
Live Embedded Event, June 3rd 2021

Secure boot in
embedded Linux
systems
Thomas Perrot
thomas.perrot@bootlin.com

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

embedded Linux and kernel engineering

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1

Who is speaking ?

▶ Thomas Perrot
▶ Embedded Linux and kernel engineer at Bootlin
▶ Joined in 2020
▶ Embedded Linux engineer and trainer
▶ Open-source contributor
▶ Based in Toulouse, France

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1

Agenda

▶ Introduction
▶ What is it for?
▶ Chain of trust
▶ Signature process
▶ Workflows impacts

▶ Presenting one of available solutions based on:
▶ NXP i.MX8 AHAB secure boot
▶ U-boot verified boot
▶ dm-init + dm-verity

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1

Secure boot in embedded Linux systems

Introduction

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1

What is it for?

▶ system integrity checking at boot
▶ prevent

▶ hijack
▶ tampering
▶ unauthorized software
▶ malware execution

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 5/1

Chain of trust

▶ At build time:
▶ stages are signed
▶ stages embed the public key of next

▶ At boot time, each stage verify the signature the next one
▶ Next stage isn’t loaded when the authentication fails

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/1

Signature process

▶ Based on digest and asymmetric keys
▶ The private key

▶ It is used to sign at build
▶ It must not be published

▶ The public key
▶ It is used to verify at boot
▶ It is shared

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/1

Workflows impacts

▶ Keys management
▶ Manufactory
▶ Upgrade
▶ boot time

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/1

Secure boot in embedded Linux systems

A secure boot implementation on i.MX8

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/1

Global view

▶ AHAB to check the Bootloader integrity, from ROM code
▶ U-boot verified boot to check the kernel integrity, from U-boot
▶ dm-verity to check the rootfs integrity, from the kernel
▶ dm-init and a boot script so as not to need initramfs.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/1

ROM code: NXP i.MX8 secure boot

▶ Called Advanced High Assurance Boot
(AHAB)

▶ Different from HAB, the image uses
three containers

▶ Uses asymetric keys (PKI tree)
▶ Signed by i.MX code signing tool

(CST) at build
▶ Uses One-Time programmable (OTP)

to store SRK
▶ Status can be checked from U-boot

with hab_status
▶ Cryptographic Acceleration and

Assurance Module (CAAM)
- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 11/1

ROM code: AHAB image layout

▶ SECO FW using NXP
signatures

▶ SCFW, SPL and M4 images
using OEM signatures

▶ U-boot and ATF, loaded by
SPL

▶ Operations perform by the
SECO FW through the SCU
ROM

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 12/1

ROM code: Generating PKI tree

▶ Set the certificate ID:
echo 00000001 > serial

▶ Set the passphrase to store the private key:

echo -e “mypassphrase\nmypassphrase” > key_pass.txt

▶ Generating a P384 ECC PKI tree:

./ahab_pki_tree.sh
[...]
Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 10
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 13/1

ROM code: Generating PKI tree

▶ Generating SRK Table and SRK Hash:

cd ../crts/
../linux64/bin/srktool -a -s sha384 -t SRK_1_2_3_4_table.bin \

-e SRK_1_2_3_4_fuse.bin -f 1 -c \
SRK1_sha384_secp384r1_v3_usr_crt.pem,\
SRK2_sha384_secp384r1_v3_usr_crt.pem,\
SRK3_sha384_secp384r1_v3_usr_crt.pem,\
SRK4_sha384_secp384r1_v3_usr_crt.pem

▶ Checking SRK table matches with the SRK fuse:

od -t x4 --endian=big SRK_1_2_3_4_fuse.bin
sha512sum SRK_1_2_3_4_table.bin

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/1

ROM code: CST configuration

[Header]
Target = AHAB
Version = 1.0
[Install SRK]
SRK table generated by srktool
File = "crts/SRK_1_2_3_4_table.bin"
Public key certificate in PEM format
Source = "crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
Index of the public key certificate within the SRK table (0 .. 3)
Source index = 0
Type of SRK set (NXP or OEM)
Source set = OEM
bitmask of the revoked SRKs
Revocations = 0x0
[Authenticate Data]
Binary to be signed generated by mkimage
File = "flash.bin.nosigned"
Offsets = Container header Signature block (printed out by mkimage)
Offsets = 0x400 0x590

