernel.org/i2c/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

https://docs.kernel.org/i2c/summary.html
https://en.wikipedia.org/wiki/I²C
https://docs.kernel.org/i2c/

Roles

I2C
Master

I2C
Slave

SCL

SDA

I2C
Slave

I2C
Slave

VDD

https://docs.kernel.org/i2c/summary.html

Adapter
▶ Other names: Master, Controller, bus
▶ Initiates all transactions
▶ Usually one (multimaster possible)
▶ Has no address

Client
▶ Other names: Slave, Device
▶ Responds to transactions
▶ Many per bus
▶ 7-bit address set in hardware

(10-bit extension)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

https://docs.kernel.org/i2c/summary.html

Two wires

I2C
Master

I2C
Slave

SCL

SDA

I2C
Slave

I2C
Slave

VDD

https://docs.kernel.org/i2c/summary.html

▶ Two wires
• SDA: data, bidirectional
• SCL: “clock”

Not really a clock
SDA moved at SCL falling edge, SDA read at SCL rising edge
Mostly driven by adapter, sometimes also by clients (clock stretching)

▶ Open collector

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

https://docs.kernel.org/i2c/summary.html

Communication protocol

1. Start condition
2. Adapter sends: client address (7 bit) + direction bit (R/W)
3. Client sends ACK
4. Client sends one byte
5. Adapter sends ACK
6. Stop condition

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

The SMBus protocol

▶ Designed for chip communication on PC motherboards
▶ Mostly a subset of I²C
▶ Defines several commands

• Register write: S addr+W A reg A data P
• Register read: S addr+W A reg A RS addr+R A data NA P

▶ Often I²C and SMBus clients can be mixed on the same bus
• Linux recommends using SMBus APIs for I²C chips when possible

▶ https://en.wikipedia.org/wiki/System_Management_Bus

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

https://en.wikipedia.org/wiki/System_Management_Bus

Basics of I²C on Linux

I²C in the Linux Driver Model

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

The I2C subsystem in the linux kernel

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

Sysfs view

I2C “Devices” includes both adapters and clients:

ls -l /sys/bus/i2c/devices/
lrwxrwxrwx ... 0-0039 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-0039
lrwxrwxrwx ... 0-004a -> ../../../devices/platform/soc/40012000.i2c/i2c-0/0-004a
lrwxrwxrwx ... 1-0052 -> ../../../devices/platform/soc/40015000.i2c/i2c-1/1-0052
lrwxrwxrwx ... 2-0028 -> ../../../devices/platform/soc/5c002000.i2c/i2c-2/2-0028
lrwxrwxrwx ... 2-0033 -> ../../../devices/platform/soc/5c002000.i2c/i2c-2/2-0033
lrwxrwxrwx ... i2c-0 -> ../../../devices/platform/soc/40012000.i2c/i2c-0
lrwxrwxrwx ... i2c-1 -> ../../../devices/platform/soc/40015000.i2c/i2c-1
lrwxrwxrwx ... i2c-2 -> ../../../devices/platform/soc/5c002000.i2c/i2c-2
lrwxrwxrwx ... i2c-3 -> ../../../devices/platform/soc/40012000.i2c/i2c-0/i2c-3

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

Basics of I²C on Linux

Device Tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

Device tree example
arch/arm/boot/dts/stm32mp15xx-dkx.dtsi
&i2c4 {

i2c-scl-rising-time-ns = <185>;
i2c-scl-falling-time-ns = <20>;
clock-frequency = <400000>;
status = "okay";
// ...

stusb1600@28 {
compatible = "st,stusb1600";
reg = <0x28>;
interrupts = <11 IRQ_TYPE_LEVEL_LOW>;
interrupt-parent = <&gpioi>;
pinctrl-names = "default";
pinctrl-0 = <&stusb1600_pins_a>;
status = "okay";
// ...

};

pmic: stpmic@33 {
compatible = "st,stpmic1";
reg = <0x33>;
// ...

