Security vulnerability tracking tools in Buildroot

Thomas Petazzoni
thomas.petazzoni@bootlin.com
Who is speaking?

- Thomas Petazzoni
- Co-owner and CEO at Bootlin
- Joined in 2008, employee #1
- Embedded Linux engineer and trainer
- Open-source contributor
- **Buildroot co-maintainer**, contributor since 2008, contributed 4000+ patches
- Based in Toulouse, France
Agenda

- What is Buildroot?
- Build systems and security vulnerabilities: which relationship?
- The acronym soup: NVD, CVE and CPE
- Security vulnerability tracking in Buildroot
- Limitations and future work
- Q&A
What is Buildroot?

- Embedded Linux build system
 - Automates the process of cross-compiling a complete customized Linux system for embedded platforms
 - Root filesystem with applications/libraries, cross-compilation toolchain, bootloader and kernel images
 - Same role as OpenEmbedded/Yocto, OpenWrt, PTXdist, etc.
- 2800+ packages, for the most popular open-source libraries/applications
- Simple to use and understand
- Written in make + kconfig
- 4 releases per year, one release maintained during one year with security updates
- Active community, large user base in the industry
$ git clone git://git.buildroot.org/buildroot
$ cd buildroot
$ git checkout 2021.02.2
Buildroot quickstart

$ git clone git://git.buildroot.org/buildroot
$ cd buildroot
$ git checkout 2021.02.2

$ make qemu_aarch64_virt_defconfig
$ git clone git://git.buildroot.org/buildroot
$ cd buildroot
$ git checkout 2021.02.2

$ make qemu_aarch64_virt_defconfig

$ make menuconfig
... customize your selection of packages ...
$ git clone git://git.buildroot.org/buildroot
$ cd buildroot
$ git checkout 2021.02.2

$ make qemu_aarch64_virt_defconfig

$ make menuconfig
... customize your selection of packages ...

$ make
Buildroot quickstart

$ git clone git://git.buildroot.org/buildroot
$ cd buildroot
$ git checkout 2021.02.2

$ make qemu_aarch64_virt_defconfig

$ make menuconfig
... customize your selection of packages ...

$ make

Ready to use images in output/images
Build systems and security vulnerabilities

- Build systems are responsible for **automatically** downloading, building and integrating all the system components
- Typically includes a **large number** of open-source libraries/applications + some in-house/proprietary components
- Number of open-source components can get quite large on a typical embedded systems → **difficult to manually track** all security vulnerabilities
- Just like build systems usually offer *license compliance* tooling, it makes sense to also have *security vulnerability tracking* tooling.
NVD, NIST, CVE, CPE: the acronym soup

- **NVD** = National Vulnerability Database
- Maintained by **NIST**, National Institute of Standards and Technology, US
- https://nvd.nist.gov/
- The NVD is the U.S. government repository of standards based vulnerability management data represented using the Security Content Automation Protocol (SCAP). This data enables automation of vulnerability management, security measurement, and compliance. The NVD includes databases of security checklist references, security-related software flaws, misconfigurations, product names, and impact metrics.

The NVD is the U.S. government repository of standards based vulnerability management data represented using the Security Content Automation Protocol (SCAP). This data enables automation of vulnerability management, security measurement, and compliance. The NVD includes databases of security checklist references, security-related software flaws, misconfigurations, product names, and impact metrics.
NVD, NIST, CVE, CPE: the acronym soup

- **CVE** = Common Vulnerabilities and Exposures
- A reference for publicly-known security vulnerabilities
- Some well-known CVEs
 - CVE-2014-0160, Heartbleed
 - CVE-2017-5754, Meltdown
 - CVE-2020-24588, one of the FragAttacks
- Are generally recognized in the industry as the reference identifiers for known security issues.
- NVD provides a per-year JSON dump of the CVEs at https://nvd.nist.gov/vuln/data-feeds

CVE

Common Vulnerabilities and Exposures

A reference for publicly-known security vulnerabilities

Some well-known CVEs

- CVE-2014-0160, Heartbleed
- CVE-2017-5754, Meltdown
- CVE-2020-24588, one of the FragAttacks

Are generally recognized in the industry as the reference identifiers for known security issues.