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/1

ROM code: One-Time programmable

▶ Program fuses:

=> fuse prog 0 730 0xbef4d897
=> fuse prog 0 731 0x6abedffa
=> fuse prog 0 732 0xaf28b37c
=> fuse prog 0 733 0xbd3c149a
=> fuse prog 0 734 0xb9bf25cd
=> fuse prog 0 735 0xb23f7389
=> fuse prog 0 736 0x86a0b06f
=> fuse prog 0 737 0xd25485c2
=> fuse prog 0 738 0xcfe655a4
=> fuse prog 0 739 0xe5e7a92e
=> fuse prog 0 740 0xf18dfa06
=> fuse prog 0 741 0x43d7dbc6
=> fuse prog 0 742 0x3a59e53b
=> fuse prog 0 743 0x78c7bf59
=> fuse prog 0 744 0xe7c860bd
=> fuse prog 0 745 0xd8b27ab0

▶ Read fuses:
=> fuse read 0 730
=> fuse read 0 731
=> fuse read 0 732
=> fuse read 0 733
=> fuse read 0 734
=> fuse read 0 735
=> fuse read 0 736
=> fuse read 0 737
=> fuse read 0 738
=> fuse read 0 739
=> fuse read 0 740
=> fuse read 0 741
=> fuse read 0 742
=> fuse read 0 743
=> fuse read 0 744
=> fuse read 0 745

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/1

ROM code: Check status
▶ Check the status of secure:

=> ahab_status
Lifecycle: 0x0020, NXP closed
No SECO Events Found!

▶ SECO event is raised in case of issue:
=> ahab_status
Lifecycle: 0x0020, NXP closed
SECO Event[0] = 0x0087EE00

CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

sc_seco_get_event: idx: 1, res:3

▶ Close the device:
=> ahab_close
=> reset
=> ahab_status
Lifecycle: 0x0080, OEM closed
No SECO Events Found!

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 17/1

bootloader: U-boot verified boot

▶ Uses fitimage
▶ Uses asymetric key
▶ Signed by mkimage

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/1

bootloader: fitimage is a container

/dts-v1/;

/ {
description = "U-Boot fitImage for bar";
#address-cells = <1>;

images {
kernel@1 {

description = "Linux kernel";
data = /incbin/("fitImage-linux.bin");

type = "kernel";
arch = "arm64";
os = "linux";
compression = "gzip";
load = <0x80280000>;
entry = <0x80280000>;
hash@1 {

algo = "sha256";
};

};
fdt@1 {

description = "Flattened Device Tree blob";
data = /incbin/("foo.dtb");
type = "flat_dt";
arch = "arm64";
compression = "none";
load = <0x83000000>;
hash@1 {

algo = "sha256";
};

};

bootscr@1 {
description = "U-boot script";
data = /incbin/("boot.scr");
type = "script";
arch = "arm64";
compression = "none";
hash@1 {

algo = "sha256";
};

};

configurations {
default = "conf@1";
conf@1 {

description = "kernel, dtb, bootscr";
kernel = "kernel@1";
fdt = "fdt@1";
bootscr = "bootscr@1";
hash@1 {

algo = "sha256";
};

};
};

▶ To store some images:
▶ Some kernel images
▶ Some device tree binaries or

overlays
▶ Some boot script
▶ Some FPGA bitstreams...

▶ But also some configurations
that are combinations of images.

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/1

bootloader: How the fitimage is signed
▶ Isn’t globally signed
▶ There are two available ways:

▶ Sign images
▶ Sign configurations

▶ Sign the configurations allows to prevent mix-and-match attack
conf@1 {

description = "1 Linux kernel, FDT blob, boot script";
kernel = "kernel@1";
fdt = "fdt@1";
bootscr = "bootscr@1";
hash@1 {

algo = "sha256";
};
signature@1 {

algo = "sha256,rsa4096";
key-name-hint = "kernel-dev";
sign-images = "kernel", "fdt", "bootscr";

};
};

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 20/1

bootloader: Generating keys and the certificate

▶ Generate a private key

openssl genpkey -algorithm RSA -out kernel-dev.key -pkeyopt rsa_keygen_bits:4096

▶ Generate a certificat
openssl req -new -x509 -key kernel-dev.key -out kernel-dev.crt