}
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

More properties

▶ Adapter node
• compatible
• #address-cells = <1> (1 address number per client chip)
• #size-cells = <0> (no size numbers per client chip)
• Optional: clock-frequency (frequency of bus clock in Hz)
• Optional: i2c-scl-falling-time-ns, i2c-sda-falling-time-ns, …
• Optional: scl-gpios, sda-gpios: for GPIO bus recovery
• Optional: single-master or multi-master
• Adapter-specific properties
• …
• One subnode per client chip

reg = <client address> (Look for “Slave address” on the datasheet)
compatible
Client-specific properties

▶ See Documentation/devicetree/bindings/i2c/i2c.txt

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c.txt

Basics of I²C on Linux

Writing client device drivers

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

Client device driver: declare the driver

drivers/gpio/gpio-pca9570.c
static struct i2c_driver pca9570_driver = {

.driver = {
.name = "pca9570",
.of_match_table = pca9570_of_match_table, // --> see later

},
.id_table = pca9570_id_table, // --> see later
.probe_new = pca9570_probe, // --> see later

};
module_i2c_driver(pca9570_driver);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

Client device driver: i2c and device tree tables

drivers/gpio/gpio-pca9570.c
static const struct i2c_device_id pca9570_id_table[] = {

{ "pca9570", 4 },
{ "pca9571", 8 },
{ /* sentinel */ }

};
MODULE_DEVICE_TABLE(i2c, pca9570_id_table);

static const struct of_device_id pca9570_of_match_table[] = {
{ .compatible = "nxp,pca9570", .data = (void *)4 },
{ .compatible = "nxp,pca9571", .data = (void *)8 },
{ /* sentinel */ }

};
MODULE_DEVICE_TABLE(of, pca9570_of_match_table);

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

Client device driver: probe function

drivers/gpio/gpio-pca9570.c
static int pca9570_probe(struct i2c_client *client)
{

struct pca9570 *gpio;

gpio = devm_kzalloc(&client->dev, sizeof(*gpio), GFP_KERNEL);
if (!gpio)

return -ENOMEM;

gpio->chip.get = pca9570_get; // --> see later
gpio->chip.set = pca9570_set; // --> see later
// ...

i2c_set_clientdata(client, gpio);

return devm_gpiochip_add_data(&client->dev, &gpio->chip, gpio);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

Client device driver: recap

drivers/gpio/gpio-pca9570.c
static int pca9570_probe(struct i2c_client *client)
{

// 1. allocate driver-specific struct
// 2. fill it
// 3. device-specific initializations
// 4. i2c_set_clientdata(client, <driver-specific struct>)
// 5. register to appropriate subsystem (GPIO, RTC, input, IIO, ...)

}

// 6. Describe i2c device in struct i2c table and device tree table
// 7. Describe driver in a struct i2c_driver
// 8. module_i2c_driver(): declare the driver

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

Client device driver: requesting I²C transactions

drivers/gpio/gpio-pca9570.c (simplified)
static void pca9570_set(struct gpio_chip *chip, unsigned offset, int value)
{

struct pca9570 *gpio = gpiochip_get_data(chip);
struct i2c_client *client = to_i2c_client(gpio->chip.parent);
u8 buffer;

buffer = /* chip-specific code */;

i2c_smbus_write_byte(client, buffer);
}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

Requesting I²C transactions
▶ Simple buffer transfer

• i2c_smbus_write_byte(): send one byte
• i2c_smbus_read_byte(): receive one byte
• i2c_master_send(): send multiple bytes
• i2c_master_recv(): receive multiple bytes

▶ Register-like access
• i2c_smbus_write_byte_data(): write a register
• i2c_smbus_read_byte_data(): read a register
• Plus variants transferring words or buffers

▶ And more, see:
• https://docs.kernel.org/i2c/i2c-protocol.html
• https://docs.kernel.org/i2c/smbus-protocol.html

▶ …or use i2c_transfer(), the “swiss army knife of Linux I2C”
• Makes any number of transfers
• Does repeated start by default
• Various flags to tweak its behaviour