NVD provides a per-year JSON dump of the CVEs at https://nvd.nist.gov/vuln/data-feeds
CVE database entry example: CVE-2020-29074

"cve" : {
 ...
 "CVE_data_meta" : {
 "ID" : "CVE-2020-29074",
 "ASSIGNER" : "cve@mitre.org"
 },
 ...
 "configurations" : {
 "CVE_data_version" : "4.0",
 "nodes" : [{
 "operator" : "OR",
 "children" : [],
 "cpe_match" : [{
 "vulnerable" : true,
 "cpe23Uri" : "cpe:2.3:a:x11vnc_project:x11vnc:0.9.16:*:*:*:*:*:*:",
 "cpe_name" : []
 }]
 }]
 }
}

→ single version affected, 0.9.16
CVE database entry example: CVE-2018-0733

```
"cve" : {
  ...
  "CVE_data_meta" : {
    "ID" : "CVE-2018-0733",
    "ASSIGNER" : "openssl-security@openssl.org"
  },
  "configurations" : {
    "nodes" : [ {
      "operator" : "OR",
      "cpe_match" : [ {
        "vulnerable" : true,
        "cpe23Uri" : "cpe:2.3:a:openssl:openssl:*:*:*:*:*:*:*:*:*",
        "versionStartIncluding" : "1.1.0",
        "versionEndIncluding" : "1.1.0g",
        "cpe_name" : [ ]
      } ]
    } ]
  }
}

→ range of versions affected
```
CVE-2018-0733 Known Affected Software Configurations

Configuration 1

<table>
<thead>
<tr>
<th>Configuration</th>
<th>From (including)</th>
<th>Up to (including)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cpe:2.3:a:openssl:openssl:*:*:*:*:*</code></td>
<td>1.1.0</td>
<td>1.1.0g</td>
</tr>
</tbody>
</table>

- `cpe:2.3:a:openssl:openssl:1.1.0:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:-:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre1:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre2:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre3:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre4:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre5:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0:pre6:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0a:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0b:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0c:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0d:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0e:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0f:*:*:*:*:*`
- `cpe:2.3:a:openssl:openssl:1.1.0g:*:*:*:*:*`
CPE = Common Platform Enumeration

structured naming scheme for information technology systems, software, and packages

Or put it different: unique identifier for software releases

Examples

cpe:2.3:a:ntp:ntp:4.2.8:p3:*:*:*:*:*:

cpe:2.3:a:x11vnc_project:x11vnc:0.9.16:*:*:*:*:*:

CPE dictionary provided by NVD: lists all known software releases, as a huge XML blurb

Used in the NVD database of CVEs

Official Common Platform Enumeration (CPE) Dictionary

CPE is a structured naming scheme for information technology systems, software, and packages. Based upon the generic syntax for Uniform Resource Identifiers (URI), CPE includes a formal name format, a method for checking names against a system, and a description format for binding text and tests to a name.

Below is the current official version of the CPE Product Dictionary. The dictionary provides an agreed upon list of official CPE names. The dictionary is provided in XML format and is available to the general public. Please check back frequently as the CPE Product Dictionary will continue to grow to include all past, present and future product releases. The CPE Dictionary is updated nightly when modifications or new names are added.

As of December 2009, The National Vulnerability Database is now accepting contributions to the Official CPE Dictionary. Organizations interested in submitting CPE Names should contact the NVD CPE team at cpe_dictionary@nist.gov for help with the processing of their submission.

The CPE Dictionary hosted and maintained at NIST may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

CPE Dictionary

5. CPE Dictionary Search
6. CPE Dictionary Growth Statistics
In Buildroot

- Existing `pkg-stats` tool
 - Originally maintainer-oriented
 - Collects details on the entire package set
 - Existence of license file? Hash file? Current packaged version vs. latest upstream version?