▶ Generate a public key

openssl rsa -pubout -in kernel-dev.key -out kernel-dev.pem

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 21/1

bootloader: Build the signed fitimage

dtc u-boot_pubkey.dts -O dtb -o u-boot_pubkey.dtb
make CROSS_COMPILE=arm-linux-gnueabihf- foo_defconfig
make CROSS_COMPILE=arm-linux-gnueabihf- tools
tools/mkimage -f fitImage.its -K u-boot_pubkey.dtb -k /path/to/keys -r fitImage
make CROSS_COMPILE=arm-linux-gnueabihf- EXT_DTB=u-boot_pubkey.dtb

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 22/1

rootfs: dm-verity

[root]
/ . . . \

[entry_0] [entry_1]
/ . . . \ . . . \

[entry_0_0] . . . [entry_0_127] [entry_1_127]
/ ... \ / . . . \ / \

blk_0 ... blk_127 blk_16256 blk_16383 blk_32640 . . . blk_32767

▶ Virtual layer provides integrity checking
▶ Using cryptographic hash tree (Merkle tree)
▶ Blocks are hashed and the value is checked only on access
▶ Only for read-only block devices
▶ Data and hash device can be the same
▶ Since 5.4, the root hash can be signed

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/1

rootfs: dm-verity

▶ Create hash on the image:
veritysetup format verify --hash-offset=${OFFSET} image.squashfs image.squashfs
VERITY header information for image.squashfs
UUID: 5f1872a8-6bd0-4824-82fc-886b944b60c2
Hash type: 1
Data blocks: 12800
Data block size: 4096
Hash block size: 4096
Hash algorithm: sha256
Salt:
73be30a3f4338cd9046492b9abcb172bb6fe4b741e9104cc7cf768dbd0901547
Root hash:
408323fad51d3a85c26384270da3980a63874b67d1e30a47330bd163bba98a41

▶ Verify the image:
veritysetup verify --hash-offset=${OFFSET} image.squashfs image.squashfs ${HASH_ALG}

▶ Open the image:
veritysetup open --hash-offset=${OFFSET} image.squashfs foo image.squashfs ${KEY} ${SALT}
dmsetup table --concise
foo,5f1872a8-6bd0-4824-82fc-886b944b60c2,1,ro,0 905896
verity 1 7:0 7:0 4096 4096 113237 113238 sha256

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/1

rootfs: dm-init

▶ Early create device mapper from kernel cmdline
dm-mod.create="rootfs,,0,ro,0 905880 verity 1 /dev/mmcblk0p2 /dev/mmcblk0p2 4096 4096 113235 113236 sha256 76defbdb8fd7842ab708b2b23ee718ec46dda3e41367462d12ad8c793cedfc76
3a7ea567e63eabf5c18fa938573e5e16e2fe81b440267751bd8a8fd70d22f8db"

▶ Allows to mount dm-verity device
▶ Without initramfs and veritysetup
▶ Only with a boot script that extend the kernel cmdline:

source ${fitimage_loadaddr}:bootscr@1
sha256+

▶ Boot script example:
setenv sectors 244184
setenv data_blocks 30523
setenv hash_start 30524
setenv data_block_sz 4096
setenv hash_block_sz 4096
setenv hash_alg sha256
setenv salt e2f254232415ea2c694c8064bc62169e895ab56f0d6f6b0db9a8734f5a4759d4
setenv root_hash bf67ab59b4b09263da1306e996f35f515c54c9c4078cbf6ecb629fcea3afee99
setenv bootargs ${bootargs} rootfstype=squashfs root=/dev/dm-0 dm-mod.create="rootfs,,0,ro,0 ${sectors} verity 1 /dev/mmcblk0p2 /dev/mmcblk0p2 ${data_block_sz} ${hash_block_sz} \

${data_blocks} ${hash_start} ${hash_alg} ${root_hash} ${salt}"

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/1

Questions? Suggestions? Comments?

Thomas Perrot
thomas.perrot@bootlin.com

Slides under CC-BY-SA 3.0
https://bootlin.com/pub/conferences/2021/lee/perrot-secure-boot/

- Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/1

https://bootlin.com/pub/conferences/2021/lee/perrot-secure-boot/