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

https://docs.kernel.org/i2c/i2c-protocol.html
https://docs.kernel.org/i2c/smbus-protocol.html

i2c_transfer()

sound/soc/codecs/adau1701.c (simplified)
static int adau1701_reg_read(void *context, unsigned int reg, unsigned int *value)
{

uint8_t send_buf[2], recv_buf[3];
struct i2c_msg msgs[2];

msgs[0].addr = client->addr;
msgs[0].len = sizeof(send_buf);
msgs[0].buf = send_buf; // pre-filled
msgs[0].flags = 0; // Write transaction by default

msgs[1].addr = client->addr;
msgs[1].len = size;
msgs[1].buf = recv_buf;
msgs[1].flags = I2C_M_RD; // Read transaction

ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0) return ret;
else if (ret != ARRAY_SIZE(msgs)) return -EIO;

}

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

Basics of I²C on Linux

Userspace tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

I2C from userspace

▶ The first rule about I2C from userspace:
▶ Do not use I2C from userspace
▶ Use the RTC/ALSA/IIO device instead, I2C is just to get you there

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

i2c-tools

▶ The i2c-tools package provides tools to access I²C on the command line
▶ Useful for debugging, testing, some simple prototyping
▶ Accesses the I²C bus via /dev/i2c-0, /dev/i2c-1…
▶ Assume devices have registers, SMBus-like
▶ WARNING! This program can confuse your I2C bus, cause data loss and

worse!

▶ https://i2c.wiki.kernel.org/index.php/I2C_Tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

https://i2c.wiki.kernel.org/index.php/I2C_Tools

i2cdetect

▶ i2cdetect: detect devices on a bus
▶ No guarantee it works (I²C is not discoverable by the spec)

i2cdetect -l
i2c-0 i2c STM32F7 I2C(0x40012000) I2C adapter
i2c-1 i2c STM32F7 I2C(0x40015000) I2C adapter
i2c-2 i2c STM32F7 I2C(0x5c002000) I2C adapter
i2c-3 i2c i2c-0-mux (chan_id 0) I2C adapter
i2cdetect -y 2

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- 28 -- -- -- -- -- -- --
30: -- -- -- UU -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
#

-- No response
28 Response from address 28
UU Address in use (by driver)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

i2cget and i2cset

▶ i2cget: read a register value
▶ i2cset: set a register value
▶ Can use various types of SMBus and I²C transactions
▶ Limited to 8-bit register address

i2cget -y 2 0x28 0x1b
0x21
i2cset -y 2 0x28 0x55
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/1

i2cdump

▶ i2cdump: dump value of all registers

i2cdump -y 2 0x28
No size specified (using byte-data access)

0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
00: 00 00 00 00 00 00 12 00 11 20 00 00 f3 00 00 00?.? ..?...
10: 04 00 00 40 00 00 00 00 20 00 00 21 00 e0 00 00 ?..@.... ..!.?..
20: a0 32 00 00 00 ac 00 00 02 00 00 00 00 00 01 10 ?2...?..?.....??
30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70: a3 2c 91 01 08 2c d1 02 00 2c c1 03 00 f0 b0 04 ?,???,??.,??.???
80: 00 af 40 06 00 00 90 01 08 2c d1 02 00 2c c1 03 .?@?..???,??.,??
90: 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00 00@.........
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
#

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/1

i2ctransfer

▶ i2ctransfer: the “swiss army knife of Linux I2C”, in userspace
▶ Example: reimplement the i2cget -y 2 0x28 0x1b command:

i2ctransfer -y 2 w1@0x28 0x1b r1@0x28
0x21
#

▶ w1@0x28 Write transaction, 1 byte, client address 0x28
▶ 0x1b Data to send in the write transaction
▶ r1@0x28 Read transaction, 1 byte, client address 0x28

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 29/1

Basics of I²C on Linux

Hardware tools

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/1

Oscilloscope

▶ Can show SCL and SDA with all the details
▶ Useful to check voltage levels, slopes, noise…
▶ Many models can visually decode I²C and other protocols