- Extended with:
 - Collecting details only for the packages of the current configuration → useful for users
 - Matching of packages with the NVD databases: CVE and CPE

- `make pkg-stats`
 - Produces JSON and HTML output
 - Downloads NVD database in `$(DL_DIR)/buildroot-nvd/`

- Available since Buildroot 2021.02
pkg-stats output

<table>
<thead>
<tr>
<th>Package</th>
<th>Current version</th>
<th>Latest version</th>
<th>Warnings</th>
<th>URL</th>
<th>CVEs</th>
<th>CPE ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td>2.3.1</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td>2.6.0</td>
<td>0</td>
<td>Link</td>
<td>CVE-2011-3618</td>
<td>cpe:2.3:a:atop_project:atop:2.6.0:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td>2.5.1</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3:a:attr_project:attr:2.4.48:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/autoconf/autoconf.mk</td>
<td>2.69</td>
<td>2.71</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/automake/automake.mk</td>
<td>1.15.1</td>
<td>1.16.3</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/binutils/binutils.mk</td>
<td>2.35.2</td>
<td>2.36.1</td>
<td>0</td>
<td>Link</td>
<td>CVE-2021-3487</td>
<td>cpe:2.3:a:binutils:2.35.2:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td>1.33.1</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3:a:busybox:busybox:1.33.0:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/expat/expat.mk</td>
<td>2.2.10</td>
<td>2.4.1</td>
<td>0</td>
<td>Link</td>
<td>CVE-2013-0340</td>
<td>cpe:2.3:a:libexpat_project:libexpat:2.2.10:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/fakeroot/fakeroot.mk</td>
<td>1.25.3</td>
<td>1.25.3</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/fontconfig/fontconfig.mk</td>
<td>2.13.1</td>
<td>2.13.93</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3:a:fontconfig_project:fontconfig:2.13.1:::::::CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/freetype/freetype.mk</td>
<td>2.10.4</td>
<td>2.10.4</td>
<td>0</td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3:a:freetype:freetype:2.10.4:::::::CPE identifier unknown in CPE database</td>
</tr>
</tbody>
</table>
CPE identifiers

By default

- Buildroot generates a CPE identifier equal to:
 - `cpe:2.3:a:<pkg>_project:<pkg>:<pkg-version>:*:*:*:*:*:*`
 - Sometimes doesn’t match with how the software component is referenced in the NVD CPE dictionary

Can be overridden on a per-package basis with:

- `<pkg>_CPE_ID_PREFIX`
- `<pkg>_CPE_ID_VENDOR`
- `<pkg>_CPE_ID_PRODUCT`
- `<pkg>_CPE_ID_VERSION`
- `<pkg>_CPE_ID_UPDATE`

The `pkg-stats` output indicates if the generated CPE identifier has been found in the CPE dictionary. If not found:

- Incorrect CPE information in Buildroot
- Incomplete CPE dictionary

Many Buildroot packages already annotated with correct CPE ID information.
<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>CPE Identifier</th>
<th>Link</th>
<th>CPE Identifier Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td>cpe:2.3:a:attr_project:attr:2.4.48:::::*</td>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td>no verified CPE identifier</td>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td>cpe:2.3:a:atop_project:atop:2.6.0:::::*:CVE-2011-3618</td>
<td>Link</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td>cpe:2.3:a:busybox:busybox:1.33.0:::::*:CVE-2011-3618</td>
<td>Link</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
</tbody>
</table>
pkg-stats output details

- some `<pkg>_CPE_ID_*` variables defined → CPE information verified
- CPE identifier exists in the CPE dictionary
- no known CVEs

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>CPE Identifier</th>
<th>CVE Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td><code>2.3.1</code></td>
<td>Link</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>some <code><pkg>_CPE_ID_*</code> variables defined</td>
<td>Link</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPE identifier exists in the CPE dictionary</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no known CVEs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td><code>2.3.1</code></td>
<td>Link</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPE identifier unknown in CPE database</td>
<td></td>
<td></td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td><code>2.6.0</code></td>
<td>Link</td>
<td>CVE-2011-3618</td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td><code>1.33.1</code></td>
<td>Link</td>
<td>N/A</td>
</tr>
</tbody>
</table>
pkg-stats output details