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/1

Oscilloscope — NACK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/1

Oscilloscope — Register read

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/1

Logic analyzer
▶ Sigrok is suite of signal analysis software

• https://sigrok.org

▶ Pulseview: a logic analyzer and oscilloscope, based on Sigrok
• Visually decodes I²C and other protocols
• https://sigrok.org/wiki/PulseView

▶ Open source, GPLv3+
▶ They work well with cheap acquisition devices

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/1

https://sigrok.org
https://sigrok.org/wiki/PulseView

Pulseview — NACK

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 35/1

Pulseview — Register read

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/1

Basics of I²C on Linux

Troubleshooting

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/1

Troubleshooting tools

▶ Return code from i2c_*() functions — Never ignore errors!
▶ Kernel logs
▶ i2c-tools
▶ Oscilloscope or logic analyzer

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/1

No ACK from client — systematic

▶ Problem: a client never responds to transactions
• i2c-tools symptom: Error: Read failed
• Kernel internal APIs symptom: -ENXIO

▶ i2cdetect: a client (possibly yours) at any unexpected address?
• Check address pins on client chip: datasheet, schematics

▶ i2cdetect: no client at any unexpected address?
• Client not powered, held in reset, broken, unsoldered pin

▶ Oscilloscope: no activity on bus, SCL/SDA always high
• Pinmux (I²C adapter not reaching the pads)
• Device tree: device under wrong bus

▶ Oscilloscope: no activity on bus, SCL/SDA always low
• Missing pull-up resistors (external or internal)

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/1

No ACK from client — sporadic

▶ Problem: a client sporadically does not respond to transactions
• i2c-tools symptom: Error: Read failed
• Kernel internal APIs symptom: -ENXIO

▶ Oscilloscope: SCL/SDA lines return to high level too slowly
• Weak pull-up
• Workaround: reduce clock-frequency in device tree

▶ Oscilloscope: noise on SCL/SDA lines
• Hardware must be fixed

▶ Oscilloscope: SCL/SDA delays incorrect
• Propagation delay in lines at high speed? Review PCB
• Tune i2c-scl-internal-delay-ns…
• Workaround: reduce clock-frequency in device tree

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 40/1

No ACK from client after reset

▶ Problem: a client sporadically does not respond after unclean reset
• Symptom: driver fails to respond, fails to probe

▶ No clean shutdown → driver could not set client to idle state
• E.g. client left in the middle of a transaction, kernel starts a new one

▶ Reset all clients during boot
• In hardware, if possible
• In the bootloader otherwise

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 41/1

Bus busy

▶ Problem: SCL line held low
• Symptom: bus busy in kernel logs

stm32f7-i2c 40015000.i2c: bus busy
stm32f7-i2c 40015000.i2c: Trying to recover bus

▶ Systematic
• Short circuit / mounting problem

▶ Sporadic
• Chip gone crazy

Bus recovery could fix it
• Multimaster problem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/1

Questions? Suggestions? Comments?

Luca Ceresoli
luca.ceresoli@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 43/1

https://bootlin.com/pub/conferences/

Embedded Linux Conference Europe 2022

Extra slides
Luca Ceresoli
luca.ceresoli@bootlin.com

© Copyright 2004-2022, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 44/1

Bit-level communication

SDA

SCL

PS B1 B2 BN

https://upload.wikimedia.org/wikipedia/commons/6/64/I2C_data_transfer.svg

▶ SCL low = move SDA
▶ SCL high = sample SDA
▶ Exception: Start / Stop condition

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/1

https://upload.wikimedia.org/wikipedia/commons/6/64/I2C_data_transfer.svg

The driver model

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 46/1

I²C muxes and switches

I2C switch Client
0x0A

Adapter

Client
0x0B

Client
0x0A

Client
0x0B

I2C mux Client
0x0A

Adapter

Client
0x0B

Client
0x0A

Client
0x0B

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 47/1