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>CPE Identifier</th>
<th>CVE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td><pkg>CPE_ID*</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td>CPE_ID*</td>
<td>N/A</td>
<td>no known CVE</td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td>CPE_ID*</td>
<td>CVE-2011-3618</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td>CPE_ID*</td>
<td>N/A</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
</tbody>
</table>
pkg-stats output details

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>CPE ID</th>
<th>Count</th>
<th>Source</th>
<th>Link</th>
<th>Verified</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td>2.3.1 distro</td>
<td>0</td>
<td></td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3.0:attr_project:attr:2.4.48:::::::*</td>
</tr>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td>2.3.1 distro</td>
<td>0</td>
<td></td>
<td>Link</td>
<td>N/A</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td>2.6.0 distro</td>
<td>0</td>
<td></td>
<td>Link</td>
<td>CVE-2011-3618</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td>1.33.1 distro</td>
<td>0</td>
<td></td>
<td>Link</td>
<td>N/A</td>
<td>cpe:2.3.0:busybox:busybox:1.33.0:::::::*</td>
</tr>
</tbody>
</table>

- some `<pkg>_CPE_ID_` variables defined → CPE information verified
- no entry in CPE dictionary → version 2.6.0 not known by NVD
- CVE-2011-3618 applicable: NVD database indicates it applies to all versions.
pkg-stats output details

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>CPE ID</th>
<th>CVEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>package/attr/attr.mk</td>
<td>2.4.48</td>
<td>2.5.1</td>
<td>cpe:2.3:a:attr_project:attr:2.4.48::::::</td>
</tr>
<tr>
<td></td>
<td></td>
<td>found by distro</td>
<td></td>
</tr>
<tr>
<td>package/acl/acl.mk</td>
<td>2.2.53</td>
<td>2.3.1</td>
<td>no verified CPE identifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>found by distro</td>
<td></td>
</tr>
<tr>
<td>package/atop/atop.mk</td>
<td>2.6.0</td>
<td>2.6.0</td>
<td>CVE-2011-3618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>found by distro</td>
<td></td>
</tr>
<tr>
<td>package/busybox/busybox.mk</td>
<td>1.33.0</td>
<td>1.33.1</td>
<td>CPE identifier unknown in CPE database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>found by distro</td>
<td></td>
</tr>
</tbody>
</table>

- some `<pkg>_CPE_ID_*` variables defined → CPE information verified
- no entry in CPE dictionary → version 1.33.0 not known by NVD
- no known CVEs
Ignoring CVEs

Sometimes a CVE is reported as applicable to particular version but should be ignored by Buildroot

Typical reasons:
- Buildroot has backported the security fix as a patch in package/<pkg>/
- The security issue doesn’t apply to the Buildroot configuration/usage of the package

/pkg_IGNORE_CVES can be used per package to ignore specific CVEs

package/bind/bind.mk

Only applies to RHEL6.x with DNSSEC validation on
BIND_IGNORE_CVES = CVE-2017-3139

package/hostapd/hostapd.mk

0002-ASN.1-Validate-DigestAlgorithmIdentifier-parameters.patch
HOSTAPD_IGNORE_CVES += CVE-2021-30004
Limitations

- Packages with **custom versions** from Git (Linux, U-Boot, etc.) → Buildroot doesn’t know how to match custom versions with well-known upstream releases.
- **CPE dictionary not complete** and/or **inaccuracies** in CVE reports
 - NVD maintainers open to contributions
 - Buildroot developers have successfully contributed to the CPE and CVE databases
- **Only** tracks security issues reported as CVEs
 - Some security issues not reported as CVEs
 - Proprietary/in-house software is regularly much worse from a security standpoint!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com
Conclusion

- Security vulnerability tracking has become important to keep devices updated
- NVD provides useful databases, in machine-parsable formats
- Buildroot `pkg-stats` is the entry point to use such databases in a Buildroot context
- Run `pkg-stats` in a cronjob and monitor the results
- If a package is affected by a CVE
 - See if a version upgrade is necessary
 - Or backport the security fix + add `<pkg>_IGNORE_CVES`
 - Contribute the result to upstream Buildroot!